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Abstract

A Service-Level Agreement (SLA) provides surety for specific quality at-
tributes to the consumers of services. However, current SLAs offered by cloud
infrastructure providers do not address response time, which, from the user’s
point of view, is the most important quality attribute for Web applications.
Satisfying a maximum average response time guarantee for Web applications
is difficult for two main reasons: first, traffic patterns are highly dynamic
and difficult to predict accurately; second, the complex nature of multi-tier
Web applications increases the difficulty of identifying bottlenecks and resolv-
ing them automatically. This paper proposes a methodology and presents a
working prototype system for automatic detection and resolution of bottle-
necks in a multi-tier Web application hosted on a cloud in order to satisfy
specific maximum response time requirements. It also proposes a method
for identifying and retracting over-provisioned resources in multi-tier cloud-
hosted Web applications. We demonstrate the feasibility of the approach in
an experimental evaluation with a testbed EUCALYPTUS-based cloud and
a synthetic workload. Automatic bottleneck detection and resolution under
dynamic resource management has the potential to enable cloud infrastruc-
ture providers to provide SLAs for Web applications that guarantee specific
response time requirements while minimizing resource utilization.
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1. Introduction

Cloud providers [1] use the Infrastructure as a Service model to allow
consumers to rent computational and storage resources on demand and ac-
cording to their usage. Cloud infrastructure providers maximize their profits
by fulfilling their obligations to consumers with minimal infrastructure and
maximal resource utilization.

Although most cloud infrastructure providers provide service-level agree-
ments (SLAs) for availability or other quality attributes, the most important
quality attribute for Web applications from the user’s point of view, response
time, is not addressed by current SLAs. Guaranteeing response time is a dif-
ficult problem for two main reasons. First, Web application traffic is highly
dynamic and difficult to predict accurately. Second, the complex nature
of multi-tier Web applications, in which bottlenecks can occur at multiple
points, means response time violations may not be easy to diagnose or rem-
edy. It is also difficult to determine optimal static resource allocation for
multi-tier Web applications manually for certain workloads due to the dy-
namic nature of incoming requests and exponential number of possible allo-
cation strategies. Therefore, if a cloud infrastructure provider is to guarantee
a particular maximum response time for any traffic level, it must automati-
cally detect bottleneck tiers and allocate additional resources to those tiers
as traffic grows.

In this paper, we take steps toward eliminating this limitation of cur-
rent cloud-based Web application hosting SLAs. We propose a methodology
and present a working prototype system running on a EUCALYPTUS-based
[2] cloud that actively monitors the response times for requests to a multi-
tier Web application, gathers CPU usage statistics, and uses heuristics to
identify the bottlenecks. When bottlenecks are identified, the system dy-
namically allocates the resources required by the application to resolve the
identified bottlenecks and maintain response time requirements. The system
furthermore predicts the optimal configuration for the dynamically varying
workload and scales down the configuration whenever possible to minimize
resource utilization.

The bottleneck resolution method is purely reactive. Reactive bottleneck
resolution has the benefit of avoiding inaccurate a priori performance models
and pre-deployment profiling. In contrast, the scale down method is neces-
sarily predictive, since we must avoid premature release of busy resources.
However, the predictive model is built using application performance statis-
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tics acquired while the application is running under real-world traffic loads,
so it neither suffers from the inaccuracy of a priori models nor requires pre-
deployment profiling.

In this paper, we describe our prototype, the heuristics we have developed
for reactive scale-up of multi-tier Web applications, the predictive models
we have developed for scale-down, and an evaluation of the prototype on
a testbed cloud. The evaluation uses a specific two-tier Web application
consisting of a Web server tier and a database tier. In this context, the
resources to be minimized are the number of Web servers in the Web server
tier and the number of replicas in the database tier. We find that the system
is able to detect bottlenecks, resolve them using adaptive resource allocation,
satisfy the SLA, and free up over-provisioned resources as soon as they are
not required.

