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Abstract. We study the conceptual relationship between the semantics
of nonmonotonic inheritance reasoning and argumentation. We show that
the credulous semantics of nonmonotonic inheritance network can be cap-
tured by the stable semantics of argumentation. We present a transfor-
mation of nonmonotonic inheritance networks into equivalent extended
logic programs.

1 Introduction

Argument-based approaches to nonmonotonic reasoning have been intensively
studied and became prominent in Al and Logic Programming [6, 21, 24, 1, 20]
just recently. But reasoning based on arguments represented as paths, has been
studied in nonmonotonic inheritance reasoning, a specific field of nonmonotonic
reasoning, from the very first day [30] and then in [13, 15, 27, 28, 29, 26, 25,
8]. Path-based reasoning approaches to nonmonotonic inheritance networks are
widely accepted because they are intuitive and easy to implement.

The interesting and surprising problem here is that the argument-based se-
mantics of nonmonotonic inheritance network [13, 15, 27, 28, 29, 26, 25, 8] and
the general argumentation reasoning [6, 21, 24, 1, 20] seem to have conceptually
little in common. Touretzky et al. went so far to claim that one of the funda-
mental principle of argumentation - the use of reinstater - can not be applied in
nonmonotonic inheritance reasoning [29].

The relation between nonmonotonic inheritance reasoning and more general
frameworks to nonmonotonic reasoning like default logic, autoepistemic logic,
logic programming has been intensively studied in [3, 4, 14, 11, 7, 23, 16]. The
basic idea of these works is to find a way to translate a nonmonotonic inheritance
network into a “equivalent” theory of the respected nonmonotonic logic. But all
of these transformations do not preserve the original semantics of nonmonotonic
inheritance networks. Hence, conceptually, the relationship between the natu-
ral path-based semantics of nonmonotonic inheritance networks and other more
general nonmonotonic logics such as default logic, autoepistemic logic, etc. re-
mains unclear. The goal of this paper is to address this problem. We do that by
studying the relationship between the argumentation framework given in [1] and
inheritance networks.



We show that each acyclic, consistent nonmonotonic inheritance network
I' can be viewed as an argumentation framework AFp so that the credulous
semantics of I' “coincides” with the stable semantics of AFp. Further, we prove
that the grounded semantics of AFp is contained in the skeptical semantics of
I [13, 26]. Thus, we can say that grounded semantics provides the baseline of
skepticism in inheritance reasoning.

We present a transformation of consistent nonmonotonic networks into ex-
tended logic programs and show that the credulous semantics of the former
coincides with the answer set semantics [10] of the latter. To our knowledge,
this is the first transformation of nonmonotonic inheritance network into other
more general nonmonotonic logics preserving the semantics of nonmontonic in-
heritance networks.

2 Preliminaries

2.1 Imnheritance network

A defeasible inheritance network I is defined here as a finite collection of positive
and negative direct links between nodes. If x, y are nodes then # — y (resp.
& #+ y) represents a positive (resp. negative) direct link from x to y. A network
I is consistent if there exist no two nodes x, y such that both # — y and
x 4 y belong to I'. A positive path from z; to z, through zs, ..., x,_1, denoted
by w(x1,0,2,) or w(x1, @2, ..., Bn_1,n), is a sequence of direct links z1 — wa,
Ty — T3, ..., Tp_1 — Ty. Similarly, a negative path from z, to z, through z,,
coy 1, denoted by T(x1, 0, 2y) or T(x1, &2, ..., ¥n_1, &pn), is a sequence of direct
links 1 — x2, 29 — 23, ... , Tn_1 7~ . A generalized path is a sequence of
direct links (%1, x2), (22, 23), ..., (¥n_1, n), Where (z;, x;41) denotes a positive
or negative direct link. I' is acyclic if there is no generalized path (21, z2),
(x2,23), ... , (Tn_1,%n) with 1 = #,. The degree of the path o = =w(x,0,y)
(resp. o = T(x,0,y)), denoted by degpr(«), is defined as the length (number of
edges) of the longest generalized path from x to y. Furthermore, we also use the
notation w(xy,0,p_1) — &, (resp. m(x1,0,2n_1) 7 x,) to denote the path
(21, T2,y X1, n) (resp. T(X1, T2, .oy Tn_1, Tn)).

