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Abstract. This paper studies different semantics of logic programs with first or-
der formulae under the lens of argumentation framework. It defines the notion
of an argumentation-based answer set and the notion of an argumentation-based
well-founded model for programs with first order formulae. The main ideas un-
derlying the new approach lie in the notion of a proof tree supporting a conclusion
given a program and the observation that proof trees can be naturally employed
as arguments in an argumentation framework whose stable extensions capture
the program’s well-justified answer semantics recently introduced in [23]. The
paper shows that the proposed approach to dealing with programs with first or-
der formulae can be easily extended to a generalized class of logic programs,
called programs with FOL-representable atoms, that covers various types of ex-
tensions of logic programming proposed in the literature such as weight con-
straint atoms, aggregates, and abstract constraint atoms. For example, it shows
that argumentation-based well-founded model is equivalent to the well-founded
model in [27] for programs with abstract constraint atoms. Finally, the paper re-
lates the proposed approach to others and discusses possible extensions.

1 Introduction

Answer set semantics for logic programs [12] is one of the most widely adopted se-
mantics for logic programs—i.e., logic programs that allow negation as failure in the
body of the rules. It is a natural extension of the minimal model semantics of positive
logic programs to the case of normal logic programs. Answer set semantics provides
the theoretical foundation for answer set programming [18, 16] which has proved to be
useful in several applications such as diagnosis, bioinformatics, planning, etc. (see, e.g.,
[1, 2, 6, 3, 11, 14]).

A set of atoms S is an answer set of the programΠ if S is the minimal model of the
positive program ΠS (the reduct of Π with respect to S), obtained from the Gelfond-
Lifschitz transformation by (i) removing from Π all the rules whose body contains a
negation as failure literal not b which is false in S (i.e., b ∈ S); and (ii) removing all
the negation as failure literals from the remaining rules.

One of the most interesting properties of answer sets that can be derived from the
above definition is that each atom in an answer set is non-circular justifiable, i.e., for
each atom a there exists a proof tree for a that does not involve a in any of the proof
step.



The successes of answer set programming (ASP) and the needs for a more expres-
sive and simple modeling language led to several extensions of the language such as
weight constraint atoms [19], aggregates atoms (e.g, [10, 20]), abstract constraint atoms
(e.g., [17, 25]), logic programs with first order formulae (e.g., [4, 23]). The notion of an
answer set has been extended to various extensions of logic programming and one of
the contentious issue in this endeavor is related to the circular justifiability of atoms be-
longing to an answer set. This problem has been discussed extensively in the literature
and can be seen in the following example.

Example 1. Consider the program Π1 with aggregates discussed in [23]:

p(1)← (1)
p(2)← p(−1). (2)

p(−1)← SUM({X : p(X)}) ≥ 1. (3)

where SUM({X : p(X)}) ≥ 1 represents an aggregate atom; informally, it is true in an
interpretation I if Σp(x)∈Ix ≥ 1. This program has an answer set {p(1), p(2), p(−1)}
according to [10] but does not admit any answer set according to many other definitions
(e.g., [20, 25, 23]). The issue of this answer set, as discussed in [23], lies in that p(2) is
circular justified by the sequence p(2) ⇐ p(−1) ⇐ SUM({X : p(X)}) ≥ 1 ⇐ p(2).
♦

It is easy to see that the five Herbrand interpretations of the above program {p(2)},
{p(2), p(1)}, {p(2), p(−1)}, {p(2), p(1), p(−1)}, and {p(1)}, where elements not be-
longing to an interpretation are assumed to be false, are the only ones satisfying the
atom SUM({X : p(X)}) ≥ 1. Let us denote with λ the atom SUM({X : p(X)}) ≥ 1
and Cλ be the collection of rules:

λ← p(2),¬p(1),¬p(−1). (4)
λ← p(2), p(1),¬p(−1) (5)
λ← p(2), p(−1),¬p(1). (6)
λ← p(2), p(1), p(−1). (7)
λ← p(1),¬p(2),¬p(−1). (8)

These rules basically provide the definition for the atom SUM({X : p(X)}) ≥ 1,
i.e., they define when it is true. Let Πλ be the program obtained from Π1 by replacing
SUM({X : p(X)}) ≥ 1 with λ. It is easy to check that the program Πλ ∪ Cλ ∪
{¬p(X) ← not p(X) | X ∈ {1, 2,−1}} does not have an answer set. As such, it is
reasonable to conclude that Π1 is inconsistent. This argument is similar to the one used
in [24] to show that Π1 is inconsistent, i.e., Π1 does not have an answer set.

It is interesting to observe that if we were to construct a SLD-proof1 for p(−1)
given the program Π1, assuming that not p implies ¬p (i.e., assuming the negation-
as-failure rule or NAF-rule) we will eventually have to make use of the rules in Cλ.