There are a few limitations to this preliminary work. We only address
scaling of the Web server tier and a read-only database tier. Our system
only perform hardware and virtual resource management for applications.
In particular, we do not address software configuration management; for
example, we assume that the number of connections from each server in
the Web server tier to the database tier is sufficient for the given workload.
Additionally, real-world cloud infrastructure providers using our approach to
response time-driven SLAs would need to protect themselves with detailed
contracts (imagine for example the rogue application owner who purposefully
inserts delays in order to force SLA violations). We plan to address some of
these limitations in future work.

In the rest of this paper, we provide related work, then we describe our
approach, the prototype implementation, and an experimental evaluation of
the prototype.

2. Related Work

There has been a great deal of research on dynamic resource allocation
for physical and virtual machines and clusters of virtual machines [3]. In [4]
and [5], a two-level control loop is proposed to make resource allocation deci-
sions within a single physical machine. This work does not address integrated
management of a collection of physical machines. The authors of [6] study
the overhead of a dynamic allocation scheme that relies on virtualization as
opposed to static resource allocation. None of these techniques provide a
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technology to dynamically adjust allocation based on SLA objectives in the
presence of resource contention.

VMware DRS [7] provides technology to automatically adjust the amount
of physical resources available to VMs based on defined policies. This is
achieved using the live-migration automation mechanism provided by VMo-
tion. VMware DRS adopts a VM-centric view of the system: policies and
priorities are configured on a VM-level.

A approach similar to VMware DRS is proposed in [8], which proposes a
dynamic adaptation technique based on rearranging VMs so as to minimize
the number of physical machines used. The application awareness is limited
to configuring physical machine utilization thresholds based on off-line anal-
ysis of application performance as a function of machine utilization. In all of
this work, runtime requirements of VMs are taken as a given and there is no
explicit mechanism to tune resource consumption by any given VM.

Foster et al. [9] address the problem of deploying a cluster of virtual
machines with given resource configurations across a set of physical machines.
Czajkowski et al. [10] define a Java API permitting developers to monitor
and manage a cluster of Java VMs and to define resource allocation policies
for such clusters.

Unlike [7] and [8], our system takes an application-centric approach; the
virtual machine is considered only as a container in which an application is
deployed. Using knowledge of application workload and performance goals,
we can utilize a more versatile set of automation mechanisms than [7], [8],
[9], or [10].

Network bandwidth allocation issues in the deployment of clusters of
virtual machines has also been studied in [11]. The problem there is to place
virtual machines interconnected using virtual networks on physical servers
interconnected using a wide area network. VMs may be migrated, but the
emphasis is rather than resource scaling, to allocate network bandwidth for
the virtual networks. In contrast, our focus is on data center environments,
in which network bandwidth is of lesser concern.

There have been several efforts to perform dynamic scaling of Web ap-
plications based on workload monitoring. Amazon Auto Scaling [12] allows
consumers to scale up or down according to criteria such as average CPU
utilization across a group of compute instances. [13] presents the design of
an auto-scaling solution based on incoming traffic analysis for Axis2 Web
services running on Amazon EC2. [14] presents a statistical machine learn-
ing approach to predict system performance and minimize the number of
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resources required to maintain the performance of an application hosted on
a cloud. [15] monitors the CPU and bandwidth usage of virtual machines
hosted on an Amazon EC2 cloud, identifies the resource requirements of ap-
plications, and dynamically switches between different virtual machine con-
figurations to satisfy the changing workloads. However, none of these solu-
tions address the issues of multi-tier Web applications or database scalability,
a crucial step to dynamically manage multi-tier workloads.