From now on we will use I to denote an arbitrary but fixed network and @ to
denote a set of paths in I if no confusion is possible. The notion of inheritability
presented here relies on three concepts: constructibility, conflict, and preemption.
Their definitions are taken from [15, 29, 13, 25, 26].

Definition1. A positive path 7(z, 0, u) — yis constructible in @ iff n(x, 0, u) €
¢ and uw — y € I'. A negative path w(x,0,u) 4 y is constructible in @ iff
a(ex,o,u) € Pand u L yel.

Definition2. w(z,0,y) conflicts with any path of the form @ (x, r,y) and vice
versa. A path o is conflicted in @ iff @ contains a path that conflicts with o.

Different ways have been proposed to define defeasible preemption in & [7,
15, 13, 28, 26, 25]. Here, we follow the off-path preemption given in [13].



Definition 3. A positive path 7(z, 0, u) — y (see figure 1) is preempted in @ iff
there is a node v such that (i) v & y € I' and (ii) either v=x or there is a path
of the form m(x, 11, v, 72, u) € . A negative path w(z, o, u) /4 y is preempted in
@ iff there is a node v such that (i) either v=x or (ii) there is a path of the form
(e, m,v,m,u) EPandv —ye .

Fig.1. 7(z,0,u) — y is preempted

The credulous semantics of an inheritance network is given in the following
definition.

Definition4. [13] o is defeasibly inheritable in @, written as @ |~ o, iff
either ¢ i1s a direct link
or o is a compound path, o=n(z, 7,y) (likewise for negative path) such that
(i) o is constructible in @, and
(ii) o is not conflicted in @, and
(iii) o is not preempted in @.

Definition 5. A set @ of paths is a credulous extension of the net I' iff ¢ = {
o Do}

The skeptical semantics for inheritance network is defined by the notion of
ideally skeptical extension and is defined as follows.

Definition 6. [26, 25] The intersection of all credulous extensions of I' is called
the ideally skeptical extension of I

2.2 Argumentation framework

In the following section, the basics of the abstract theory of argumentation frame-
work of Dung [1] is recalled.

Definition 7. An argumentation framework is a pair AF=<AR, attacks>,
where AR is a set of arguments, and attacks € AR x AR.



If (A, B) € attacks we say A attacks B or B is attacked by A. A set of
arguments S is said to be attacked by an argument A if there is B € S such
that (A4, B) € attacks. Similarly, we say S attacks A if there is B € S such that
(B, A) € attacks.

Definition8. A set of arguments S is said to be conflict-free if there exist no
two arguments A B in S such that (A4, B) € attacks.

The stable semantics of AF is defined as follows.

Definition9. A conflict-free set of arguments S is called a stable extension of
AF if S attacks every argument which does not belong to S.

It is easy to see that the following proposition holds.
Proposition. S is stable iff S={A | A is not attacked by S}.

The stable semantics of argumentation framework captures the semantics of
many other mainstream approaches to nonmonotonic reasoning such as extension
of Reiter’s Default Logic [22], stable expansion of Autoepicstemic Logic [17], and
stable model of Logic Programming [9]. We will see in section 3 that the credulous
semantics of an inheritance network coincides with the stable semantics of a
corresponding argumentation framework.

Often, a more restricted form of skeptical semantics is advocated in many
approaches to nonmonotonic reasoning [21, 5]. This form of skeptical semantics
is defined in the argumentation framework by the notion of grounded extension
defined as the least fixpoint of the following operator.

Fup : 248 — 248 where
Far(S) = {A | VB, if B attacks A, then 3C € S such that C attacks B}.

The idea behind this operator will become clear in the next definition.

Definition10. An argument A is defendable wrt S iff for every argument B, if
B attacks A, then there is an argument C in S such that C attacks B.

So, we can redefine Fup by Fap(S) = {A | A is defendable wrt S}.

The grounded extension of an argumentation framework is defined next.