1 SLD stands for “selective linear definite” (see, e.g., [15]).



For example, a proof tree using (8) is depicted in Figure 1(left); a proof tree using (5)
is depicted in Figure 1(right) where T1 denotes a proof tree for p(−1). It is easy to
verify that every tree supporting p(−1) from any set of assumptions, which is a subset
of {not p(1), not p(2), not p(−1)}, under the programΠ1 is inconsistent in the sense
that it assumes that p(−1) is false (not p(−1)) to conclude that p(−1) is true. In fact,
the dependence discussed in [23] can be extracted from these proof trees.

not p(−1)>

p(1)

not p(2)

¬p(2) ¬p(−1)

SUM({X : p(X)}) ≥ 1

p(−1)

not p(−1)>

p(1)

p(−1)

T1

p(2) ¬p(−1)

SUM({X : p(X)}) ≥ 1

p(−1)

Fig. 1: Possible Proof Trees for p(−1)

It is not difficult to see that a proof tree constructed from a given program—informally
defined as above—represents an argument supporting the conclusion of the literal at its
root. Furthermore, there can be several arguments constructible from a program. The
question is then which arguments should be acceptable, a central question in the stud-
ies of argumentation framework.

It is worth noticing that argumentation framework is another line of research that
has its root in the study of logic programming and nonmonotonic reasoning. In fact, the
landmark paper [9] originated from a paper studying the acceptability semantics of logic
programming [8]. The proposed argumentation framework in [9] laid the foundation
for the development of several argumentation-based theories and applications. Within
logic programming, it has been showed in [9] that different semantics of argumentation
frameworks such as grounded extensions and stable extensions correspond to the well-
founded and answer set semantics of normal logic programs. In a recent paper, [22]
showed that the 3-valued stable model of logic programming [21] can also be viewed as
a semi-stable labeling of a corresponding assumption-based argumentation framework
[5].

Can argumentation-based semantics be extended to more generalized logic pro-
grams? The main purpose of this paper is to investigate different semantics of logic
programs with first order formulae under the view of argumentation framework. The
advantages of this study are twofold. First, it shows that the traditional approach to
studying the semantics of logic programs using argumentation framework can be gen-
eralized to more generalized programs. Second, it allows for the definition of the well-
founded semantics for programs with first order formulae that has not been studied thus



far. To the best of our knowledge, this is the first time the notion of a well-founded
model for logic programs with first order formulae is discussed.

To summarize, the paper contributes to both areas of logic programming and argu-
mentation framework. Regarding logic programming, the paper proposes to consider
proof trees as arguments and to use different semantics of argumentation framework as
the semantics of the original program. The paper then extends the proposed approach to
a generalized class of logic programs, called programs with FOL-representable atoms,
which covers several extensions of logic programs such as programs with aggregates,
programs with abstract constraint atoms, and programs with weight constraint atoms.
Regarding argumentation framework, the paper demonstrates that its principle is appli-
cable in various extensions of logic programming. The equivalent results in this paper
indicate that argumentation-based semantics can be used as a means to study different
approaches to defining semantics of those extensions.

2 Background

In this section, we review the basics of argumentation framework and logic programs
with first order formulae.

2.1 Argumentation Framework

An abstract argumentation framework (AF) [9] AF is a pair (Args,Atts) where Args
is a set of abstract entities called arguments and Atts ⊆ Args × Args is the attack
relation between arguments. An argument a ∈ Args attacks an argument b ∈ Args if
(a, b) ∈ Atts. a is called an attacker of b if a attacks b. The set of arguments S ⊆ Args
attacks b if there exists a ∈ S such that a attacks b. a (respectively S) defends an
argument c against its attacker b if a (respectively S) attacks b. S is conflict free if it
does not attack itself. S is admissible if it is conflict free and defends against every of
its attackers. The characteristic function of AF is defined by

FAF (S) = {a | a ∈ Args, S defends a}.

Since FAF is a monotonic function, the sequence

FAF (∅), FAF (FAF (∅)), . . . , FnAF (∅) = FAF (. . . FAF (FAF︸ ︷︷ ︸
n times

(∅))), . . .

converges to its least fixpoint, denoted by lfp(FAF ). By this definition, it is easy to see
that lfp(FAF ) is unique.

Given an AF = (Args,Atts), a conflict free set of arguments S ⊆ Args is a
stable extension of AF if it attacks each argument A 6∈ S; a grounded extension of AF
if S = lfp(FAF ); and a preferred extension of AF if it is a subset-maximal admissible
set of AF . The focus of this paper is the two semantics associated with stable and
grounded extensions of argumentation framework.



2.2 Logic Programs with FOL-Formulae

Let Σ = (C,P,F) be a signature with finite set of constants C, finite set of predicate
symbols P , and finite set of function symbols F . We assume that P contains two 0-
ary symbols > and ⊥, denoting truth and falsity respectively. Let LΣ be the first-order
logic language with equality overΣ. We will make use of the usual notions in first-order
logic (FOL) such as term, atom, literal, interpretation, satisfaction of a formula w.r.t. an
interpretation etc. without precise definition. We refer the readers to [15, 23] for detail.

A logic program with FOL-formulae is a finite set of rules of the form φ← ψ where
φ and ψ are classical first order logic formulae in LΣ such that φ 6= > and ψ 6= ⊥. For
a rule r = φ ← ψ, head(r) and body(r) denote φ and ψ respectively. When φ is an
atom and ψ is a conjunction of literals, we say that the rule is a normal rule. A program
is normal if every of its rules is normal.

Given a program Π , HΠ denotes the Herbrand base of Π excluding > and ⊥. For
a program Π , ground(Π) denotes the set of ground instantiations of rules in Π using
the set of constants occurring in Π . By an interpretation of Π , we mean a Herbrand
interpretation. In this paper, we will assume that ground(Π) is finite.

