
A Text-Graphics Character CAPTCHA for
Password Authentication

Matthew Dailey
Sirindhorn International Institute of Technology

Thammasat University
Patumtani, Thailand 12121

Email: mdailey@siit.tu.ac.th

Chanathip Namprempre
Electrical Engineering Department

Faculty of Engineering, Thammasat University
Patumtani, Thailand 12121

Email: nchanath@engr.tu.ac.th

Abstract— We propose a new construct, the Text-Graphics
Character (TGC) CAPTCHA, for preventing dictionary attacks
against password authenticated systems allowing remote access
via dumb terminals. Password authentication is commonly used
for computer access control. But password authenticated systems
are prone to dictionary attacks, in which attackers repeatedly
attempt to gain access using the entries in a list of frequently-
used passwords. CAPTCHAs (Completely Automated Public
Turing tests to tell Computers and Humans Apart) are currently
being used to prevent automated “bots” from registering for
email accounts. They have also been suggested as a means for
preventing dictionary attacks. However, current CAPTCHAs are
unsuitable for text-based remote access. Our TGC CAPTCHA
fills this gap. In this paper, we define the TGC CAPTCHA,
prove that it is a (secure) CAPTCHA, demonstrate its utility
in a prototype based on the SSH (Secure Shell) protocol suite,
and provide empirical evidence that the test is easy for humans
and hard for machines. We believe that the system will not only
help improve the security of servers allowing remote terminal
access, but also encourage a healthy spirit of competition in the
fields of pattern recognition, computer graphics, and psychology.

I. INTRODUCTION

Password authentication is one of the most common build-
ing blocks in implementing access control. Each user has a
relatively short sequence of characters commonly referred to as
a password. To gain access, the user provides his/her password
to the system. Access is granted if the password is correct; it
is denied otherwise.

A common attack against password authenticated systems
is the dictionary attack. An attacker can write a program
that, imitating a legitimate user, repeatedly tries different
passwords, say from a dictionary, until it finds one that works.

There are several well-known ways to cope with dictionary
attacks. For example, the system can deny access for the user
in question after some number of tries, a technique known
as account locking. However, this invites a denial of service
attack: an attacker can lock anyone out of the system by
submitting a sequence of incorrect passwords on behalf of the
victim. Other solutions also have their own shortcomings [1].

In this paper, we present an alternative defense against
dictionary attacks. The idea is to make it harder for auto-
mated programs to mount dictionary attacks by requiring the
attacking programs to pass a test that is easy for humans

but is hard (in terms of accuracy and/or compute time) for
computer programs. A construct with this property is called a
CAPTCHA (Completely Automated Public Turing test to tell
Computers and Humans Apart) [2]. In particular, if there exists
a program that can pass a CAPTCHA with high probability,
then that program can be used to solve a hard AI problem.
CAPTCHAs are already in use in some systems that benefit
from distinguishing between humans and “bots” [3]. Recently,
they have also been suggested as a means for deterring
dictionary attacks in password authenticated systems [1].

One CAPTCHA suitable for password authenticated sys-
tems displays a degraded image of a word to the human,
who then responds by typing the word he or she sees. A
similar CAPTCHA using a sound clip instead of an image
can also be used. However, these CAPTCHAs are not suitable
for systems that allow remote access via consoles or dumb
terminal programs. Our goal is to make it possible for such
minimal systems to obtain the same benefits from CAPTCHA-
assisted password authentication as systems with graphical
displays and/or speakers.

To this end, we propose a new CAPTCHA based on Text-
Graphics Characters. We call it the TGC CAPTCHA. A text-
graphics character is an image of a character rendered on a
text-only screen, namely a screen in which ASCII characters
are used to represent pixels. Unfortunately, images rendered on
a text-only screen are necessarily low resolution. This limits
the number of characters that can be put on a single screen
without hindering recognition. In fact, we find that on an
80x24 screen, it is unreasonable to display more than one
or two distorted English characters. Without the contextual
information afforded when complete words are displayed,
humans have a harder time recognizing what is on each screen.
Additionally, neither color nor grayscale are usually available
to help provide visual clues. These limitations together make
it difficult to generate text-graphics characters that are easy
for humans but hard for computers to recognize.