Thus far, only a few researchers have addressed the problem of resource
provisioning for multi-tier applications. [16] presents an analytical model
using queuing networks to capture the behavior of each tier. The model is
able to predict the mean response time for a specific workload given several
parameters such as the visit ratio, service time, and think time. However, the
authors do not apply their approach toward dynamic resource management
on clouds. [17] presents a predictive and reactive approach using queuing
theory to address dynamic provisioning for multi-tier applications. The pre-
dictive approach is to allocate resources to applications on large time scales
such as days and hours, while the reactive approach is used for short time
scales such as seconds and minutes. This allows the system to overcome the
“flash crowd” phenomenon and correct prediction mistakes made by the pre-
dictive model. The technique assumes knowledge of the resource demands of
each tier. In addition to the queuing model, the authors also provide a sim-
ple black-box approach for dynamic provisioning that scales up all replicable
tiers when bottlenecks are detected. However, this work does not address
database scalability or releasing of application resources when they are not
required. In contrast, our system classifies requests as either dynamic or
static and uses a black box heuristic technique to scale up and scale down
only one tier at a time. Our scale-up system is reactive in resolving bottle-
necks and our scale-down system is predictive in releasing resources.

The most recent work in this area [18] presents a technique to model
dynamic workloads for multi-tier Web applications using k-means cluster-
ing. The method uses queuing theory to model the system’s reaction to the
workload and to identify the number of instances required for an Amazon
EC2 cloud to perform well under a given workload. Although this work does
model system behavior on a per-tier basis, it does not perform multi-tier
dynamic resource provisioning. In particular, database tier scaling is not
considered.

In our own recent work [19], we consider single-tier Web applications, use
log-based monitoring to identify SLA violations, and use dynamic resource
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allocation to satisfy SLAs. In [20], we consider multi-tier Web applications
and propose an algorithm based on heuristics to identify the bottlenecks.
This work uses a simple reactive technique to scale up multi-tier Web ap-
plications to satisfy SLAs. The work described in the current paper is an
extension of this work. We aim to solve the problem of dynamic resource
provisioning for multi-tier Web applications to satisfy a response time SLA
with minimal resource utilization. Our method is reactive for scale-up de-
cisions and predictive for scale-down decisions. Our method uses heuristics
and predictive models to scale each tier of a given application, with the goal
of requiring minimal knowledge of and minimal modification of the existing
application. To the best of our knowledge, our system is the first SLA-
driven resource manager for clouds based on open source technology. Our
working prototype, built on top of a EUCALYPTUS-based compute cloud,
provides dynamic resource allocation and load balancing for multi-tier Web
applications in order to satisfy a SLA that enforces specific response time
requirements.

3. System Design and Implementation Details

3.1. Dynamic provisioning for multi-tier Web applications

Here we describe our methodology for dynamic provisioning of resources
for multi-tier Web applications, including the algorithms, system design, and
implementation. A high-level flow diagram for bottleneck detection, scale-up
decision making, and scale-down decision making in our prototype system is
shown in Figure 1.

3.1.1. Reactive model for scale-up

We use heuristics and active profiling of the CPUs of virtual machine-
hosted application tiers for identification of bottlenecks. Our system reads
the Web server proxy logs for t seconds and clusters the log entries into dy-
namic content requests and static content requests. Requests to resources
(Web pages) containing server-side scripts (PHP, JSP, ASP, etc.) are consid-
ered as dynamic content requests. Requests to the static resources (HTML,
JPG, PNG, TXT, etc.) are considered as static content requests. Dynamic
resources are generated through utilization of the CPU and may depend on
other tiers, while static resources are pre-generated flat files available in the
Web server tier. Each type of request has different characteristics and is
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Figure 1: Flow diagram for prototype system that detects the bottleneck tier in a two-tier
Web application hosted on a heterogeneous cloud and dynamically scales the tier to satisfy
a SLA that defines response time requirements and ensures to release over-provisioned
resources.