A partial interpretation of Π is a pair (P,Q) such that P,Q ⊆ HΠ and P ∩Q = ∅.
Given a Herbrand interpretation I ofΠ , we denote with ¬I− the set {¬a | a ∈ HΠ \I}
and say that I satisfies a rule r ∈ ground(Π) if I∪¬I− |= body(r) implies I∪¬I− |=
head(r) (|= denotes the usual logical entailment relation). I satisfies a program Π (or
I is a model of Π) if it satisfies every rule in ground(Π).

Let Π be a program with FOL-formulae and I be an interpretation of Π . Let fΠI

be the program obtained from ground(Π) by (i) eliminating all the rules whose bodies
are not satisfied by I; and (ii) adding the negative literals in ¬I− as constraints to the re-
sulting program. For two first order theories O and N , let TΠ(O,N) = {head(r) | r ∈
ground(Π), O ∪N |= body(r)}. A model I of a program Π is a well-justified answer
set of Π if lfp(TfΠI (∅,¬I−)) ∪ ¬I− |= a for every a ∈ I where lfp(TfΠI (∅,¬I−))
denotes the least fixpoint of the function TΠ(.,¬I−).

Example 2. Consider the program from [23]:

a ∨ (¬b ∧ c)← ¬a ∧ (¬c ∨ c).
d← c.

Let us call the program Π2. It is easy to see that I = {c, d} is a model of Π2 since
¬I− = {¬a,¬b} and for each rule r in Π2, I ∪ ¬I− |= body(r) and I ∪ ¬I− |=
head(r). It is also easy to see that fΠI

2 consists of Π2 together with the clause ¬a←.
♦

Observe that the interpretation I ′ = {a, d} is also a model of Π2. However, d cannot
be justified by this model. It can be seen that only I is considered as a well-justified
answer set of Π2.



3 Argumentation Framework and Logic Programs with
FOL-Formulae

In this section, we define different semantics for logic programs with FOL formulae.
In the following, whenever we refer to a program, we mean a logic program with FOL
formula whose signature is assumed to be known.

3.1 Argumentation-Based Semantics for Logic Programs with FOL Formulae

LetΠ be a program and LΠ be the set of ground formulae formed overHΠ . We extend
the program Π (and hence, ground(Π)) with rules: (i) ⊥ ← a ∧ ¬a, denoted by Fa,
for each atom a in HΠ ; (ii) ¬a ← not a, denoted by Aa, where not is the default
negation and is not a symbol in the language of Π for each atom a in HΠ . Intuitively,
Fa indicates that if both a and ¬a are provable then Π is inconsistent as it derives
falsity; Aa encodes the negation-as-failure rule that says that if a is not provable then
¬a can be concluded.

Definition 1 (Proof Tree). A proof tree (or tree) for a formula σ w.r.t. a program Π is
a finite tree with nodes labelled by formulae in LΠ ∪ {>,⊥}∪ {not a | a ∈ HΠ} such
that

1. the root is labelled by σ;
2. for every node N labelled by ϕ if N is not a leaf node and has n children, labelled

by ϕ1, . . . , ϕn then one of the following conditions is satisfied:
• ϕ1 ∧ . . . ∧ ϕn |= ϕ; or
• ϕ← ϕ1 ∧ . . . ∧ ϕn is in ground(Π).

3. a leaf of the tree must be either > or not a for some a ∈ HΠ .

Intuitively, a tree represents a possible derivation of the formula at its root given
the rules of the program and the assumptions made at its leaves. The formula labeled
an interior node is either a logical consequence of the conjunction of formulae labeled
its children (first case of Item 2) or it is the head of a ground rule whose body is the
conjunction of formulae labeled its children (second case of Item 2).

For a tree T and a node N in T , label(N) denotes the formula that labels N .
The conclusion of a tree T , denoted by Concl(T ), is the formula labelling its root.
The support of a tree T , denoted by Support(T ), is the set {label(N) | N is a
leaf, label(N) 6= >}. A tree T is strict if Support(T ) = ∅. For a set of trees S,
Concl(S) = {Concl(T ) | T ∈ S}.

Example 3. In Figure 2, we can see different types of nodes:
• the node whose label is a∨(¬b∧c) whose connections to their children are dashed

lines are constructed from rules in the program (constructed using the second case
in Item 2 of Def. 1, via a ∨ (¬b ∧ c)← ¬a ∧ (¬c ∨ c) of Π2).
• the node whose label is ¬a with a unique child whose label is not a (constructed

using the second case in Item 2 of Def. 1, via the rule Aa).
• the node whose label is the valid formula ¬c ∨ c with a unique child whose label

is > (constructed using the first case in Item 2 of Def. 1).
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> not a

not a¬c ∨ c ¬a

a ∨ (¬b ∧ c) ¬a

¬b ∧ c

c

Td

> not a

not a¬c ∨ c ¬a

a ∨ (¬b ∧ c) ¬a

¬b ∧ c

c

d

Fig. 2: Two Possible Proof Trees for Program in Example 2

Observe that for each a ∈ HΠ , we can create a tree whose conclusion is ¬a and whose
set of supports is {not a} (Figure 3) using the rule Aa. Abusing the notation, we will
refer to this tree as Aa.

not a

¬a

Aa

Fig. 3: Aa – NAF-Tree

Definition 2 (Induced AF). Let Π be a program. The argumentation framework in-
duced by Π , AFΠ = (ArgsΠ , AttsΠ), is defined as follows:
• ArgsΠ is the set of all proof trees whose roots are labeled with elements in HΠ ∪
{¬a | a ∈ HΠ} ∪ {>,⊥}.
• AttsΠ = {(A,B) | not Concl(A) ∈ Support(B)}, i.e., A ∈ ArgsΠ attacks an

argument B ∈ ArgsΠ if and only if not Concl(A) ∈ Support(B).

