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Abstract. An argument system could be viewed as a pair of a set of
argument and a binary attack relation between arguments. The seman-
tics of argumentation rests on the acceptability of arguments and the
structure of arguments and their attack relations. While there is a rel-
atively good understanding of the acceptability of arguments, the same
can not be said about their structure and attack relations. In this paper,
we present an axiomatic analysis of the attack relations of rule-based
argument systems by presenting a set of simple and intuitive properties
and showing that they indeed determine an uniquely defined common
attack relations for rule-based argument systems.

1 Introduction

People of all walks of life get involved in argumentation on a daily basis. Arguing
could be viewed as one of the most intellectual important activities of humans
during their entire lives. Peoples of different cultures, countries, times often have
different arguments based on different world views, rules, norms, conventions,
beliefs and assumptions ect. For example, Harry Potter’s arguments are based
on the ”science” of witch crafts and vampires while the Inca peoples in the
pre-Columbus time believed in human sacrifices. Despite their often distinctly
”incomparable” arguments, humans could understand each other (if they make
an effort). How could it be possible ?

Humans may have different ways to build their arguments but they all share
similar ways of drawing conclusions from a given set of arguments. Such ”similar
ways” seem to be captured by an old saying ”he/she who laughs last laughs
best” that seems to be understood and employed by every rational human being.
The saying could be viewed in fact as an common mechanism for drawing
conclusions from conflicting arguments. Research on argumentation could be
viewed as efforts to understand the structure and dynamics of this common
mechanism.

Example 1. Consider a dialogue between a boy and his parents.

– Father to Boy: Stop playing play with the ipad as you have not finished your
homework yet.

– Boy to Father: Come on Dad ! There is no school tomorrow.
– Father to Boy: Well, today is not a school holiday.



– Boy to Mother: Mum, I do not need to do my homework because there is no
school tomorrow, right ?

– Father to Mother: Of course he needs to do it.
– Mother to both Son and Father: Guys, I have things to do. Sort out your

quarrel by yourself.

In essence the dialogues is about which of the following two arguments should
be accepted:

Boy’s argument B: No school tomorrow, no homework.
Father’s argument F: There is school today, hence homework.
Arguments B, F attack each other and obviously neither father nor son gives

up their argument. In other words, their sets of accepted arguments are {F}, {B}
respectively. As the mother refuses to be partisan, her set of accepted arguments
is empty.

This simple dialogue reveals a fundamental issue in practical argumentation:
Different agents will get different conclusions (or semantics) from a same set

of arguments.
In other words, a central issue in practical argumentation is the question:

What arguments do rational people accept in an exchange of arguments and how
do we know that some of them could be the ”consensus” of the ”debate”?

or more formally, Can we provide a formal model of argument systems for
practical reasoning ?

At its most abstraction, an argument system could be viewed as an argu-
mentation framework [23] consisting of a set of arguments and a binary attack
relation between them. Though simple, argumentation frameworks are power-
ful enough to provide a sophisticated account of the acceptance of arguments
representing different ways peoples could draw conclusions from exchanges of
arguments.

While there is a good understanding about the acceptability of arguments
due to an extensive amount of research [23, 4, 5, 26, 10, 2, 15], more need to be
done to gain a better understanding about the structure of arguments and their
attack relations. In experimental domains like experimental medicine, arguments
often have no internal structure as the purpose of the experiments is to uncover
the underlining rules [32]. In contrast, arguments in commonsense reasoning and
legal domains are often based on rules [6, 20]. In both medicine and legal domains
as well as in commonsense reasoning, one could easily imagine arguments based
on both complex rules and uncertainties. The complex structure of arguments
often lead to challenging questions about the structure of their attack relations.

In this paper, we will first give an overview of the works on the acceptability
of arguments wrt abstract argumentation. The main part of the paper is focused
on rule-based argument systems as they are the most researched instances of
abstract argumentation. We conclude with a discussion on probabilistic argu-
mentation.1

1 The materials in sections 4,5,6 are from a recent paper [19]. The materials in sections
7,8 are new.
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There are extensive research on rule-based systems (see for example[36, 35, 9,
17, 40, 38, 11, 29, 28, 39]). Distinct semantics have been proposed that could lead
to contradictory answers to the same query as the following example illustrates.

Example 2. Consider a knowledge base K (adapted from [18, 11, 12]), consisting
of three defeasible rules

d1 : Dean⇒ Professor d2 : Professor ⇒ Teach d3 : Administrator ⇒ ¬Teach

and two strict rules

r : Dean→ Administrator r′ : ¬Administrator → ¬Dean

with d1 ≺ d3 ≺ d2 2.
Suppose we know some Dean. The question is whether the dean teaches.
Proposed approaches in literature deal with this example differently. Modgil

and Prakken [35] in their influential ASPIC+ framework proposed four attack
relations where one of them leads to semantics with respect to which the dean
does not teach while the other three as well as the prominent non-argument-
based approach of Brewka and Eiter[11] lead to conclusion that the dean does
teach.