CONTRIBUTIONS. First, we precisely define the TGC
CAPTCHA and prove that it is indeed a (secure) CAPTCHA
according to the definitions in [2]. Specifically, we offer a
reductionistic proof to show that, if a particular class of
problems believed to be hard is in fact a hard AI problem as



defined in [2], then our TGC CAPTCHA is secure. As such,
the term “prove” here is used in the same sense as that in the
area of provable security [4], namely that the security of a
construct, i.e. the CAPTCHA, is proved based on the security
of a primitive, i.e. the corresponding hard AI problem.

Second, we also implement a prototype as part of the
popular Secure Shell (SSH) protocol suite by incorporating our
CAPTCHA into the user authentication mechanism of SSH,
thus hardening SSH servers against dictionary attacks. The
prototype is available as a source code patch for OpenSSH
3.6.1 at [5].

Finally, we provide empirical evidence that our CAPTCHA
is easy for humans and relatively hard for machines by running
the CAPTCHA test against human subjects and an Optical
Character Recognition (OCR) program [6], respectively. The
results are encouraging: on a character-by-character level,
humans achieve 95% accuracy after two practice trials whereas
the OCR program’s accuracy is less than 35%. We believe
that improving the OCR system’s accuracy to approach that
of humans will require more effort on the part of OCR system
designers, and in any case, attackers using OCR systems to
mount automated dictionary attacks will require a substantial
amount of total compute time.

THE TGC CAPTCHA. Our CAPTCHA presents a sequence of
k distorted characters, one at a time, to the user and accepts
only correct responses (k = 8 in our implementation). To
make the test easy for humans, we use only uppercase English
characters. For each character, we pick nd “distracters” and ap-
ply several operations to both the character and the distracters
before laying the former over the latter. The operations are
scaling, rotation, translation, and “row sliding,” an operation
involving horizontally moving each pixel in incremental steps,
row-wise. The characters, the distracters, the operations, and
all of the parameters are chosen at random from configurable
ranges. The resulting image is then displayed to the user.

THE PROTOTYPE IN SSH. All our modifications are com-
pliant with SSH specifications [7]. The server program,
when configured with CAPTCHA support, informs the client
that CAPTCHA-based authentication is a valid method. The
client, when configured with CAPTCHA support, requests
CAPTCHA authentication. The server then transmits a se-
quence of transformed images of characters to the client. The
client displays the received images one by one and collects
responses from the user before sending them all back to the
server with the user’s password (thus minimizing the impact
of network delays). The server grants access to the user only if
he/she both passes the CAPTCHA test and enters the correct
password. The server denies access otherwise.

FEATURES OF THE TGC CAPTCHA AND THE PROTOTYPE. The
TGC CAPTCHA provides a defense against online dictio-
nary attacks without resorting to other countermeasures, e.g.
account locking, with well-known disadvantages. Also, as
discussed in [1], even if solving the underlying AI problem,
in this case the problem of recognizing distorted text-graphics

characters, turns out to be easy for OCR systems, it would still
be useful to use the TGC CAPTCHA in password authenti-
cated systems. The reason is that an attacker mounting an on-
line dictionary attack still needs both to solve the CAPTCHA
and to find the password in order to login successfully. In this
situation, our approach reduces to pricing via processing, a
paradigm originally proposed to combat senders of bulk junk
email (“spam”) [8]. In order to mount a dictionary attack, the
adversary must perform a moderately complex computational
task on each password authentication attempt. Thus, even if
the attacker only spends a few compute cycles on each trial,
the cumulative effect becomes significant over the many trials
required for a dictionary attack.

We stress here that the use of the TGC CAPTCHA in
password authentication is only one possible application of
our CAPTCHA. Like other CAPTCHAs, the TGC CAPTCHA
can be used in any application in which it is useful to
distinguish human users from bots [2], [3]. Furthermore, the
TGC CAPTCHA extends these benefits to applications with
console-based interfaces. For example, it can help prevent
bots from signing up for free email accounts or help conduct
online polls via, say, text-based web browsers. Search engines
that disallow bots by requiring graphical CAPTCHAs to be
recognized will no longer end up automatically rejecting
legitimate users who access the sites via a text-based interface,
if the TGC CAPTCHA is made available to those users.