In general, the set of arguments and the set of attacks of AFΠ can be infinite since
there are infinitely many formulae that can be constructed from LΠ∪{>,⊥}∪{ not a |
a ∈ HΠ} and repetitions are allowed in the construction of proof trees. For instance,
if we replace ¬b ∧ c, the formula associated with the child of the root of the tree Tc in
Fig. 2, by (¬b∧c)∧(a∨¬a), then we will receive a new proof tree for c; or, if we replace
the child not a of ¬a by the tree Aa, then we also receive a new proof tree for c. This
property is important from the computational aspect, i.e., any system for computing
different semantics of logic programs with FOL-formulae as defined in Definitions 4–5
will need to deal with this problem. We observe that this problem can be dealt with by



tightening the definition above, e.g., by considering equivalence between formulae as
a single formula or disallowing repetitions. The presence of infinitely many arguments
isn AFΠ , however, is irrelevant to the definition of the semantics of argumentation
framework, we will keep the above definition as it. Addressing this issue is important
but it is outside the scope of this paper and we leave this as a future task.

Observe that not all proof trees are used as arguments in AFΠ . This is because we
are only interested in interpretations of Π . We prove some properties of stable exten-
sions of AFΠ .

Proposition 1. LetΠ be a program andAFΠ be the AF induced byΠ . For every stable
extension S of AFΠ ,

1. > ∈ Concl(S);
2. if ⊥ ∈ Concl(S) then {a,¬a} ⊆ Concl(S) for every a ∈ HΠ ;
3. if ⊥ ∈ Concl(S) then S is the only stable extension of AFΠ ; and
4. if ⊥ 6∈ Concl(S) then for every atom a ∈ HΠ , {a,¬a} \ Concl(S) is a singleton.

Proof.

1. The first item is trivial since > is a single node tree whose support is empty and
hence cannot be attacked.

2. If ⊥ ∈ Concl(S) then there exists a tree T ∈ S with ⊥ = Concl(T ). Since
⊥ |= ϕ for any formula ϕ, we can easily construct a tree Tϕ with Concl(Tϕ) = ϕ
and Support(Tϕ) = Support(T ). Since T is not attacked by S, Tϕ is not attacked
by S. Hence Tϕ ∈ S. Restricting ϕ to literals of the program, we get the conclusion
of the proposition.

3. Assume that there exists a stable extension S′ of AFΠ and S′ 6= S. Consider some
T ∈ S \ S′. S′ attacks T implies that Support(T ) 6= ∅. Assume that not a ∈
Support(T ). Since ⊥ ∈ S then from the previous item, we have that S contains a
tree Ta such that a = Concl(Ta). It means that Ta attacks T , i.e., S is not conflict
free. Contradiction.

4. Assume the contrary. There are two cases:

a ¬a

⊥

Ta T¬a

Fig. 4: Tree T⊥

• {a,¬a} \ Concl(S) = ∅. This means that S contains two trees Ta and T¬a
such that Concl(Ta) = a and Concl(T¬a) = ¬a. From these two trees, we
can construct a tree T⊥ as in Figure 4. Obviously, this tree is not attacked by
S since its set of supports is Support(Ta) ∪ Support(T¬a) and S is conflict
free by definition. In other words, T⊥ ∈ S because S is a stable extension, i.e.,
⊥ ∈ Concl(S). Contradiction.



• {a,¬a} \ Concl(S) = {a,¬a}. This means that S does not contain any tree
T with Concl(T ) = a. As such, S does not attack the tree Aa. Since S is a
stable extension, Aa ∈ S which implies that ¬a ∈ Concl(S). A contradiction
with the assumption that {a,¬a} \ Concl(S) = {a,¬a}. �

The above proposition shows that programs consisting of arguments supporting ⊥
would have a single stable extension, if one exists. Intuitively, such programs should
not be used in making conclusions, especially programs with strict proof trees support-
ing contradictory conclusions. We characterize this class of programs as incoherent as
follows.

Definition 3 (Coherent Programs). A program Π is said to be incoherent if there are
strict arguments supporting both a and ¬a for some a ∈ HΠ in its induced argumenta-
tion framework AFΠ .

Π is coherent if it is not incoherent.

It is easy to check that Π3 = {a ← >. ¬a ← >.} is incoherent. Coherent programs
satisfy the following property.

Proposition 2. Let Π be a program. It holds that

1. If Π is coherent then Concl(S) is consistent for each stable extension S of AFΠ .
2. If there is a stable extension S of AFΠ such that Concl(S) is consistent then Π is

coherent.