The example illustrates the need to establish general principles for charac-
terizing and evaluation of possible semantics for rule-based systems.

2 Abstract Argumentation

An abstract argumentation framework [23] is defined simply as a pair AF =
(AR, att) where AR is a set of arguments and att ⊆ AR×AR and (A,B) ∈ att
means that A attacks B.

A set of argument S attacks (or is attacked by) an argument A (or a set
of arguments R) if some argument in S attacks (or is attacked by) A (or some
argument in R); S is conflict-free if it does not attack itself. A set of arguments
S defends an argument A if S attacks each attack against A.

S is admissible if S is conflict-free and defends each argument in it. A com-
plete extension is an admissible set of arguments containing each argument it
defends. A preferred extension is a maximal admissible set of arguments. A sta-
ble extension is a conflict-free set of arguments that attacks every argument not
belonging to it.

It is well-known that both preferred and stable extensions are complete but
not vice versa.

The characteristic function of AF is defined by

FAF (S) = {A | A ∈ AR,S defends A}.
2 d ≺ d′ means that d is less preferred than d′.
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Since FAF is a monotonic function, there exists a least fixed point of FAF . The
grounded extension is defined as the least fixed point of FAF .

As complete extensions coincide with conflict-free fixed points of FAF , the
grounded extension is also the least complete extension.

Example 1 can be represented as an argumentation framework (AR, att)
where AR = {F,B} and att = {(F,B), (B,F )}.

There are two preferred extensions that are also stable: {F}, {B}. There are
three complete extensions ∅, {F}, {B}. The grounded extension is hence empty.

Conceptually, the grounded extension represents an agent who is skeptical in
its reasoning where other extensions represent agents who are credulous.

In example 1, both father and son stick to their guns. The mother, who does
not want to get drawn into the discussion as none of the presented arguments
could be accepted without any bias, represents a skeptical reasoner.

3 Defeasible Knowledge Bases

In this section, we recall the basic notions and notations on knowledge bases from
[18]. We assume a non-empty set L of ground atoms (also called a positive literal)
and their classical negations (also called negative literals). A set of literals is said
to be contradictory iff it contains an atom a and its negation ¬a. We distinguish
between domain atoms representing propositions about the concerned domains
and non-domain atoms of the form abd representing the non-applicability of
defeasible rules d (even if the premises of d hold).

We distinguish between strict and defeasible rules as often done in the lit-
erature [35, 36, 27, 28, 41, 18]. A defeasible (resp. strict) rule r is of the form
b1, . . . , bn ⇒ h (resp. b1, . . . , bn → h) where b1, . . . , bn are domain literals and h
is a domain literal or an atom of the form abd. The set {b1, . . . , bn} (resp. the
literal h) is referred to as the body (resp. head) of r and denoted by bd(r) (resp.
hd(r)).

Definition 1. 1. A rule-based system is a triple R = (RS,RD,�) where

(a) RS is a set of strict rules,
(b) RD is a set of defeasible rules, and
(c) � is a transitive relation over RD representing the preferences between

defeasible rules, whose strict core is ≺ (i.e. d ≺ d′ iff d � d′ and d′ 6� d
for d, d′ ∈ RD.)

2. A knowledge base is defined as a pair K = (R, BE) consisting of a rule-
based system R, and a set of ground domain literals BE, the base of evidence
of K, representing unchallenged observations, facts ect..
For convenience, knowledge base K is often written directly as a quadruple
(RS,RD,�, BE) where RS, RD, � or BE of K are often referred to by
RSK , RDK ,�K or BEK respectively.

Definition 2. Let K = (RS,RD,�, BE) be a knowledge base. An argument
wrt K is a proof tree defined inductively as follows:

4



1. For each α ∈ BE, [α] is an argument with conclusion α.
2. Let r be a rule of the forms α1, . . . , αn → / ⇒ α, n ≥ 0, from RS ∪ RD

and A1, . . . , An be arguments with conclusions αi, 1 ≤ i ≤ n, respectively.
Then A = [A1, . . . , An, r] is an argument with conclusion α and last rule
r denoted by cnl(A) and last(A) respectively.

3. Each argument wrt K is obtained by applying the above steps 1, 2 finitely
many times.

Example 3. Consider a rule-based systemR whose sets of rules are from example
2 together with a precedence relation consisting of just d2 ≺ d3. Suppose we know
some dean who is also a professor.

The considered knowledge base is represented by K = (RS,RD,�, BE) with
RS = {r, r′}, RD = {d1, d2, d3}, �= {(d2, d3)} and BE = {D,P}.3

Relevant arguments can be found in figure 1 where A1 = [[D], d1], A2 =
[A1, d2], A′2 = [[P ], d2], A3 = [ [[D], r], d3].

Fig. 1. Dean Example

Notation 1 The set of all arguments wrt a knowledge base K is denoted by
ARK. The set of the conclusions of arguments in a set S ⊆ ARK is denoted by
cnl(S).