monitored separately for purposes of bottleneck detection. The system cal-
culates the 95th percentile of the average response time. When static content
response time indicates saturation, the system scales the Web server tier.
When the system determines that dynamic content response time indicates
saturation, it obtains the CPU utilization across the Web server tier. If the
CPU utilization of any instance in the Web server tier has reached a satura-
tion threshold, the system scales up the Web server tier; otherwise, it scales
up the database tier. Each scale up operation adds exactly one server to a
specific tier. Our focus is on read-intensive applications, and we assume that
a mechanism such as [21] exists to ensure consistent reads after updates to a
master database. Before initiating a scale operation, the system ensures that
the effect of the last scale operation has been realized. If the system satisfies
the response time requirements for k consecutive intervals, it uses the pre-
dictive model to identify any over-provisioned resources and if appropriate,
scales down the over-provisioned tier(s). The predictive model is explained
next.
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3.1.2. Predictive model for scale down

To determine when to initiate scale down operations, we use a regression
model that predicts, for each time interval t, the number of Web server
instances nweb

t and number of database server instances ndb
t required for the

current observed workload. We use polynomial regression with polynomial
degree two. Our reactive scale-up algorithm feeds training observations to the
model as appropriate. We retain training observations for every interval of
time that satisfies the response time requirements. Each observation contains
the observed workload for each type of request and the existing configuration
of the tiers for the last 60-second interval. We can express the model as
follows:

nweb
t = a0 + a1(h

s
t + hdt ) + a2(h

s
t + hdt )

2 + εweb
t (1)

ndb
t = b0 + b1h

d
t + b2(h

d
t )

2 + εdbt , (2)

where hst and hdt are the number of static and dynamic requests received dur-
ing interval t. We assume noise εweb

t ∼ N(0, (σweb)2) and εdbt ∼ N(0, (σdb)2).
Since both static and dynamic resource requests hit the Web server tier,

we assume that nweb
t (the number of Web server instances required, Equa-

tion 1) depends on both hst and hdt . To keep the number of model parameters
to be estimated small, we use a single parameter for the sum of the two load
levels. Since the database server only handles database queries, which are
normally only invoked by dynamic pages, we assume that ndb

t (the number
of database server instances required, Equation 2) depends only on hdt .

The regression coefficients a0, a1, a2, b0, b1, and b2 are recalculated after
updating the sufficient statistics for all of the historical data every time a
new observation is received. (The sufficient statistics are the sums and sums
of squares for variables nweb

t , ndb
t , hst , and hdt over the training set up to the

current point in time.) The most recent predictive model is used as shown
in the flow diagram of Figure 1 to identify over-provisioned resources for the
current workload and retract them from the current configuration.

3.2. System components and implementation

To manage cloud resources dynamically based on response time require-
ments, we developed three components: VLBCoordinator, VLBManager, and
VMProfiler. We use Nginx [22] as a load balancer because it offers detailed
logging and allows reloading of its configuration file without termination of
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existing client sessions. VLBCoordinator and VLBManager are our service
management [23] components.

VLBCoordinator interacts with a EUCALYPTUS cloud using Typica
[24]. Typica is a simple API written in Java to access a variety of Ama-
zon Web services such as EC2, SimpleDB, and DevPay. The core functions
of VLBCoordinator are instantiateVirtualMachine and getVMIP, which
are accessible through XML-RPC. VLBManager monitors the traces of the
load balancer and detects violations of response time requirements. It clus-
ters the requests into static and dynamic resource requests and calculates the
average response time for each type of request. VMProfiler is used to log the
CPU utilization of each virtual machine. It exposes XML-RPC functions to
obtain the CPU utilization of specific virtual machine for the last n minutes.

Every Web application has an application-specific interface between the
Web server tier and the database tier. We assume that database writes are
handled by a single master MySQL instance and that database reads can
be handled by a cluster of MySQL slaves. Under this assumption, we have
developed a component for load balancing and scaling the database tier that
requires minimal modification of the application.

Our prototype is based on the RUBiS [25] open-source benchmark Web
application for auctions. It provides core functionality of an auction site
such as browsing, selling, and bidding for items, and provides three user
roles: visitor, buyer, and seller. Visitors are not required to register and are
allowed to browse items that are available for auction. We used the PHP
implementation of RUBiS as a sample Web application for our experimental
evaluation.