Proof. The first item follows from the second and fourth items of Proposition 1 and
the fact that if Π is incoherent then ⊥ ∈ Concl(S) for every stable extension S. The
second item follows immediately from the first item. �

Proposition 2 suggests that it is reasonable to focus on coherent programs. In fact, all
normal logic programs as defined in [12] are coherent since they do not allow classical
negation. As such, from now on if nothing is explicitly stated, by a program we mean a
coherent program. Having defined the argumentation framework of a program Π , we
now define answer sets.

Definition 4 (Argumentation-Based Answer Set). Let Π be a program and AFΠ =
(ArgsΠ , AttsΠ) be the AF induced byΠ . An interpretation I ofΠ is an argumentation-
based answer set (or AB-answer set, for short) of Π if there exists a stable extension S
of AFΠ such that I∪¬I−∪{>}=Concl(S).

The above definition is in line with the recently adopted convention in defining an-
swer sets which requires that answer sets are consistent sets of literals. It also indicates
that a program might not have an AB-answer set. In that case we say that the program is
inconsistent. Generalizing the result on well-founded model of normal logic programs
in [9], we next define well-founded model for programs with FOL formulae.

Definition 5 (Argumentation-Based Well-Founded Model). LetΠ be a program and
AFΠ = (ArgsΠ , AttsΠ) be the AF induced by Π . A partial interpretation (P,Q) of
Π is the argumentation-based well-founded model (or AB-well-founded model) of Π if
P ∪ {¬a | a ∈ Q} ∪ {>} = Concl(S) where S is the grounded extension of AFΠ .



Intuitively, if (P,Q) is the well-founded model of Π , then P (Q) is the collection of
atoms that are true (false) givenΠ . It is worth noticing that the notion of a well-founded
model for logic programs with first-order formulae has not been defined in the literature.

It follows directly from the property of grounded extension and stable extensions of
argumentation framework that the well-founded model is unique and every AB-answer
set contains the AB-well-founded model.

Proposition 3. Let Π be a program. Then, the AB-well-founded model of Π , (P,Q),
always exists and is unique; and for every AB-answer set I of Π , P ⊆ I and Q ⊆
HΠ \ I .

Finally, it is not difficult to derive from the results of Theorems 49 and 50 in [9] that,
for normal programs, the above defined AB-answer sets and AB-well-founded model
coincide with the classical stable models (as in [12]) and well-founded model (as in
[26]). In this sense, this paper lifts the work in [9] to logic programs with FOL-formula.

3.2 Argumentation-Based Answer Sets Are Well-Justified

In this section we will focus on the well-justified provability of elements in an AB-
answer set. In the following, we make use of terminologies related to trees such as
ancestor, subtree, path, etc. without definitions. For precise definitions, the readers
are referred to [7]. A pair of two different nodes N and N ′ in a tree T is a cycle if
label(N) = label(N ′) and N is an ancestor of N ′. T is circular if it has a cycle;
non-circular if it does not have a cycle. We prove some properties related to the non-
circularity of trees.

Lemma 1. For each tree T , there exists a non-circular tree T ′ such that Concl(T ) =
Concl(T ′) and Support(T ′) ⊆ Support(T ).

Proof. Let k = 0 and Tk = T . If Tk is non-circular then the proposition is proved. Oth-
erwise, Tk has a cycle (N,N ′). Clearly, replacing the subtree rooted atN by the subtree
rooted at N ′ in Tk results in a tree Tk+1 that has at least one cycle less than Tk and
Concl(Tk) = Concl(Tk+1) and Support(Tk) ⊆ Support(Tk+1). Furthermore, the
number of nodes of Tk+1 is less than the number of nodes of Tk. As such, there exists
a finite n such that Tn is non-circular. Clearly, we have that Concl(T ) = Concl(Tn)
and Support(Tn) ⊆ Support(T ). �

Lemma 2. Let Π be a program and AFΠ = (ArgsΠ , AttsΠ) be the AF induced by
Π . Let S be a stable extension of AFΠ . For each T ∈ S there exists a non-circular T ′

in S such that Concl(T ′) = Concl(T ).

Proof. It follows from Lemma 1 that there exists a non-circular T ′ such thatConcl(T ) =
Concl(T ′) and Support(T ′) ⊆ Support(T ). We will show that T ′ belongs to S.
Assume that T ′ 6∈ S. Since S is a stable extension of AFΠ , S attacks T ′. Since
Support(T ′) ⊆ Support(T ), S attacks T . Contradiction because S is conflict free
and T ∈ S. �.

The above lemmas allow us to prove an important property of AB-answer sets.



Theorem 1. Let Π be a program and I be an AB-answer set of Π . Then, for each
atom a ∈ I , there exists a non-circular proof tree T such that Concl(T ) = a and
{¬b | not b ∈ Support(T )} ⊆ ¬I−.

Proof. I is an argumentation-based answer set of Π iff there exists a stable extension
S of AFΠ such that I ∪ ¬I− ∪ {>} = Concl(S). This implies that there exists some
tree in T ′ ∈ S such that Concl(T ′) = a. It follows from Lemma 2 that there exists
a non-circular T ∈ S such that Concl(T ) = Concl(T ′). Since S does not attack
T , it means that each Ab. where not b ∈ Support(T ) belongs to S, i.e., {¬b |
not b ∈ Support(T )} ⊆ Concl(S). By the definition of I , we can conclude that
{¬b | not b ∈ Support(T )} ⊆ ¬I−. �.