A strict argument is an argument containing no defeasible rule. An argu-
ment is defeasible iff it is not strict. A defeasible argument A is called basic
defeasible iff last(A) is defeasible.

For any argument A, the set of defeasible rules appearing in an argument A
is denoted by dr(A). The set of last defeasible rules in A, denoted by ldr(A), is
{last(A)} if A is basic defeasible, otherwise it is equal ldr(A1) ∪ . . . ∪ ldr(An)
where A = [A1, . . . , An, r].

An argument B is a subargument of an argument A iff B = A or A =
[A1, . . . , An, r] and B is a subargument of some Ai. B is a proper subargument
of A if B is a subargument of A and B 6= A.

Definition 3. Let K be a knowledge base.

1. The closure of a set of literals X ⊆ L wrt knowledge base K, denoted by
CNK(X), is the union of X and the set of conclusions of all strict arguments

3 D,P,T,A stand for Dean, Professor , Teach and Administrator respectively.
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wrt knowledge base (RSK , RDK ,�K , Xdom) with Xdom (the set of all domain
literals in X) acting as a base of evidence.
X is said to be closed iff X = CNK(X). X is said to be inconsistent iff its
closure CNK(X) is contradictory. X is consistent iff it is not inconsistent.
We also often write X `K l iff l ∈ CNK(X).

2. K is said to be consistent iff its base of evidence BEK is consistent.

As the notions of closure, consistency depend only on the set of strict rules
in the knowledge base, we often write X `RS l or l ∈ CNRS(X) for X `K l or
l ∈ CNK(X) respectively.

Definition 4. Let R = (RS,RD,�) be a rule-based system and K = (R, BE)
be a knowledge base.

1. R and K are said to be closed under transposition [13] iff for each strict rule
of the form b1, . . . , bn → h in RS s.t. h is a domain literal, all the rules
of the forms b1, . . . , bi−1,¬h, bi+1, . . . , bn → ¬bi , 1 ≤ i ≤ n, also belong to
RS.

2. R and K are said to be closed under contraposition [37, 36] iff for each set
of domain literals S, each domain literal λ, if S `RS λ then for each σ ∈ S,
S \ {σ} ∪ {¬λ} `RS ¬σ.

3. R and K are said to satisfy the self-contradiction property [21] iff for each
minimal inconsistent set of domain literals X ⊆ L, for each x ∈ X, it holds:
X `RS ¬x.

Lemma 1. ([18]) Let R be a rule-based system that is closed under transposition
or contraposition. Then R satisfies the property of self-contradiction.

Definition 5. (Attack Relation) An attack relation for a knowledge base K
is a relation att ⊆ ARK × ARK such that there is no attack against strict
arguments, i.e. for each strict argument B ∈ ARK , there is no argument A ∈
ARK such that (A,B) ∈ att.

For convenience, we often say A attacks B wrt att for (A,B) ∈ att.

3.1 Basic Postulates

We recall the postulates of consistency and closure from [13] and of subargument
closure from [35, 1, 34]. For simplicity, we combine the postulate of closure and
the postulate of subargument closure into one.

Definition 6. Let att be an attack relation for a knowledge base K.

– att is said to satisfy the consistency postulate iff for each complete ex-
tension E of (ARK , att), the set cnl(E) of conclusions of arguments in E is
consistent.

– att is said to satisfy the closure postulate iff for each complete extension
E of (ARK , att), the set cnl(E) of conclusions of arguments in E is closed
and E contains all subarguments of its arguments.

For ease of reference, the above two postulates are often referred to as basic
postulates.
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4 Sufficient Properties for Basic Postulates

As the basic postulates are more about the ”output” of attack relations rather
than about their structure, we present below two simple properties about the
structure of attack relation that ensures the holding of the basic postulates. We
first introduce some simple notations.

We say A undercuts B (at B’) if B′ is basic defeasible and cnl(A) = ablast(B′).
We say A rebuts B (at B′) iff B′ is a basic defeasible subargument of B and
the conclusions of A and B′ are contradictory.

We say A directly attacks B if A attacks B and A does not attack any proper
subargument of B.

An argument A is said to be generated by a set S of arguments iff all
basic defeasible subarguments of A are subarguments of arguments in S. For
an example, let S = {B0, B1} (see figure 2). Let consider A0. The set of basic
defeasible subarguments of A0 is { [d0]}. It is clear that [d0] is a subargument of
B0. Hence A0 is generated by S. Similarly, A1 is also generated by S.

Definition 7. (Strong Subargument Structure) Attack relation att is said
to satisfy the property of strong subargument structure for K iff for all A,B ∈
ARK , followings hold:

1. If A undercuts B then A attacks B wrt att.
2. A attacks B (wrt att) iff A attacks a basic defeasible subargument of B (wrt

att).
3. If A directly attacks B (wrt att) then A undercuts B (at B) or rebuts B (at

B).

We present the first result showing that strong subargument property is
sufficient to guarantee the postulate of closure.

Lemma 2. Let att be an attack relations for knowledge base K satisfying the
property of strong subargument structure. Then att satisfies the postulate of clo-
sure.