RELATED WORK. von Ahn et al. [2] were the first to propose the
concept of CAPTCHAs. They formally defined the CAPTCHA
construct and its security notion and specified two classes of
AI problems. Our CAPTCHA is an instance of their second
problem class. Pinkas and Sanders proposed the use of Reverse
Turing Tests (RTTs), constructs similar to CAPTCHAs, to
cope with dictionary attacks [1]. They focus on usability
and scalability by using a persistent data structure and by
requiring users to solve RTTs only some fraction of the
time, respectively. Xu et al. proposed the use of character
recognition to separate humans from machines [9]. However,
they did not assume authenticated, replay-resilient channels.
Consequently, the communication had to be protected via
message authentication codes and serial numbers, timestamps,
or state information. In contrast, our CAPTCHA challenges
and responses are sent over SSH channels which are already
encrypted, authenticated, and replay-resilient [10]. This dra-
matically simplifies our protocol.

NOTATION. Let k be a positive integer. We denote by
x1, . . . , xk

$

← X the act of sampling each element xi uni-
formly and independently from the set X .

II. TEXT-GRAPHICS CHARACTER CAPTCHA

We call our CAPTCHA a Text-Graphics Character (TGC)
CAPTCHA. We present it here following the formalization
in [2]. Let I be a set of images of all upper case English
characters, T be a set of transformations on images, λ be the
map from an image of a character to the (ASCII ID of) the
character portrayed in the image, and τ and k be the security



Fig. 1. Reference image set I.

parameters. A TGC CAPTCHA instance is a tuple TGC =
(I, T , λ, τ, k) defining the following test. First, the verifier (i.e.
server) draws i1, . . . , ik

$

← I−{‘O’, ‘D’} and t1, . . . , tk
$

← T .
Then, it sends to the prover (i.e. user) the transformed images
t1(i1), . . . , tk(ik) and sets the timer for τ . The prover responds
with the labels l1, . . . , lk, each of which is (the ASCII ID of)
a character in the English alphabet. The verifier accepts if
lj = λ(ij) for all 1 ≤ j ≤ k and if the timer has not expired.
It rejects otherwise.

We describe here our choices for the sets I and T . The
reference image for each character, from the standard X
Window System “9x15” font, is shown in Figure 1. The
transformation process involves the following steps. First, nd

distracters are chosen uniformly with replacement from the set
of all distracter images. In our implementation, we use nd = 5
samples from a set of 26 9x15 bitmaps that share some features
with English letters but are easily classified as non-letters by
humans. After converting each target and distracter bitmap to
a 9x15 ASCII charmap, we perform the following operations
on each charmap:

1) Scale: The charmap is scaled by a random factor between
1.3 and 1.7.

2) Rotate: The charmap is rotated by a random angle between
-20 and 20 degrees.

3) Translate: The charmap is translated to a random location
on the nc × nr screen with the constraint that the entire
character must still be visible.

4) Row Slide: Each row of the charmap is optionally slid
left or right relative to the row above. We shift left with
probability 0.33, right with probability 0.33, and otherwise
do not shift.

In our implementation, all of the random samples are from
a uniform distribution and rely on the standard C library
random() function (seeded with the system time). Finally,
the transformed target and distracter images are overlaid as
follows. Each overlay is given an opaque whitespace boundary,
and the target image is laid down last, to ensure that the target
stands out clearly from the background.

We believe that this set of transformations gives sufficient
variability in the output images to make recognition fairly
difficult for machines while preserving the necessary property
that it is easy for humans. Experienced users (e.g. the authors)
consistently classify the characters with 100% accuracy, and as
we shall see in Experiment 1 below, even naive users perform
well enough to make our construction practical for deployment
in real systems.

III. CAPTCHA-BASED PASSWORD AUTHENTICATION

The TGC CAPTCHA can complement any interactive pass-
word authentication scheme, so long as a sufficiently large
text console is available for displaying the CAPTCHA. In a
TGC CAPTCHA-enabled authentication session, the user is

challenged by a CAPTCHA test and asked to enter his/her
password. If the user passes both the CAPTCHA test and
enters the correct password, access is granted. Otherwise,
access is denied.

We have implemented a prototype TGC CAPTCHA pass-
word authentication method compatible with the SSH user
authentication protocol [7]. The implementation is based on
OpenSSH 3.6.1, but the method could easily be incorporated
into any SSH-compliant client or server. Here we describe
the essential steps in a CAPTCHA-enabled password authen-
tication exchange. The authentication protocol relies on the
lower-level SSH transport protocol [10] to provide integrity
and confidentiality.