To prove the non-circularity of AB-answer sets, we need some additional notations.
Let T be a tree. The level of a node N , denoted by l(N), in T is defined as follows:
(i) if N is a leaf then l(N) = 0; (ii) if N is not a leaf then l(N) = 1 + max{l(i) | i
is a child of N}. The level of a tree T is defined by the level of its root and is denoted
by l(T ). For a program Π and its induced AFΠ , let S be a stable extension of AFΠ .
The level of S, denoted by l(S), is defined as max{l(T ) | T ∈ S}. The kernel of S,
denoted by k(S), is the collection of trees in S such that Concl(S) = Concl(k(S))
and for each z ∈ Concl(S) there exists a unique T ∈ k(S) such that z = Concl(T ),
l(T ) = min{l(T ′) | T ′ ∈ S,Concl(T ′) = z}.2 For each stable extension S of AFΠ ,
let 〈Si〉l(S)i=0 be the sequence of literals Si = {Concl(T ) | T ∈ k(S), l(T ) = i}.

Proposition 4. Let Π be a program and AFΠ = (ArgsΠ , AttsΠ) be the AF induced
by Π . Let S be a stable extension of AFΠ and 0 ≤ i ≤ l(S). Then, for every tree
T ∈ k(S) such that Concl(T ) ∈

⋃
0≤j<i Sj , T does not contain any node whose label

is z ∈ St for t ≥ i.

Proof. Suppose the contrary. Consider Tz ∈ k(S) such that Concl(Tz) = z. It implies
that T contains a subtree T ′ such that Concl(T ′) = z. It is easy to see that T ′ ∈ S.
Since l(T ′) < l(T ) < i = l(Tz), it means that Tz 6∈ k(S). This is a contradiction. �

A consequence of the above proposition is that each tree with level i in the kernel of
a stable extension of AFΠ can be constructed using only literals that were the conclu-
sions of trees whose levels are smaller than i. This demonstrates that AB-answer sets
are indeed well-justified. Theorem 2 in Subsection 5.1 formalizes this result in precise
terms.

4 Programs With FOL-Representable Atoms

Since the construction of a proof tree makes use of logical inference (first case of Item 2
of Definition 1), it is easy to see that AB-answer sets are preserved under equivalent
transformations. This stipulates that the notion of AB-answer sets can be extended to
allow extended atoms whose truth values can be defined via a formula in the language of
the given program. In fact this is true for many well-known extensions of logic programs

2 Intuitively, a tree T belongs to the kernel of S if T belongs to S and the level of T is minimal
wrt trees in S supporting the same conclusion.



such as weight constraint atoms (e.g., [19]), aggregates (e.g., [10]), or abstract constraint
atoms (e.g., [17]). Let us quickly review some basic notions of these types of extensions
of logic programming.

• A weight constraint atoms [19] of a program Π is of the form l [p1 : q1 =
w1, . . . , pn : qn = wn] u where l and u are two real numbers such that l ≤ u,
pi is either a or not a for some atom a ∈ HΠ , qi is an atom in HΠ , and wi
is a real number. pi : qi is called a conditional literal. Given a weight constraint
atom C and an interpretation I , the weight of the formula [p1 : q1 = w1, . . . , pn :
qn = wn], denoted by W (C), is calculated3 and C is declared to be true w.r.t. I if
l ≤W (C) ≤ u.

• An aggregate atom (e.g, [10]) of a program Π is of the form f(S) ≺ T where T is
a term, ≺∈ {=, <,>,≤,≥}, and f(S) is an aggregate term with f is an aggregate
function symbol (#count,#sum, . . .) and S is a set term. In fact, following this
syntax the aggregate atom in Π1 is written as #sum{X : p(X)} ≥ 1. Given an
aggregate atom f(S) ≺ T and an interpretation I , the set term S is evaluated
and the value for f(S) is calculated; the atom is true w.r.t. T if the evaluation of
f(S) ≺ T returns true.

• An abstract constraint atom (e.g., [17, 25]) of a program Π is of the form (D,C)
where C is a set of subsets of HΠ and D is a subset of HΠ . (D,C) is true w.r.t. an
interpretation I if I ∩D ∈ C.

In short, each of these extensions to logic program starts by defining the syntax of a
new type of atoms and associating a method for evaluating the truth value of a new
atom w.r.t. an interpretation. Usually, this method allows for the identification of all
interpretations of the program that satisfies the atom, i.e., each atom a is associated
with a set Ia of interpretations satisfying a. As such, we can identify a with ta =∨
I∈Ia(

∧
b∈I b ∧

∧
b 6∈I ¬b) and ¬a with ¬ta. As an example, the aggregate atom λ =

SUM({X : p(X)}) ≥ 1 in Example 1 is associated to the formula tλ =
∨5
i=1(Ii∧¬I

−
i )

where I1, . . . , I5 are the five interpretations satisfying λ detailed in Section 1.
The method of evaluation of extended atoms is then used to define when a rule (or a

program with extended syntax) is satisfied given an interpretation which, in turn, is used
in defining answer sets although the approach to define the semantics of programs with
these new types of atoms might be different (e.g., by using a two step definition similar
to the original definition of answer sets [10], or using a mathematical operator [20, 17],
etc.). The key distinction between previous approaches in dealing with these extensions
lies in the requirement whether or not ta needs to be proved or can be assumed. For
examples, the approaches in [20, 25, 23] seem to require that the formulae related to
the extended atoms are provable; on the other hand, the approaches in [10, 17] seem to
allow they to be assumed.