Proof (Sketch) From condition 2 in definition 7, it follows that each attack
against an argument generated by complete extension E is an attack against E.
The lemma holds obviously. �

A set S of arguments is said to be inconsistent if the set of the conclusions of
its arguments, cnl(S), is inconsistent. We introduce below a new simple property
of inconsistency resolving.

Definition 8. (Inconsistency Resolving) We say attack relation assignment
att satisfies the inconsistency-resolving property for K iff for each finite set
of arguments S ⊆ ARK , if S is inconsistent then S is attacked (wrt att(K)) by
some argument generated by S.

As we will show later, the inconsistency-resolving property is satisfied by com-
mon conditions like closure under transposition, or contradiction or the property
of self-contradiction.
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Example 4. Consider the basic knowledge base K consisting of just the rules
appearing in arguments in figure 2. The set S = {B0, B1} is inconsistent. The
argument A0 is generated by S. Let att = {(X,Y ) |X rebuts Y}. It is obvious
that S is attacked by A0. It is clear that att is inconsistency-resolving.

Fig. 2. Generated Arguments

We present now the first important result.

Theorem 1. Let att, att′ be attack relations for knowledge base K.

1. If att ⊆ att′ and att is inconsistency-resolving for K then att′ is also inconsistency-
resolving for K;

2. If att satisfies the strong subargument structure and inconsistency-resolving
then att satisfies the postulate of consistency.

Proof (Sketch) Assertion 1 follows easily from the definition of inconsistency-
resolving. We only need to show assertion 2. From condition 2 in definition 7, it
follows that each argument generated by a complete extension E belongs to E.
Therefore, if E is inconsistent then E is not conflict-free. Since E is conflict-free,
E is hence consistent. �

5 Regular Attack Relation Assignments

In general, attack relations satisfying the basic postulates do not capture the
semantics of prioritized rules. To see this point, consider a simple knowledge
base consisting of exactly two defeasible rules d0 : ⇒ a and d1 ⇒ ¬a with
d0 ≺ d1. There are only two arguments A0, A1 as given in figure 3.

Fig. 3. Effective Rebuts

The attack relation att = { (A0, A1), (A1, A0) } has two extensions Ei = {Ai},
i = 0, 1. It is obvious that E0 satisfies both properties of inconsistency-resolving
and strong subargument structure. As the prime purpose of the preference of
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d1 over d0 is to rule out extension E0, attack relation att does not capture the
expected semantics.

Dung [24, 18] has proposed several simple and natural properties referred to
as ordinary properties, to capture the intuition of prioritized rules. We recall
and adapt them below. We also motivate and explain their intuitions. We also
present two novel concepts of regular attack relations and regular attack relation
assignments that lie at the heart of the semantics of prioritized rules.

5.1 A Minimal Interpretation of Priorities

We first recall from [18] the effective rebut property stating a ”minimal inter-
pretation” of a preference d0 ≺ d1 that in situations when both are applicable
but accepting both d0, d1 is not possible, d1 should be preferred.

Definition 9. (Effective Rebut) We say that attack relation att satisfies the
effective rebut property for a knowledge base K iff for all arguments A0, A1 ∈
ARK such that each Ai, i = 0, 1, contains exactly one defeasible rule di (i.e.
dr(Ai) = {di}), and A0 rebuts A1, it holds that A0 attacks A1 wrt att iff d0 6≺ d1.

In figure 3, the effective rebut property dictates that A1 attacks A0 but not
vice versa.

5.2 Propagating Attacks

Example 5. Consider the knowledge base in example 3.
While the effective rebut property determines that A3 attacks A′2 (see figure

1) but not vice versa (because d2 ≺ d3), it does not say whether A3 attack A2.
Looking at the structure of A2, A

′
2, we can say that A2 is a weakening of A′2

as the undisputed fact P on which A′2 is based is replaced by a defeasible belief
P (supported by argument A1). Therefore if A3 attacks A′2 then it is natural to
expect that A3 should attack A2 too.

The above analysis also shows that attacks generated by the effective rebut
property, could be propagated to other arguments based on a notion of weakening
of arguments. We recall this notion as well as the associated property of attack
monotonicity from [18] below.

Let A,B ∈ ARK and AS ⊆ ARK . Intuitively, B is a weakening of A by AS
if B is obtained by replacing zero, one or more premises of A by arguments in
AS whose conclusions coincide with the premises.

Definition 10. B is said to be a weakening of A by AS iff

1. A = [α] for α ∈ BE, and (B = [α] or B ∈ AS with cnl(B) = α), or
2. A = [A1, . . . , An, r] and B = [B1, . . . , Bn, r] where each Bi is a weakening of

Ai by AS.
By A ↓ AS we denote the set of all weakenings of A by AS.
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For an illustration, consider again the arguments in figure 1. It is clear that
[P ] ↓ {A1} = {[P ], A1}, A′2 ↓ {A1} = {A′2, A2}.