1) The server informs the client about which authentication
methods are available.

2) Assuming that CAPTCHA-enabled password
authentication is available, the client requests
CAPTCHA password authentication by sending
a SSH MSG USERAUTH REQUEST message. The
message specifies “captcha-password” authentication and
additionally contains a username and service to execute.

3) On receipt, the server creates a TGC CAPTCHA using
configurable parameters k, nc, and nr (8, 80, and 24,
respectively, in the default configuration) and sends the
CAPTCHA challenge in a SSH MSG CAPTCHA message.

4) The client displays the received CAPTCHA to the user,
records her response, prompts her for her password,
and sends a SSH MSG USERAUTH CAPTCHA RESPONSE
message containing the response and password.

5) On receipt, if both the CAPTCHA response
and password are correct, the server sends a
SSH MSG USERAUTH SUCCESS message. Otherwise,
it sends a SSH MSG USERAUTH FAILURE. In the case
of success, the authentication protocol is complete.
Otherwise, the client is free to re-attempt authentication
until the server decides to close the connection.

IV. THEORETICAL RESULT

We instantiate a problem from the class P2I,T ,λ of [2] and
reduce the security of the TGC CAPTCHA to the hardness of
the problem. We describe roughly the definition of P2I,T ,λ

and some key terms. See [2] for more precise definitions.
The family of AI problems P2I,T ,λ is indexed by the

distributions of images I and T and by the solution λ which
is a map of images to their corresponding labels. Intuitively,
it is the following problem: given a transformed image t(i)
where i ∈ I and t ∈ T , find the label λ(i). A problem is
(δ, τ)-hard if no current program can solve it with probability
at least δ in time at most τ . A test is (α, β)-human executable
if at least an α portion of the human population can pass it
with at least β success probability. A (α, β, η)-CAPTCHA is a
test that is (α, β)-human executable and has the property that,
if an algorithm B passes it with a success probability of at
least η, then B can be used to solve a hard AI problem.

Theorem 1: Let k be the security parameter, and let I, T , λ

be as previously defined in Section II. Let δ, τ, α, β be non-



negative real numbers. Assume that TGC = (I, T , λ, τ, k) is
(α, β)-human executable. If P2I,T ,λ is (δ, τ + O(k))-hard,
then TGC is a (α, β, δ)-CAPTCHA.

Proof: Given an algorithm B that has a success probabil-
ity of at least δ over TGC in time τ , we construct an algorithm
A that is a (δ, τ +O(k)) solution to P2I,T ,λ. This proves the
theorem.

On input a transformed image t∗, the algorithm A simply
draws g

$

← {1, . . . , k} and sets wg = t∗. Then, for all j such
that 1 ≤ j ≤ k and j 6= g, it draws ij

$

← I and tj
$

← T ,
then sets wj = tj(ij). Next, it submits w1, . . . , wk to B and
obtains the answers l1, . . . , lk from B. Finally, it outputs lg as
its answer.

It is easy to see that A simulates B perfectly. Also, A runs
in time taken by B plus time linear in k. Finally, if B has the
probability of δ of getting all of its answers right, then A’s
probability of success is at least δ.

V. EXPERIMENTAL RESULTS

We performed two experiments to assess the difficulty of
the TGC CAPTCHA for humans (Experiment 1) and machines
(Experiment 2).

EXPERIMENT 1. Twelve naive subjects were recruited from the
faculty and staff of Thammasat University. Each subject, in
a session lasting approximately 5 minutes, responded to 12
TGC CAPTCHAs (two practice trials and 10 test trials) using
the same parameters as the SSH prototype (k = 8, nc =
80, nr = 24). The CAPTCHAs were displayed in standard
terminal windows on PCs running Linux or Mac OS X.

The subjects’ average per-character accuracy ph on the
test trials was 0.948. Their average word-level accuracy (the
number of 8-letter TGC CAPTCHAs answered with 100% ac-
curacy) was 0.708. (Assuming independence and ph = 0.948,
we would expect a word-level accuracy of (ph)k = 0.652.)

The fact that naive users achieve such high accuracy rates
justifies the use of TGC CAPTCHAs in live systems. Frequent
users would very rapidly adapt to the statistics of the character
set, achieving much higher accuracy rates.