Definition11. The grounded extension of an argumentation framework AF de-
noted by GFE 4r is the least fixpoint of Fup.

It has been pointed out in [1] that both the semantics, Pollock’s Inductive
Defeasible Logic [21], and well-founded semantics of Logic Programming [5] are
captured by the grounded extension of argumentation framework.

The maximal fixpoint of Fup are called the preferred extension of AF. In
general, stable extension are preferred extension but not vice versa. But as we
will see later, for any argumentation framework corresponding to inheritance
networks, stable semantics and preferred semantics coincide. So it is enough for
us to work only with stable semantic.



3 Inheritance Networks as Argumentation Frameworks

Our goal 1s to clarify the conceptual relationship between the semantics of non-
monotonicinheritance networks and the semantics of argumentation frameworks.
This will also help to illuminate the conceptual relationship between the se-
mantics of nonmonotonic inheritance networks and other general approaches to
nonmonotonic reasoning due to a result of Dung [1] showing that many general
approaches to nonmonotonic reasoning [22, 17, 5] can be seen as special cases of
argumentation frameworks.

We will show that every nonmonotonic inheritance network I can be
considered as an argumentation framework AFpr=<ARp, attacksp> such
that the credulous semantics of I' coincides with the stable semantics of
AFp=<ARp,attacksp> in the sense that every credulous extension of I is
a stable extension of AFr and vice versa.

A path o = w(x, 0, u) is called a prefiz of path § = 7(x, 0, u, 7,v) in I'. The
set of all prefixes of 3 is denoted by pre(8). « is a proper prefiz of 3 iff & € pre(5)
and o # 5.

First, it is intuitive to view any path of I' as an argument. So, we have
ARp = {o|o is a path in I'}.

As next we define the attacks relation of AFp. The underlying principle
in defining the attacks relation is that more specific information overrides less
specific one. For two conflicted paths, o and 7, there are following cases:

(i) o is a direct link. Tt is clear that we should let ¢ attack 7, but not vice
versa.

(ii) ¢ and 7 are compound paths. In this case, neither ¢ nor 7 are more
specific than the other path. Thus, we have: ¢ attacks 7 and vice versa.

Further, it should be also clear that if o attacks a prefix v of 7 then o attacks

We now consider another kind of attack.

Fig. 2. Motivation of Attack Definition



FEzample 1. Consider the inheritance network I3 in figure 2. The paths ¢ =
w(x,b, f) and 7 = 7(x,p, f) are in conflict. Thus, w(x,b, f) attacks 7(z,p, f)
and vice versa as in case (ii). So, AFp,=<ARp,, attacksp, > with attacksp, =
{(o,7),(r,0)}. Hence AFp, has two stable extensions corresponding to two cred-
ulous extensions of It : By = 'U{c} and Ey = I'U{r}.

The network [ in figure 2 is received from the network I} by adding the
positive link p — . This is the well- known Penguin-Bird-Fly example. It is
clear that in AFr,=<ARp,, attacksr,>, o attacks 7 and 7 attacks o as in case
of I'1. Adding the link p — b into I} makes the argument 7 more specific than
the argument o. Thus, due to the principle that more specific information can
override less specific one, we can say that adding p — b to I} creates a attack of
new kind against o = w(z, b, f). We can represent this by viewing the argument
a = w(x,p,b) in the presence of the link p 4 f as an attack against the path
o=m(zb,f).

These motivations lead to the following definition of attacks.

Fig.3. 7(z, o, u) — y is attacked by w(z,6,v,v,u) in presence of v 4 y

Definition12. A path o attacks path 7 iff

(a) o is a direct link x— y (resp. # 4 y) and 7 = 7(»,o,y) (vesp. 7 =
7(x, a,y)) or

(b) ¢ is in conflict with some compound path é € pre(r) or

(¢) o, 7 are compound paths where there exists a prefix § = w(z, o, u) — y of
7 (resp. m(x, o, u) A y) and ¢ = w(x, 6, v,y,u) withv L y € I' (resp.v —y € I')
(see figure 3).