It is easy to recognize that the approach developed in the previous section requires
provability of the conclusions. As it turns out, it can be easily adapted to any of the
proposed extensions of logic programs. Instead of generalizing the approach for each
extension separately, we next propose a generalization of the AB-semantics which can

3 Precise formula for computing W (C) is not really important for the discussion. It can be found
in [19].



be instantiated to each of the above discussed extensions of logic programs. Given a sig-
natureΣ = (C,P,F). An expression of the form γ[α] where γ is a 0-ary predicate sym-
bol that does not occur in the language LΣ and α ∈ LΣ is called a FOL-representable
atom w.r.t. Σ. Intuitively, the formula α is a definition of γ in the language over Σ. For
instance, (SUM({X : p(X)}) ≥ 1)[tλ] is a FOL-representable atom over the language
of Π1.

Definition 6. Let Σ = (C,P,F) be a signature and Γ be a set of FOL-representable
atoms w.r.t.Σ. A program with FOL-representable atoms over (Σ,Γ ) is a set of rules of
the form ψ ← φ where ψ ∈ LΣ and φ is a formula in the language over the signature
Σ′ = (C,P ∪ {γ | γ ∈ Γ},F).

We will now extend the notion of AB-semantics to programs with FOL-representable
atoms.

Definition 7. Let Π be a program with FOL-representable atoms over (Σ,Γ ) and Π ′

be Π extended with the set of rules {γ ← α | γ[α] ∈ Γ} ∪ {¬γ ← ¬α | γ[α] ∈ Γ}.
Let Λ = {λ | λ[α] ∈ Γ}. We define (i) an interpretation I of Π is an AB-answer set of
Π iff there exists some Λp ⊆ Λ such that I ∪ Λp is an AB-answer set of Π ′; and (ii)
a partial interpretation (P,Q) of Π is the AB-well-founded model of Π iff there exists
some Λp, Λn ⊆ Λ such that Λp∩Λn = ∅ and (P ∪Λp, Q∪Λn) is the AB-well-founded
model of Π ′.

Intuitively, the semantics of programs with FOL-representable atoms is defined
by transforming them to programs with FOL-formulae without extended features. By
adding γ ← α and ¬γ ← ¬α to the original program, we essentially add rules to the
construction of proof trees which allow for the derivation of FOL-representable atoms.
The former (latter) rule allows for the conclusion of γ (¬γ). The usefulness of this
definition is illustrated in the next section.

5 Related Work and Discussion

The paper relates to works that extend the answer set semantics to more generalized
logic programs and that study semantics of logic programs using argumentation. The
main distinctions between our approach and previous approaches to defining semantics
of logic programs using argumentation such as [5, 9, 13, 22] lie in our focus on gener-
alized logic programs and the explicit use of the notion of a proof tree. Due to the space
limitation, we will focus our discussion on the properties of the AB-semantics. Specifi-
cally, we show that AB-answer set semantics (resp. AB-well-founded model) is equiv-
alent to well-justified answer set semantics for programs with FOL-formula [23] (resp.
well-founded model for programs with abstract constraint atoms [27]). We note that
these results, together with the results in [23, 27], show that the argumentation-based
answer set (Definition 4) is equivalent to a number of previously defined semantics for
various extensions of logic programs such as aggregates, description logics, or abstract
constraint atoms.



5.1 Well-Justified Answer Sets for Logic Programs with FOL-formulae

The relationship between well-justified answer sets and AB-answer sets is proved in the
next theorem.

Theorem 2. Let Π be a program with FOL formulae. I is a well-justified answer set of
Π iff I is an argumentation-based answer set of Π .

Proof. Let I be a well-justified answer set of Π . Let S be the set of trees in AFΠ such
that for every T ∈ S, Support(T ) ⊆ {not b | b 6∈ I}. Because I is an answer set of
Π , we can show that S is conflict free. Furthermore, for every a ∈ I , there exists a tree
T ∈ S such that Concl(T ) = a. This also implies that S attacks every T ′ such that
Support(T ′) \ {not b | b 6∈ I} 6= ∅, i.e., S attacks every T ′ does not belonging to it.
Hence, S is a stable extension of AFΠ . This implies that I is an argumentation-based
answer set of Π .

Let I be an argumentation-based answer set of Π and S be the stable extension of
AFΠ . For a tree T and a rule r ∈ ground(Π), r is applicable in T if r is used in the
construction of T (in the second condition of Item 2, Definition 1). It is easy to see that
fΠI is the set of rules in ground(Π) applicable in S. By induction over the levels of
trees in the kernel of S and Proposition 4, we can show that lfp(TfΠI (∅,¬I−))∪¬I− |=
a for every a ∈ I . It means that I is a well-justified answer set of Π . �

5.2 Well-Founded Semantics for Programs with Abstract Constraint Atoms

Well-Founded Semantics for programs with abstract constraint atoms [27] is defined
for programs consisting of rules of the form

a← A1, . . . , Ak,¬Ak+1, . . . ,¬Am

where a is an atom and Ai’s are abstract constraint atoms, each is of the form (D,C),
D is a set of atoms and C ⊆ 2D. Let S, J be two sets of atoms such that S∩J = ∅. The
S-prefixed power set S