The attack monotonicity property states that if an argument A attacks an
argument B then A also attacks all weakening of B. Moreover if a weakening of
A attacks B then A also attacks B.

Definition 11. (Attack Monotonicity) We say attack relation att satisfies
the property of attack monotonicity for knowledge base K iff for all A,B ∈
ARK and for each weakening C of A for each weakening D of B, the following
assertions hold:

1. If (A,B) ∈ att then (A,D) ∈ att.
2. If (C,B) ∈ att then (A,B) ∈ att.

We next recall the link-oriented property in [18] which is based on an intuition
that attacks are directed towards links in arguments implying that if an argument
A attacks an argument B then it should attack some part of B.

Definition 12. (Link-Orientation) We say that attack relation att satisfies
the property of link-orientation for K iff for all arguments A,B,C ∈ ARK such
that C is a weakening of B by AS ⊆ ARK (i.e. C ∈ B ↓ AS), it holds that if A
attacks C (wrt att) and A does not attack AS (wrt att) then A attacks B (wrt
att).

In real world conversation, if you claim that my argument is wrong, I would
naturally ask which part of my argument is wrong. The link-oriented property
could be viewed as representing this intuition.

Example 6. Consider again arguments in figure 1. Suppose d2 is now preferred
to d3 (i.e. d3 ≺ d2). The effective rebut property dictates that A3 does not
attack A′2. Does A3 still attack A2 ? Suppose A3 attacks A2. Since A3 does not
attack A1 that is a subargument of A2, we expect that A3 should attack some
other part of A2. In other words, we expect that A3 attacks A′2. But this is a
contradiction to the effective rebut property stating that A′2 attack A3 but not
vice versa. Hence A3 does not attack A2.

In other words, the link-orientation property has propagated the ”non-attack
relation” between A3, A

′
2 to a ”non-attack relation” between A3, A2.

We present below a novel concept of regular attack relations.

Notation 2 For ease of reference, we refer to the properties of inconsistency-
resolving, strong subargument structure, effective rebuts, attack monotonicity and
link-orientation as regular properties.

Definition 13. (Rgular Attack Relation)
An attack relation is said to be regular iff it satisfies all regular properties.
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5.3 Attack Relation Assignments: Propagating Attacks Across
Knowledge Bases

While regular attack relations are natural and intuitive, they are still not suf-
ficient for determining an intuitive semantics of prioritized rules. The example
below illustrates this point.

Example 7. Consider a knowledge base K0 obtained from knowledge base K in
example 3 by revising the evidence base to BE = {D}. It is clear that arguments
A1, A2, A3 belong to ARK0

while A′2 is not an argument in ARK0
.

As A′2 does not belong to ARK0
, the effective rebuts property does not ”gen-

erate” any attacks between arguments in ARK0
. How could we determine the

attack relation for K0?
As both A2, A3 belong to ARK , ARK0

and the two knowledge bases K0,K
have identical rule-based system, we expect that the attack relations between
their common arguments should be identical. In other words, because A3 attacks
A2 wrt K (see example 5), A3 should attack A2 also wrt K0. This intuition
is captured by the context-independence property [18] linking attack relations
between arguments across the boundary of knowledge bases.

The example also indicates that attack relations of knowledge bases with
the same rule-based system should be considered together. This motivates the
introduction of the attack relation assignment in definitions 14,15.

Definition 14. Let R = (RS,RD,�) be a rule-based system. The class consist-
ing of all consistent knowledge bases of the form (R, BE) is denoted by CR.

A rule-based system R is said to be sensible iff the set CR is not empty.
From now on, whenever we mention a rule-based system, we mean a sensible
one.

Definition 15. (Attack Relation Assignment) An attack relation assign-
ment atts for a rule-based system R is a function assigning to each knowledge
base K ∈ CR an attack relation atts(K) ⊆ ARK ×ARK .

We next recall the context-independence property stating that the attack
relation between two arguments depends only on the rules appearing in them
and their preferences.

Definition 16. (Context-Independence) We say attack relation assignment
atts for a rule-based system R satisfies the property of context-independence iff
for any two knowledge bases K,K ′ ∈ CR and for any two arguments A, B from
ARK ∩ARK′ , it holds that (A,B) ∈ atts(K) iff (A,B) ∈ atts(K ′)

The context-independence property is commonly accepted in many well-
known argument-based systems like the assumption-based framework [8, 25], the
ASPIC+ approach [37, 35].

We can now present a central result, the introduction of the regular attack
relation assignments.
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Definition 17. (Regular Attack Relation Assignments)

An attack relation assignment atts for a rule-based system R is said to be
regular iff it satisfies the property of context-independence and for each knowl-
edge base K ∈ CR, atts(K) is regular.

The set of all regular attack relation assignments for R is denoted by RAAR.

For attack relation assignments atts, atts′, define atts ⊆ atts′ iff ∀K ∈ CR,
atts(K) ⊆ atts′(K).