Remark. From now on we will refer to three types of attacks (a), (b), and (c)
defined above as attack by direct link, by conflict, and by preemption, respec-
tively.



So, in our point of view there are two kinds of attacks between two paths ¢
and 7, symmetric (7 attacks ¢ and ¢ attacks 7) and asymmetric (7 attacks o
but not vice versa). Symmetric attacks are equivalent to conflictor in [29] while
asymmetric attacks have some similarity to preemptor in [29] but not identical.

Frample 2. (Continuation of example 1)
For Iy in figure 2 we have AFp,=<ARp,, attacksp,> with

ARp, = I U{o, 7, «, 36} and

attacksp, = {(p £~ £,8)} U{(o,7),(r,0), (1, 5), (B, ")} U{(e, o), (v, B) } with
o=mx(x,b f), T =7(x,p, f), « = w(x,p,b), = 7n(x,p,b, f), and § = =(p,b, f).
Here, {(p & f,4)} is the set of attacks by direct link, {(o, ), (7,0), (7, 58),(3,7)}
is the set of attacks by conflict, and {(«,0), (e, 3)} is the set of attacks by
preemption. a

We now prove the coincidence between the credulous extension of I" and the
stable extension of AF.

Theorem 13. Let F be a set of paths in I'. Then, F is a stable extension of
AFp iff E 1s a credulous extension of .

Proof. See Appendix. a

We give now the definition of the grounded skeptical semantics for an inher-
itance network.

Definition 14. The grounded skeptical semantics of the inheritance network I
is defined as the grounded extension G FE 4p,. of the corresponding argumentation
framework AFp of I'.

Since GE 4. is contained in every stable extension of AFp we have the
following theorem.

Theorem15. The grounded extension GEap, of AFr is a subset of the ideally
skeptical extension of I.

Proof. Since GFEap, is the smallest complete extension of AFp and the com-
plete extensions form a complete semilattice wrt set conclusions [1] we have that
G FE ap, 1s contained in every stable extension of AFp. Thus, GE4p, is contained
in their intersection which is the 1deally skeptical extension. a

4 Transforming Inheritance Network into Logic Program

The coincidence between the credulous semantics of an inheritance network I”
and the stable semantics of the corresponding argumentation framework A Fr to-
gether with the results in [1] stating that argumentation frameworks in principle
can be represented as logic programs, points out that an inheritance network I
can be transformed into an equivalent logic program Pr. Thus, proof procedures



based on negation-as-failure can be applied to Pr to compute the credulous
semantics of I

In this section we transform an inheritance network /" into an extended logic
program Pr and show that the credulous semantics of I" coincides with the
answer set semantics of Ppl.

In following we assume that the readers are family with the answer set se-
mantics of Logic Programs [10].

The set of nodes of I' is the union of two digjoint sets, the set of individuals
of I', denotes by Ip, consists of all nodes x of I" such that there exists no direct
link y — # or y /& « in I', and the set of predicate (or properties) nodes. For
example, in the example 3 (Nixon-Diamond), a denotes the individual Nixon, and
p, r and q denote the predicates Pacifist, Republican and Quaker, respectively.
In following, a, b, ¢, ... will represent the individuals of I" and p, q, r, ... are the
predicate nodes if not otherwise specified.

We first assign an unique natural number j € N to each direct linkp — g € I
(resp. p /> q € ') of I', p & Ip, written as p—;q (resp. p/+;q), and introduce a
new predicate ab; representing the abnormal-literal at the edge j. The link p—;q¢
(or p74>]»q) is then referred simply as the link j. Based on the attack relationship
of AFp the inheritance network I" can be transformed into an extended logic
program Pr as follows.

As in case of attack by direct link, any direct link @ — p (resp. ¢ & p)
beginning from a fact node a can be transformed directly into a fact of Pp
because of there is no arguments which attack @ — p (resp. a 4 p). Hence, we
have:

(i) For each a € It if a — p (resp. a /> p) is in I" then

pla) — (resp. —p(a) <)
1s a clause of Pr.
(i1) For p € Ir and each direct link p—;q¢ € I', the two clauses
g(z) — p(x), not ab;(x) and
abj(x) — —q(x)
belong to Pr.
Similarly, we have two clauses of Pr for a negative direct link p/;q € I'" as

follows:
(iii) For p € Ir and each direct link p/,;q € I'

_'Q(l°) <—p(x), not ab]'(x) and
abj(z) — gq(z

~—

are clauses of Pr.