⊎
J is {S′ | S ⊆ S′ ⊆ S ∪J}. S

⊎
J is maximal in an abstract

constraint atom A = (D,C) if S
⊎
J ⊆ C and there exists no S′

⊎
J ′ ⊆ C such that

S
⊎
J ⊂ S′

⊎
J ′. It has been shown that each A = (D,C) can be represented by an

A′ = (D,C∗) such that C∗ is a set of maximal prefixed power sets in A.
Let X = (P,Q) be a partial interpretation of Π and A = (D,C∗) be an abstract

constraint atom in abstract representation. X satisfies A, written X |= A, if for some
S
⊎
J ∈ C∗, S ⊆ P and D \ (S ∪ J) ⊆ Q. X falsifies A, written X  A, if for

every S
⊎
J ∈ C∗, S ∩ Q 6= ∅ or D \ (S ∪ J) ∩ Q 6= ∅. X satisfies (resp. falsifies)

¬A if X falsifies (resp. satisfies) A. X satisfies (resp. falsifies) a set Z if it satisfies
(resp. falsifies) every member of Z. A set of atoms U is an unfounded set of Π with
respect to X iff, for any a ∈ U and any r ∈ ground(P ) with head(r) = a, either (i)
for some ¬A ∈ body(r), X  ¬A; or (ii) for some A = (D,C∗) ∈ body(r), for any
S
⊎
J ∈ C∗, either U ∩ S 6= ∅ or X  S ∪ {¬z | z ∈ (D \ (S ∪ J))}. For a program

Π , we define



TΠ(X) = {head(r) | r ∈ Π, X satisfies body(r)}
UΠ(X) = the greatest unfounded set of Π w.r.t. X
WΠ(X) = (TΠ(X), HΠ \ UΠ(X))

lfp(WΠ) is defined as the well-founded model of Π .
A program with abstract constraint atomsΠ can be viewed as a program with FOL-

representable atoms Π∗ where each abstract constraint atom A = (D,C∗) is replaced
by λA whose FOL-representation is λA[α(D,C∗)] andα(D,C∗) =

∨
S
⊎
J∈C(

∧
p∈S p∧∧

n∈D\(S∪J) ¬n). Let Λ(Π) = {λA[α(D,C∗)] | A = (D,C∗) is an abstract constraint
atom in Π}. The relationship between the well-founded model of Π and the AB-well-
founded model of Π∗ is proved in the next theorem.

Theorem 3. For a program with abstract constraint atomsΠ , (P,Q) is its well-founded
model iff there exists a pair (Ap, An) such that Ap, An ⊆ Λ(Π), Ap ∩ An = ∅, and
(P∪Ap, Q∪An) is the AB-well-founded model ofΠ∗. In addition, (P,Q) |= α(D,C∗)
for every λA[α(D,C∗)] ∈ Ap and (P,Q) |= ¬α(D,C∗) for every λA[α(D,C∗)] ∈ An.

Proof. (Sketch) Let AFΠ∗ be the argumentation framework induced by the program
Π∗. Let Gi = {T | T ∈ lfp(FAFΠ∗ ), l(T ) = i}. We can prove by induction over i that
(i) if a ∈ HΠ then a ∈W i

Π(∅) iff there exists a tree Ta ∈ Gi such that Concl(Ta) = a;
(ii) for every A = (D,C∗), W i

Π(∅) |= A iff there exists a tree TλA[α(D,C∗)]
∈ Gi such

that Concl(TλA[α(D,C∗)]
) = λA; and (iii) for every A = (D,C∗), W i

Π(∅) |= ¬A iff
there exists a tree T¬λA[α(D,C∗)]

∈ Gi such thatConcl(TλA[α(D,C∗)]
)=¬λA. This proves

the theorem. �

6 Conclusions

In this paper, we defined different argumentation-based semantics for programs with
FOL-formulae. The key idea behinds our approach lies in the notion of a proof tree. We
proved that the proposed semantics captured the well-justified semantics for programs
with FOL-formulae defined in [23] and the well-founded semantics for programs with
abstract constraint atoms defined in [27]. To the best of our knowledge, this is the first
proposal of argumentation-based semantics for generalized programs that exhibits this
equivalence. The proposed framework also sheds new light on the answer set semantics
for various extensions of logic programs in the literature by showing that they can be
viewed as programs with FOL-formulae extended with FOL-representable atoms, in-
directly providing a means for comparison among approaches to defining semantics of
logic programs with extensions. Finally, we note that our focuses in this paper is on the
two most well-known semantics of logic programs as well as the most recently intro-
duced semantics. Due to the results in [9, 22], we expect that similar results for 3-valued
stable models and complete extensions can be established. In addition, the results es-
tablished in Theorems 2-3 and the results in [23, 27] show that equivalence between
AB-defined semantics and other approaches in the literature such as [20, 24] can also
be established. This will be reported in the future extended version of the paper.



Finally, we note that the paper focuses on the development of argumentation-based
semantics for logic programs with FOL-formulae. It does not address question relating
to the computation of the semantics. For example, how to construct arguments (or proof-
trees) of a program?; is the set of arguments always infinite?; etc. We leave this for the
future work.
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