To enable RUBiS to support load balancing over the database tier, we
modified it to use round-robin balancing over a set of database servers listed
in a database connection settings file, and we developed a server-side compo-
nent, DbConfigAgent, to update the database connection settings file after
a scaling operation has modified the configuration of the database tier. The
entire benchmark system consists of the physical machines supporting the
EUCALYPTUS cloud, a virtual Web server acting as a proxying load bal-
ancer for the entire Web application, a tier of virtual Web servers running the
RUBiS application software, and a tier of virtual database servers. Figure 2
shows the deployment of our components along with the main interactions.
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Figure 2: Component deployment diagram for system components including main inter-
actions.

4. Experimental Setup

In this section we describe the setup for an experimental evaluation of
our prototype based on a testbed cloud using the RUBiS Web application
and a synthetic workload generator.

4.1. Testbed cloud

We built a small private heterogeneous compute cloud on seven physical
machines (Front-end, Node1, Node2, Node3, Node4, Node5, and Node6)
using EUCALYPTUS. Figure 3 shows the design of our testbed cloud. Front-
end and Node1 are Intel Pentium 4 machines with 2.84 GHz and 2.66 GHz
CPUs, respectively. Node2 is an Intel Celeron machine with a 2.4 GHz CPU.
Node3 is an Intel Core 2 Duo machine with a 2.6 GHz CPU. Node4, Node5,
and Node6 are Intel Pentium Dual Core machines with 2.8 GHz CPU. Front-
end, Node2, Node3, Node4, Node5, and Node6 have 2 GB RAM while Node1
and Node4 have 1.5 GB RAM.

We used EUCALYPTUS to establish a cloud architecture comprised of
one Cloud Controller (CLC), one Cluster Controller (CC), and six Node Con-
trollers (NCs). We installed the CLC and CC on a front-end node attached
to both our main LAN and the cloud’s private network. We installed the
NCs on six separate machines (Node1, Node2, Node3, Node4, Node5, and
Node6) connected to the private network.
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Figure 3: EUCALYPTUS-based testbed cloud using seven physical machines. We installed
the CLC and CC on a front-end node attached to both our main LAN and the cloud’s
private network. We installed the NCs on six separate machines (Node1, Node2, Node3,
Node4, Node5, and Node6) connected to the private network. Each physical machine has
the capacity to spawn a maximum number of virtual machines as shown (highlighted in
red) in the figure, based on the number of cores.

4.2. Workload generation

We use httperf [26] to generate synthetic workloads for RUBiS. We gen-
erate workloads for specific durations with a required number of user sessions
per second. A user session emulates a visitor that browses items up for auc-
tion in specific categories and geographical regions and also bids on items
up for auction. In a first cycle, every five minutes, we increment the load
level by 6, from load level 6 up to load level 108, and then we decrement
the load level by 6 from load level 108 down to load level 6. In a second
cycle, we increment the load level by 6, from load level 6 up to load level 60,
and then we decrement the load level by 6 from load level 60 down to load
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Figure 4: Workload generation profile for all experiments.

level 6. Each load level represents the number of user sessions per second;
each user session makes six requests to static resources and five requests to
dynamic resources including five pauses to simulate user think time. The dy-
namic resources consist of PHP pages that make read-only database queries.
Note that while each session is closed loop (the workload generator waits
for a response before submitting the next request), session creation is open
loop: new sessions are created independently of the system’s ability to handle
them. This means that many requests may queue up, leading to exponen-
tial increases in response times. Figure 4 shows the workload levels we use
for our experiments over time. We use three workload generators distributed
over three separate machines during the experiments to ensure that workload
generation machines never reach saturation.

We performed all of our experiments based on this workload generator
and RUBiS benchmark Web application.