! Grégoire [7] presented an algorithm for transformation of an inheritance network into
a logic program but in our view this could hardly be considered as a transformation
because according to the algorithm we first have to compute the extensions of the
network and then define a logic program specifying this extension.



(iv) For each pair of direct links p—;¢ and r#>,¢ in I’
(a) If there exists a positive path from p to r over the links ji, ..., j, then the
clause
aby(x) — p(z), not ab;, (z),..., not ab;, (z)

belongs to Pr.
(b) If there exists a positive path from r to p over the links ji, ..., j, then the
clause
ab;j(z) — r(z), not ab;, (z),..., not ab;, (z)

belongs to Pr. O
We demonstrate the transformation from I into Pr in the next two examples.

Fig. 4. Nixon-Diamond

Frample 3. The corresponding program Pr of I' in the figure 4 is:

a—r r(a) —

r#+p —p(x) — r(x), not aby(x)
aby (z) — p(x)

q—2p p(z) — q(x), not abs(x)
abs(x) — —p(x)

It is easy to see that Ppr has only two answer sets {r(a), ¢(a), p(a),abi(a)} and

{r(a), g(a), ~p(a), abs(a)}. u



Fig. 5. Penguin-Bird-Fly

Ezample 4. Let consider the net I' in figure 5. a denotes Tweety, p, q, and f are
penguin, bird, and fly, respectively. The corresponding program Pr consists of

pFaf ~f(x) — p(x), not aby(x)
aby(x) — f(x)
q—s3f flx) — q(x), not abs(x)
abs(x) — = f(x)
p—1q q(z) — p(x), not aby(x)
aby(x) — —q(x)
and abs(z) — p(x), not aby(x)
The unique answer set of Pr is {p(a), ¢(a),~f(a),abs(a)}. a

The relationship between the answer set semantics of Pr and the credulous
semantics of I" can be established in the following way. First, for any set of paths
in I', E, we define:

Mg = {q(a) | there is a positive path from a € Ip to q in E } U {—¢(a) |
there is a negative path from a € Ir to q in E }.

The next theorem point out the relationship between the answer set semantics
of the program Pr and the credulous semantics of the inheritance network I

Theorem 16. M s an answer set of Pp off there exists a credulous extension E
of I' such that Mg = M\AB where AB denotes the sel of all grounded instance
of abnormal-predicates in Pp. a

5 Conclusion
We have studied the relationship between semantical concepts of nonmonotonic

inheritance and of argumentation framework. In chapter 3 we showed that argu-
mentation framework, a general form of argument-based reasoning can be applied
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to specify nonmonotonic inheritance reasoning in a simple way. We proved that
a consistent and acyclic network can be viewed as an argumentation framework
so that the credulous semantics of the former coincides with the stable semantics
of the latter.

The capturing of credulous semantics of nonmonotonic inheritance by argu-
mentation framework shows that argumentation can be applied successfully to
formulize nonmonotonic inheritance reasoning. It is interesting to notice that
many new developed approaches to nonmonotonic reasoning [6, 24, 2] can not
applied directly to inheritance reasoning as we did for Dung’s argumentation
framework. Geffner and Pearl’s conditional entailment [6] is too weak as we
can not draw the conclusion “T'weety is an animal with feather” if we replace
the rule “Bird fly” by two rules “Bird are animals with feather” and “Animal
with feather fly” in the Penguin-Bird-Fly example. Simary and Loui’s defeasible
reasoning [24] gives unintuitive answer even in simple cases as in the Penguin-
Bird-Fly example given that Tweety 1s a penguin and a bird. Delgrande and
Schaub’s general approach [2] cannot give proper answer in the example with
R={a—ra—pa——¢p—qq— -s,q¢—rr— s} (figure 18, page 158

[13]).
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Appendix: Proof of selected theorems

In this section we prove that the credulous semantics of I" and the stable seman-
tics of the corresponding argumentation framework coincide. At first, we prove
some general properties of AFT".