5.4 Minimal Removal Intuition

A key purpose of introducing priorities between defeasible rules is to remove
certain undesired attacks while keeping the set of removed attacks to a minimum.
The following very simple example illustrates the idea.

Fig. 4. Minimal Removal

Example 8. Consider a knowledge base consisting of just four defeasible rules
and four arguments A,A1, B,B1 as seen in figure 4. Without any preference
between the rules, we have A,A1 attack each other. Similarly B,B1 attack each
other.

Suppose that for whatever reason d3 is strictly less preferred than d2 (i.e.
d3 ≺ d2). The introduction of the preference d3 ≺ d2 in essence means that the
attack of B1 against B should be removed, but it does not say anything about
the other attacks. Hence they should be kept, i.e. the attacks that should be
removed should be kept to a minimum.

Let R be a rule-based system and K ∈ CR. The basic attack relation assign-
ment for R, denoted by Batts is defined by: ∀K ∈ CR, Batts(K) = {(A,B) |A
undercuts or rebuts B}. Further let atts be a regular attack relation assignment.
From the strong subargument structure property, it is clear that atts ⊆ Batts.
∀K ∈ CR, the set Batts(K) \ atts(K) could be viewed as the set of attacks
removed from Batts(K) due to the priorities between defeasible rules.

Combining the ”minimal-removal intuition” with the concept of regular at-
tack relation assignment suggests that the semantics of R should be captured by
regular attack relations atts such that ∀K ∈ CR, the set Batts(K) \ atts(K) is
minimal, or equivalently the set atts(K) is maximal. As we will see in the next
section, such maximal attack relation assignment indeed exists.
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6 The Upper Semilattice of Regular Attack Relation
Assignments

6.1 Preliminaries: Semilattice

We introduce the concept of semilattice. A partial order4 ≤ on a set S is a
upper-semilattice (resp. lower-semilattice) [16] iff each subset of S has a
supremum (resp. infimum) wrt ≤. The supremum (resp. infimum) of a set X ⊆ S
of a upper (resp. lower) semilattice S is often denoted by tX (resp. uX) and
the upper (resp. lower) semilattice is often denoted as a triple (S,≤,t) (resp.
(S,≤,u)).

It follows immediately that each upper (resp. lower) semilattice S has an
unique greatest (resp. least) element denoted by tS (resp. uS).

6.2 Semilattice Structure of RAAR

From now on until the end of this section, we assume an arbitrary but fixed
rule-based system R = (RS,RD,�).

Let A be a non-empty set of attack relation assignments. Define tA by:
∀K ∈ CR: (tA)(K) =

⋃
{ atts(K) | atts ∈ A}

The following simple lemma and theorem present a deep insight into the
structure of regular attack assignments.

Lemma 3. Let A be a non-empty set of regular attack relation assignments.
The tA is also regular.

Proof (Sketch) The proof is not difficult though rather lengthy as we just need
to check in a straightforward way for each regular property. �

It follows immediately

Theorem 2. Suppose the set RAAR of regular attack relation assignments is
not empty. Then (RAAR,⊆,t) is an upper semilattice. �

Definition 18. Suppose the set RAAR of all regular attack relation assignments
for R is not empty. The canonical attack relation assignment of R denoted
by AttR is defined by: AttR = tRAAR.

Even though in general, regular attack relation assignments (and hence the
canonical one) may not exist (as the example 9 below shows), they exist under
natural conditions that we believe most practical rule-based systems satisfy, like
the property of self-contradiction or closure under transposition or contraposition
as proved in theorem 3 below.

Example 9. Consider a rule-based system R consisting of d0 :⇒ a d1 :⇒ b
r : a → ¬b and d0 ≺ d1. Suppose atts be a regular attack relation assignment
for CR. Let K = (R, ∅). The arguments for K are given in figure 5. From the

4 a reflexive, transitive and antisymmetric relation
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property of effective rebut, it is clear that (A,B) 6∈ att(K). Hence atts(K) = ∅.
The inconsistency-resolving property is not satisfied by atts(K), contradicting
the assumption that atts is regular. Therefore there exists no regular attack
relation assignment for CK .

Fig. 5. Non-existence of regular assignments

It turns out that a special type of attack relations, the normal attack re-
lations introduced in [18] is regular if the rule-based systems is closed under
transposition or contraposition or self-contradiction.

Let K be a knowledge base and A,B ∈ ARK . We say that A normal-rebuts
B (at X) iff A rebuts B (at X) and there is no defeasible rule d ∈ ldr(A) such
that d ≺ last(X).

The normal attack relation assignment [18] attsnr is defined by: For any
knowledge base K ∈ R and any arguments A,B ∈ ARK , (A,B) ∈ attsnr(K) if
and only if A undercuts B or A normal-rebuts B.

We present below a central result.

Theorem 3. Suppose the rule-based system R satisfies the self-contradiction
property. Then the normal attack relation assignment attsnr is regular and the
canonical assignment AttR exists and attsnr ⊆ AttR.

Proof (Sketch) From theorem 2 and the definition of the canonical attack rela-
tion, we only need to show that attsnr is regular.