5. Experimental Design

To evaluate our proposed system, we performed three experiments. Ex-
periments 1 and 2 profile the system’s behavior using specific static alloca-
tions. Experiment 3 profiles the system’s behavior under adaptive resource
allocation using the proposed algorithm for bottleneck detection and resolu-
tion. Experiments 1 and 2 demonstrate system behavior using current in-
dustry practices, whereas Experiment 3 shows the strength of the proposed
alternative methodology. Table 1 summarizes the experiments, and details
follow.
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5.1. Experiment 1: Simple static allocation

In Experiment 1, we statically allocate one virtual machine to the Web
server tier and one virtual machine to the database tier, and then we profile
system behavior over the synthetic workload described previously. The single
Web server/single database server configuration is the most common initial
allocation strategy used by most application deployment engineers.

5.2. Experiment 2: Static over-allocation

In Experiment 2, we over-allocate resources, using a maximal static con-
figuration sufficient to process the workload. We statically allocate a cluster
of four Web server instances and four database server instances, and then
we then profile the system behavior over the synthetic workload described
previously. Since it is quite difficult to determine an optimal allocation for a
multi-tier application manually, we actually derived this configuration from
the the behavior of the adaptive system profiled in Experiment 3.

5.3. Experiment 3: Adaptive allocation under proposed system

In Experiment 3, we use our proposed system to adapt to changing work-
loads. Initially, we started two virtual machines on our testbed cloud. The
Nginx-based Web server farm was initialized with one virtual machine host-
ing the Web server tier, and another single virtual machine was used to host
the database tier. As discussed earlier, we modified RUBiS to perform load
balancing across the instances in the database server cluster. The system’s
goal was to satisfy a SLA that enforces a one-second maximum average re-
sponse time requirement for the RUBiS application regardless of load level
using our proposed algorithm for bottleneck detection and resolution. The
threshold for CPU saturation (refer to the flow diagram in Figure 1) was
set to 85% utilization. This gives the system a chance to handle unexpected
spikes in CPU activities, and it is a reasonable threshold for efficient use of
the server [27].

To determine good values for the important parameters t (the time to read
proxy traces) and k (the number of consecutive intervals required to satisfy
response time constraints before a scale-down operation is attempted), we
performed a grid search over a set of reasonable values for t and k.
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Table 1: Summary of experiments.

Exp. Description
1 Static allocation using one VM for Web server tier and one

VM for database tier
2 Static over-allocation using a cluster of four VMs for the Web

server tier and four VMs for database tier
3 Adaptive allocation using proposed methodology

6. Experimental Results

6.1. Experiment 1: Simple static allocation

This section describes the results we obtained in Experiment 1. Figure 5
shows the throughput of the system during the experiment. After load level
30, we do not observe any growth in the system’s throughput because one
or both of the tiers have reached their saturation points. Although the load
level increases with time, the system is unable to serve all requests, and it
either rejects or queues the remaining requests.

Figure 6 shows the 95th percentile of average response time during Ex-
periment 1. From load level 6 to load level 24, we observe a nearly constant
response time, but after load level 24, the arrival rate exceeds the limits of
the system’s processing capacity. One of the virtual machines hosting the
application tiers becomes a bottleneck, then requests begin to spend more
time in the queue and request processing time increases. From that point we
observe rapid growth in the response time. After load level 30, however, the
queue also becomes saturated, and the system rejects most requests. There-
fore, we do not observe further growth in the average response time. Clearly,
the system only works efficiently from load level 6 to load level 24.

Figure 7 shows the CPU utilization of the two virtual machines hosting
the application tiers during Experiment 1. The downward spikes at the be-
ginning of each load level occur because all user sessions are cleared between
load level increments, and it takes some time for the system to return to
a steady state. We do not observe any tier saturating its CPU during this
experiment; after load level 30, the CPU utilization remains nearly constant,
indicating that the CPU was not a bottleneck for this application with the
given workload.
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Figure 5: Throughput of the system during Experiment 1.
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Figure 6: 95th percentile of mean response time during Experiment 1.