Lemmal7. Let I' be an acyclic, consistent inheritance network and
AFr=<ARp,attacksp> s the corresponding argumentation framework. Then,
if o attacks o' then degr(c) < degr(o’). a

Proof. Consider three cases:

1. o attacks o’ by a direct link then it is clear that degr (o) = degr(o’) because
o' and o have the same begin and the same end nodes.

2. o attacks ¢’ by conflict. Then, either ¢ and ¢’ have the same begin and
end and therefore degr(c) < degpr(c’) or there is some prefix of ¢’ which is
conflict with ¢, in this case we have degp (o) < degr(o’).

3. o attacks ¢’ by preemption. Then, there is a prefix o = w(x, 7, u) — y (resp.
w(x, T,u) £ y) of ¢’ such that o = #(x,8,v,y,u) with v — y (resp. v 4 y)
in I'. By definition of degy we have degp (o) < degr(o’).

The lemma is proved from these three cases. a

Lemma 18. Let S be set of arguments and o be an argument defendable wrt S.
Then, each « € pre(o) is defendable wrt S.

Proof. If o € pre(o) and § is an argument which attacks « then 3 attacks o
and therefore 3 is attacked by S. Hence, « 1s defendable wrt S. O

Lemmal9. Let S be a set of argument in AFp. If S |~ o then o is not atlacked
by S.

Proof. Assume that there exists an argument 7 in S such that (r, o) € attacks.
By definition of attack we have three cases:

1. 7 attacks o by direct link. Then, o is preempted in S.

2. 7 attacks o by conflict. Then, o is conflicted or non constructible in S.

3. 7 attacks ¢ by preemption. Then, ¢ is preempted or non constructible in
S. From the three cases, we learn that if (r,0) € attacks then S |t o.
Contradictory !!! Thus, S does not attack o. O

The next lemma follows directly from lemma 19, and the definition of the
stable extension.

Lemma20. If F is a stable extension of AFp and o € E. Then, F [t o. O
Further, it is easy to prove the next two lemmae.

Lemma 21. If F is a stable extension of AFp, then I' C E, and for every path
o € F, o is not preempted in E. ad

13



Lemma 22. Let F be a credulous extension of I'. Then o is attacked by E if
cgF.

Proof. Obviously, ¢ is a compound path. Without a lost of generality, assume
that o is a positive path w(z, 7,u) — y. Since ¢ does not belong to E, F |£ o.
Hence,

1. o is conflict in E. It means, there is some path « in E that is conflict with
o. Therefore, o i1s attacked by E.

2. o is not constructible in E. There is a o € pre(o) such that all proper prefix
of « is contained in E but not «. Therefore F |t «. Further, since « is
constructible in E. For we have two sub-cases:

a 18 conflicted in E. Similarly to the first case, « is attacked by E. Thus,
o 1is attacked by E.
« is preempted in E. See next case.

3. o is preempted in E. That is, there is some node v with v 4 y € I" and there

is some § = w(», o, v, B, u) in E. Thus, é attacks o.

From the three cases, we can conclude that o is attacked by E. a

From the lemmae 17-22 we can prove the theorem 13:

Proof of Theorem 13

Proof. 1. ‘—" Suppose that E is a stable extension of AFp. Let o ¢ E. From
lemma 19 we have E [£ o (i). Now, let ¢ € E. Any prefix of ¢ is defendable
wrt E (Lemma 18). Thus, all prefixes of ¢ are containing in E. So, ¢ is
constructible and non-conflicted in E. Further, ¢ is not preempted in E
(Lemma 21). Hence, o is defeasibly inheritable in E (ii). From (i) and (ii) we
can conclude that E 1s a credulous extensions of .

2. ‘—7 Now, if E is a credulous extension of I' then E is conflict-free
(Lemma 18). Tt is easy to see that E attacks every argument which does
not belong to E (Lemma 22). Hence, E is a stable extension of AFp.

The theorem is proved. a
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