It is straightforward to show that for each K ∈ CR, the attack relation
attsnr(K) satisfies the properties of strong subargument structure, attack mono-
tonicity, effective rebuts and link-orientation. Further it is also obvious that
attsnr satisfies the context-independence property. Let K ∈ CR. We show that
attsnr(K) satisfies the inconsistency-resolving property. Let S ⊆ ARK s.t. S
is inconsistent. Let S′ be the set of all basic defeasible subarguments of S
and S0 be a minimal inconsistent subset of S′. Let A ∈ S0 s.t. last(A) is
minimal (wrt ≺) in {last(X) |X ∈ S0}. From the self-contradiction property,
cnl(S0) ` ¬hd(last(A)). We could then construct an argument B such that B
attacks A and all basic defeasible subarguments of B are subarguments of argu-
ments in S0. �.

It follows immediately

Lemma 4. Suppose the rule-based system R satisfies the self-contradiction prop-
erty. For each K ∈ CR and all A,B ∈ ARK such that A rebuts B (at B) and
(A,B) 6∈ AttR(K), there is d ∈ ldr(A) such that d ≺ last(B).
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Though the normal and canonical attack relations do not coincide in general,
they are equivalent in the sense that they have identical sets of stable extensions.

Theorem 4. Suppose the rule-based system R satisfies the property of self-
contradiction. Then for each K ∈ CR, E ⊆ ARK is a stable extension wrt
attsnr(K) iff E is a stable extension wrt AttR(K).

Proof (Sketch) We first show that for each atts ∈ RAAR, each stable extension
of (ARK , atts(K)) is also a stable extension of (ARK , attsnr(K)). Hence each
stable extension of (ARK , AttR(K)) is also stable extension of (ARK , attsnr(K)).
The theorem follows then from lemma 5 below. �

Lemma 5. Let atts, atts′ be regular attack relation assignments for R such that
atts ⊆ atts′. Then

1. each stable extension of (ARK , atts(K)) is a stable extension of (ARK , atts
′(K));

and
2. each stable extension of (ARK , atts(K)) is a stable extension of (ARK , AttR(K)).

Proof (Sketch) 1) Let E be a stable extension of (ARK , atts(K)). It is clear
that E attacks each argument in ARK \ E wrt atts′(K). If E is not conflict-
free wrt atts′(K), E is inconsistent (since both atts, atts′ have the same set of
undercuts) and hence not conflict-free wrt atts(K) (a contradiction). Hence E is
conflict-free (and hence stable) wrt atts′(K). 2) Follows immediately from (1)
and the definition of AttR. �

7 Credulous Cumulativity of Regular Semantics

A key property satisfied by many argument-based and non-argument-based ap-
proaches to reasoning with prioritized rules is the credulous cumulativity prop-
erty [18] stating intuitively that if some beliefs in your belief set are confirmed
in the reality then your belief set will not change because of it.

A set S ⊆ L is said to be a belief set of knowledge base K wrt an attack
relation assignment atts iff there is a stable extension E of (ARK , atts(K)) such
that S = cnl(E).

Definition 19. (Credulous Cumulativity) We say attack relation assign-
ment atts satisfies the property of credulous cumulativity for R if and only if
for each K ∈ CR, for each belief set S of K wrt atts and for each finite subset
Ω ⊆ S of domain literals, K +Ω = (RSK , RDK ,≺K , BEK ∪Ω) belongs to CR,
and S is a belief set of K +Ω wrt atts.

For an illustration, consider again example 2. Suppose {D,P, T} is a belief
set of K. Then the property of credulous cumulativity dictates that {D,P, T}
is also a belief set of K + {P} = (RSK , RDK ,≺K , {D,P}). We state now an
important result of this paper.
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Theorem 5. The credulous cumulativity property is satisfied by all regular at-
tack relation assignments.

Proof (Sketch) Let atts ∈ RAAR, K ∈ CR and E be a stable extension of
(ARK , atts(K)), S = cnl(E) and Ω ⊆ S be a finite set of domain literals.
Further let K ′ = K +Ω and E′ = {X ∈ ARK′ | ∃Y ∈ E,AS ⊆ E s.t. cnl(AS) ⊆
Ω andY ∈ X ↓ AS }. It is clear that E ⊆ E′ and cnl(E) = cnl(E′) and BE∪Ω ⊆
S. We show that E′ is a stable extension of (ARK′ , att(K ′)) by showing that
it is conflict-free and attacks each argument not belonging to it. The theorem
follows from the fact that cnl(E) = cnl(E′). �

Attack relation assignments satisfying the credulous cumulativity property
together with all other regular properties except the inconsistency resolving one
are defined as ordinary attack relation assignments in[18]. Theorem 5 implies
directly that regular attack relation assignments are ordinary.