6.2. Experiment 2: Static over-allocation

In Experiment 2, to observe the system’s behavior under a static al-
location policy using the maximal configuration observed during adaptive
experiments, we allocated four virtual machines to the Web server tier and
four virtual machines to the database tier, and generated the same work-
load described in Section 4.2. Figure 8 shows the throughput of the system
during Experiment 2. We observe the expected linear relationship between
load level and throughput; as load level increases, the system throughput
increases, and as load level decreases, the system throughput decreases.

Figure 9 shows the 95th percentile of average response times during Ex-
periment 2. We do not observe any response time violations during the
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Figure 7: CPU utilization of virtual machines used during Experiment 1.
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Figure 8: Throughput of the system during Experiment 2.

experiment. We observe a slight increase in response time during load lev-
els 80 to 100 because, during this interval, the system is serving the peak
workload and utilizing all of the allocated resources to satisfy the workload
requirements. This experiment shows that the maximal configuration identi-
fied by our adaptive resource allocation system would never lead to violations
of the response time requirements under the same load.

6.3. Experiment 3: Bottleneck detection and resolution under adaptive allo-
cation

This section describes the results of Experiment 3 using our proposed
algorithm for bottleneck detection and resolution. We first identified appro-
priate values and impact for important parameters (t and k) in our proposed
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Figure 9: 95th percentile of mean response time during Experiment 2.

Table 2: Summary of grid search to find good values for the important parameters of the
proposed system.

t k
% requests
missing SLA

Scale-down
mistakes

Total operations

30 4 3.228 12 38
30 8 2.002 3 22
60 4 2.413 4 22
60 8 2.034 2 20
120 4 3.227 2 18
120 8 3.312 0 15

algorithm using a grid search. We then examined the results from the best
configuration in more detail.

6.3.1. Parameter value identification

We used t = 30, 60, and 120 and k = 4 and 6 for the grid search. For
each value of t and k, the percentage of requests missing SLA requirements,
scale-down decision mistakes, and total number of scale operations (scale-up
and scale-down) are shown in Table 2.

Figure 10 compares the percentage of requests missing SLA requirements,
scale-down decision mistakes, and total number of scale (scale-up and scale-
down) operations over different values of t and k.

We observe that a large number of requests exceed the required response
time when we use small values (t = 30, k = 4) for both parameters or a
large value (t = 120) for t. The parameter k is the number of consecutive
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Figure 10: Grid search comparison for determining appropriate values of t and k for the
system.

intervals of length t required to satisfy response time constraints before a
scale-down operation is attempted. As k depends on t, using small values
for t and k enables system to react quickly and make scale-down decisions
that increase the number of scale-down mistakes. The system requires some
time to recover from such mistakes, so we observe additional response time
violations during the recovery. The large value of t increases the system’s
reaction time; this is why we observe a large number of requests exceeding the
required response time with t = 120. We can also observe that as t increases,
the number of scale down mistakes decreases, since scale down decisions are
made less frequently. However, the slower response with high values of t also
means that the system takes more time to respond to long traffic spikes and
to release over-provisioned resources. Smaller values of t with larger values of
k reduce the occurrence of scale down mistakes without negatively affecting
the system’s responsiveness to traffic spikes.

We selected the values t = 60 and k = 8 for further examination, as these
values provide a good trade off between the percentage of requests missing
the SLA, the number of scale-down decision mistakes, and the total number
of operations. Figure 11 shows the 95th percentile of the average response
time during Experiment 3 using automatic bottleneck detection and adaptive
resource allocation under this parameter regime. The bottom graph shows
the adaptive addition and retraction of instances in each tier after a bot-
tleneck or over-provisioning is detected during the experiment. Whenever
the system detects a violation of the response time requirements, it uses the
proposed reactive algorithm to identify the bottleneck tier then dynamically
adds another virtual machine to the server farm for that bottleneck tier.
We observe temporary violations of the required response time for short pe-