EXPERIMENT 2. We tested the open source Optical Character
Recognition program GOCR [6] on our TGC CAPTCHA.
Using the same parameters as Experiment 1, we generated
100 TGC CAPTCHAs and converted each of the resulting
text-graphics screens to bitmaps. We then ran GOCR 0.39 in
its default configuration on the resulting 800 images. We call
this the Naive GOCR adversary to emphasize that different
configurations could in principle yield better adversaries.

Unlike our human subjects, Naive GOCR is not constrained
to respond with exactly one English letter for each English
letter of the CAPTCHA. We therefore graded the OCR system
using two criteria. As a conservative criterion, we judged a
response correct if it contained the expected letter and no other
letters. As a less conservative criterion, we judged a response
correct as long as it contained the expected letter.

Naive GOCR had a per-character accuracy pm of 0.241 and
0.329 by the first (conservative) and second (loose) criterion,

respectively. The word-level accuracy was 0 by both criteria.
We believe pm could be significantly improved by incor-

porating problem-specific knowledge of the TGC CAPTCHA
algorithm. We leave this as an exercise for interested readers.
Clearly, however, the results demonstrate that Naive GOCR
is unsuitable for mounting dictionary attacks against TGC
CAPTCHA-enabled, password authenticated systems.

VI. CONCLUSION

The TGC CAPTCHA shows promise as a construct for
improving the security of password authenticated systems like
SSH. We have shown that the test is relatively easy for humans
but would be difficult for “Naive GOCR” adversaries. Of
course, this only puts an upper bound on the difficulty of
the problem. We have not proven that no adversary can do
better. (After all, certain AI pundits believe that ALL tasks
humans can perform today will be performed equally well by
machines in the not-so-distant future!)

In any case, clearly, the security of a CAPTCHA password
authenticated system increases as the gap between human and
machine performance on the test widens. The TGC CAPTCHA
can thus serve as a modest cross-disciplinary challenge in the
fields of pattern recognition, system security, computer graph-
ics, and even psychology. This is the approach championed
by [2]. Through friendly competition, we hope to encourage
not only new OCR algorithms, but also a better understanding
of the strengths and weaknesses of the human visual system
relative to the best present-day machine vision systems.

ACKNOWLEDGMENTS

We would like to thank the faculty and staff of the Faculty of
Engineering and Sirindhorn International Institute of Technol-
ogy, Thammasat University for their help with Experiment 1.

REFERENCES

[1] B. Pinkas and T. Sander, “Securing passwords against dictionary at-
tacks,” in Proc. of the 9th CCS, V. Atluri, Ed. ACM Press, Nov. 2002,
pp. 161–170.

[2] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford, “CAPTCHA:
Using hard AI problems for security,” in EUROCRYPT 2003, ser. LNCS,
E. Biham, Ed., vol. 2656. Springer-Verlag, May 2003, pp. 294–311.

[3] The CAPTCHA Project, http://www.captcha.net.
[4] M. Bellare, “Practice-oriented provable security,” in Lectures on Data

Security: Modern Cryptology in Theory and Practice, ser. LNCS,
I. Damgård, Ed., vol. 1561. Springer-Verlag, 1998, pp. 1–15.

[5] M. Dailey and C. Namprempre, http://www.siit.tu.ac.th/
mdailey/captcha/.

[6] J. Schulenburg et al., “GOCR: open-source character recognition, ver-
sion 0.39,” 2004, available at http://jocr.sourceforge.net/
index.html.

[7] T. Ylonen, “SSH authentication protocol,” 2002, draft 18, available at
http://www.ietf.org/html.charters/secsh-charter.
html.

[8] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” in CRYPTO 1992, ser. LNCS, E. Brickell, Ed., vol. 740. Springer-
Verlag, Aug. 1992, pp. 139–147.

[9] J. Xu, R. Lipton, I. Essa, M. Sung, and Y. Zhu, “Mandatory human
participation: A new authentication scheme for building secure systems,”
in Twelfth International Conference on Computer Communications and
Networks, IEEE, Ed. IEEE Press, Oct. 2003.

[10] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen, “SSH
transport layer protocol,” 2003, draft 17, available at http://www.
ietf.org/html.charters/secsh-charter.html.