8 The Lower SemiLattice Structure of Value-based
Semantics

The value-based approaches to argumentation [3, 7, 37, 35, 36] define the seman-
tics of defeasible knowledge bases by first defining a preference relation between
arguments and then using the preference relation to define attack relation be-
tween arguments. We show in this section that the preference relations between
arguments have a lower semilattice structure and hence a least one that charac-
terizes the common semantics.

We first introduce a new operator about a ”structured intersection” of rela-
tions that is needed to characterize the structure of preference relations between
arguments.

Any relation R ⊆ X ×X over a set X could be decomposed into a disjoint
union of a strict core, denoted by Rst and symmetric core, denoted by Rsy
as follows: R = Rst ∪ Rsy where Rst = {(a, b) ∈ R | (b, a) 6∈ R } and Rsy =
{(a, b) ∈ R | (b, a) ∈ R }.

For any relations R,R′ ⊆ X × X, we introduce a ”strong intersection”-
operator R u R′ by: R u R′ = (Rst ∩ R′st) ∪ (Rsy ∩ R′sy).

Further define a partial order R � R′ by: R � R′ iff Rst ⊆ R′st and
Rsy ⊆ R′sy.

Definition 20. An argument preference assignment (or ap-assigment
for short) for a rule-based system R is a function Γ assigning to each knowledge
base K ∈ CR, a relation vΓ,K ⊆ ARK×ARK (whose strict core is @Γ,K) repre-
senting a preference relation between arguments in ARK where strict arguments
are not strictly less preferred than any other arguments.

Definition 21. Let Γ an ap-assignment defined for R. The attack relation
assignment derived from Γ and denoted by attsΓ, is defined by: For each
K ∈ CR and all A,B ∈ ARK , (A,B) ∈ attsΓ (K) iff A undercuts B or A rebuts
B (at B′) and A 6@Γ,K B′.
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Definition 22. An ap-assignment Γ is regular for R iff its derived attack
relation assignment attsΓ is regular.

The set of all regular ap-assignments for R is denoted by APR.

Notation 3 The ”strong intersection”-operator is expanded for non-empty set
P of ap-assignments and denoted by uP as follows: (uP)(K) = u{Γ (K) |Γ ∈
P}.

For ap-assignments Γ0, Γ1, we write Γ0 � Γ1 iff for each K ∈ CR, Γ0(K)�
Γ1(K).

It is easy to see that Γ0 � Γ1 implies attΓ1 ⊆ attΓ0 . The following lemma
shows that the ”strong intersection” forms an infimum operation for regular
ap-assignments.

Lemma 6. Let P be a non-empty set of regular apr-assignments for R. Then
uP is regular.

Proof(Sketch) It is not difficult to see that the equation attsuP = t{attsΓ |Γ ∈
P} holds. The regularity of uP follows from lemma 3. �

It follows immediately from lemma 6.

Theorem 6. If APR is non-empty then (APR,�,u) forms a lower semilattice
with CAR = uAPR being the least regular ap-assignment for R and is referred
to as the canonical ap-assignment. �

9 Discussion and Conclusions

Regular properties interact. While the attack monotonicity and link-prientation
properties propagate respectively the attack relations and non-attack relations
within the boundary of a knowledge base, context-independence propagates the
attack (and non-attack) relations across knowledge base boundaries.

A more liberal notion of unrestricted rebut where a basic defeasible argument
could directly attack a non-basic defeasible argument is studied in [14, 13]. Intu-
itively an unrestricted rebut is a rebut against a set of defeasible rules without
explicitly rebutting any individual rule in it. It would be interesting to see how
this notion of rebut interacts with the regular properties.

It is often necessary to combine normative reasoning with causal and prob-
abilistic reasoning in practical reasoning.

Example 10. (see [22])
John sues Henry for the damage caused to him when he drove off the road

to avoid hitting Henry’s cow. John’s argument is:

J : Henry should pay for the damage because Henry is the owner of the
cow and the cow caused the accident.

Henry counter-attacks by stating that,
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H1: John was negligent, for evidence at the accident site shows that John
was driving fast.
H2: The cow was mad and the madness of the cow should be viewed as
a force-majeure.

John’s argument is based on a common norm (or law) that owners are re-
sponsible for the damages caused by their animals. Henry’s first argument is
based on the causal relationship between John’s fast driving and the accident.
Henry’s second argument is based on the legal concept of force-majeure and the
probability of the event of a cow getting mad. Can John win the case?

The chance of John winning the case depends on how probable the judge con-
siders Henry’s arguments. Suppose the judge dismisses the madness of the cow
as improbable, then the probability of Henry’s second argument is 0. Therefore
the chance for John to win depends on the probability of Henry’s first argument.
Suppose the judge considers the probability that John was driving fast to be 0.4,
then the probability for John’s argument to stand is 0.6, and John would win
the case. However, if the judge considers the probability of the event ”John’s
driving fast” to be 0.7, then Henry would win the case because the probability
for John’s argument to stand is 0.3 only.

Dung and Thang developed a probabilistic argumentation framework in [22]
to model applications involving both causal and norm-based reasoning as illus-
trated in this example. Other works include [30, 31, 33].
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