18



 0
 1
 2
 3
 4
 5

 0  20  40  60  80  100  120  140  160  180  200  220  240  260  280

#
 m

ac
h
in

es

Time (minutes)

DB server
Web server

 0

 5000

 10000

 15000

 20000

 25000

 0

 12

 24

 36

 48

 60

 72

 84

 96

 108

 120

9
5
th

 p
er

ce
n

ti
le

 o
f 

m
ea

n
 r

es
p
o

n
se

 t
im

e 
(m

s)

L
o
ad

 l
ev

el
 (

n
ew

 s
es

si
o
n
s/

s)

Dynamic contents
Static contents

Max SLA mean response time
Workload

Figure 11: 95th percentile of mean response time during Experiment 3 using t = 1 and
k = 8 under proposed system.

riods of time due to the latency of virtual machine boot-up and the time
required to observe the effects of previous scale operations. Whenever the
system identifies over-provisioning of virtual machines for specific tiers us-
ing the predictive model, it scales down the specific tiers adaptively. In the
beginning, the prediction model makes some mistakes; we can observe two in-
correctly predicted scale-down decisions at load level 146 and load level 252.
However, the reactive scale-up algorithm quickly brings the system back to a
configuration that satisfies the response time requirements. Occasional mis-
takes such as these are expected due to noise, since the predictive approach
is statistical. We could in principle reduce the occurrence of these mistakes
by incorporating traffic pattern prediction as part of the decision model.

Figure 12 shows the system throughput during the experiment. We ob-
serve linear growth in the system throughput through the full range of load
levels. The throughput increases and decreases as required with the load
level.

Figure 13 shows the CPU utilization of all virtual machines during the
experiment. Initially, the system is configured with one VM in each tier. The
system adaptively adds and removes virtual machines to each tier over time.
The differing steady-state levels of CPU utilization for the different VMs
reflects the use of round-robin balancing across differing processor speeds for
the physical nodes. We observe the same downward spike at the beginning
of each load level as in the earlier experiments due to the time for the system
to return to steady state after all user sessions are cleared.
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Figure 12: Throughput of the system during Experiment 3 using t = 1 and k = 8 under
proposed system.
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Figure 13: CPU utilization of all VMs during Experiment 3 using t = 1 and k = 8 under
proposed system.

The experiments demonstrate first that insufficient static resource alloca-
tion policies lead to system failure, that maximal static resource allocation
policies lead to overprovisioning of resources, and that our proposed adap-
tive resource allocation method is able to maintain a maximum response time
SLA while utilizing minimal resources.

7. Conclusion

In this paper, we have proposed a methodology and described a proto-
type system for automatic identification and resolution of bottlenecks and
automatic identification and resolution of overprovisioning in multi-tier ap-
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plications hosted on a cloud. Our experimental results show that while we
clearly cannot provide a SLA guaranteeing a specific response time with an
undefined load level for a multi-tier Web application using static resource al-
location, our adaptive resource provisioning method could enable us to offer
such SLAs.

It is very difficult to identify a minimally resource intensive configuration
of a multi-tier Web application that satisfies given response time require-
ments for a given workload, even using pre-deployment training and testing.
However, our system is capable of identifying the minimum resources re-
quired using heuristics, a predictive model, and automatic adaptive resource
provisioning. Cloud infrastructure providers can adopt our approach not
only to offer their customers SLAs with response time guarantees but also
to minimize the resources allocated to the customers’ applications, reducing
their costs.

We are currently extending our system to support n-tier clustered ap-
plications hosted on a cloud, and we are planning to extend our prediction
model, which is currently only used to retract over-provisioned resources,
to also perform bottleneck prediction in advance, in order to overcome the
virtual machine boot-up latency problem. We are developing more sophis-
ticated methods to classify URLs into static and dynamic content requests,
rather than relying on filename extensions. Finally, we intend to incorpo-
rate the effects of heterogeneous physical machines on the prediction model
and also address issues related to best utilization of physical machines for
particular tiers.
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