
Stabilization of Information Sharing for Queries
Answering in Multiagent Systems

Phan Minh Dung, Do Duc Hanh, and Phan Minh Thang

Computer Science and Information Management
Asian Institute of Technology, Thailand
{dung,hanh,thangfm}@cs.ait.ac.th

Abstract. We consider multiagent systems situated in unpredictable
environments. Agents viewed as abductive logic programs with abducibles
being literals the agent could sense or receive from other agents, must
cooperate to provide answers to users as they may not have the knowl-
edge or the capabilities to sense relevant changes in their environment. As
their surroundings may change unpredictably, agents may provide wrong
answers to queries. Stabilization refers to a capability of the agents to
eventually answer queries correctly despite unpredictable environment
changes and the incapability of many agents to sense such changes.It
could be viewed as the correctness criterium of communicating coopera-
tive multiagent systems.

For efficiency, a piece of information obtained from other agents may
be used to answer many queries. Surprisingly, this natural form of ”in-
formation sharing” may be a cause of non–stabilization of multiagent
systems. We formulate postulates and present a formal framework for
studying stabilization with information sharing and give sufficient con-
ditions to ensure it.

Keywords: Stabilization, Information Sharing, Abductive Logic
Programs, Cooperative Multiagent Systems.

1 Introduction

Cooperative agents are entities that work together to achieve common objectives.
To operate effectively in a changing and unpredictable environment, agents need
correct information about their surroundings. Due to limited knowledge and
sensing capability, agents need to cooperate with each other to get such infor-
mation by sending requests and receiving replies. Stabilization, a key character-
istics of cooperative multiagent systems, represents the capability of the agents
to eventually get correct information ([4]).

Example 1. Consider a system of two agents A and B, where the knowledge base
of A consists of the clause:

p ← q
while the knowledge base of agent B consists of the clause:

q ← f

P.M. Hill and D.S. Warren (Eds.): ICLP 2009, LNCS 5649, pp. 84–98, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Stabilization of Information Sharing for Queries Answering 85

where f is a fluent about the environment and could be sensed by only B. We
assume B always notices any change on f instantly.

Suppose there is a user query from an external agent E to A on p. To answer
it, A sends a query on q to B and waits for a reply. Suppose that f is true. B
will send a reply ”q!” (q is true) to A informing that q is true. In turn, after
receiving ”q!” from B, A sends an answer ”p!” to E. E gets a correct answer for
the query on p from A in this case.

The environment can change unpredictably. Suppose immediately after B
sends reply ”q!” to A, but before A sends reply ”p!” to E, f changes to false.
The information on q that A has received from B, becomes incorrect and so does
the answer ”p!” that E receives from A.

Of course if the environment (i.e. f) does not change anymore afterwards, a
new query on p to A would be answered correctly because A would send a new
request on q to B, then B would reply with ”¬q!” (q is false), and at last A
would send ”¬p!” to E. Our system in this scenario is said to be stabilizing, i.e.
even though environment changes could cause temporarily incorrect
answers to some queries, but once the environment stops changing,
all queries will be answered correctly after some delay.

Example 2 (Continuation of Example 1)

Fig. 1. Message Exchanges in Example 2

Consider the message exchanges in Figure 1. Should A send a new query “q?”
to B to answer the second query “p?” from E?.

Naturally, A should not send another query “q?” to B. On receiving informa-
tion about q from B in the fourth message, A uses it to answer both user queries.
This information sharing is a natural common mechanism in real world mul-
tiagent systems (including humans) for efficiency. It is captured by the following
postulate:

Postulate 1: If a request for some information has been made and an
answer to it is being expected, then no request for the same informa-
tion should be made now.

The environment can change unpredictably and information an agent has ob-
tained from others may become incorrect without the agent being aware of it.
To deal with this problem, the agent should not use information obtained from
other agents forever. This motivates Postulate 2.

Postulate 2: No information obtained from other agents should be
used forever.

86 P.M. Dung, D.D. Hanh, and P.M. Thang

When should input information be deleted? Ideally when it becomes false.
The problem is that an agent may not know when the environment changes and
so the agent may not know whether information obtained from other agents is
false or not. For instance in the above examples there is no way agent A could
know whether the information about q she has received from B is true or false.

The answer to the question could only be: “Information should be deleted
some time after it has been received”. Though this “some time” is domain-
dependent, we could ask whether there is a “lower bound” for that time.

Come back to the scenario in Figure 1, we expect that the reply “q!“ from B
to A should be used to answer the two queries ”p?“ that have been received by
A before. This motivates Postulate 3.

Postulate 3: Information obtained from other agents should be deleted
only after all queries received before the information is obtained and
to which the information is relevant, are answered.

The question we ask now is: “Would a multiagent system stabilize if Postulates
1 to 3 are satisfied?”.

Unfortunately, in general multiagent systems do not stabilize even if Postu-
lates 1 to 3 are all satisfied as the following example shows.

Example 3 Consider a system of two agents A and B where the knowledge base
of A consists of the clause:

q ← ¬r(x)
and the knowledge base of B consists of the clauses:

r(x + 1) ← r(x) and r(0) ← .
Note that there is no environment change in this case.

Suppose A receives a query “q?” from some external agent. Obviously the
correct answer to this query is “¬q!”. To answer the query “q?”, A may first
send a query “¬r(0)?” to B and B replies with “r(0)!”. A hence has to send
another query e.g. “¬r(1)?” to B and B replies with “r(1)!”. The exchanges will
continue that A will send a query ”¬r(n+1)?“ after receiving a reply ”r(n)!“ from
B and the information obtained by A is never sufficient to answer ”q?“. Hence
A could never be able to answer the query “q?”. The system is not stabilizing.

The purpose of this paper is to formalize the problem of stabilization in multi-
agent systems and study general conditions under which the stabilization with
information sharing following Postulates 1 to 3 is guaranteed.

The rest of this paper is organized as follows. In section 2 we briefly intro-
duce the basic notations, definitions and lemmas of acyclic and abductive logic
programs and admissibility semantics that are needed through this paper. Prob-
lem formalization and results are presented in section 3. We summarize related
works and conclude in section 4. Due to space limitation, proofs of lemmas and
theorems are skipped in this paper.

2 Acyclic Logic Programs and Admissibility Semantics

We assume the existence of a Herbrand base HB. A normal logic program is a
set of ground clauses of the form:

Stabilization of Information Sharing for Queries Answering 87

a ← l1, . . . , lm
where a is an atom from HB, and l1, . . . , lm are literals (i.e. atoms or negations
of atoms) over HB, m ≥ 0. a is called the head, and l1, . . . , lm the body of the
clause. Note that clauses with variables are considered as a shorthand for the
set of all their ground instantiations.

Given a logic program P , head(P) and body(P) denote the sets of atoms
occuring in the heads and the bodies of clauses of P respectively.

For each atom a, the definition of a in P is the set of all clauses in P whose
head is a. A logic program is bounded if the definition of every atom is finite.

The atom dependency graph of a logic program P is a graph, whose nodes
are atoms in HB and there is an edge from a to b in the graph iff there is a
clause in P whose head is a and whose body contains b or ¬b.

A logic program P is acyclic iff there is no infinite directed path in its atom
dependency graph.

An atom b is said to be relevant to an atom a in P if there is a path from a
to b in the atom dependency graph of P . Further a literal l is relevant to another
literal l′ if the atom of l is relevant to the atom of l′.

Abusing notation we write ¬l for complement of l, i.e. ¬l is a if l is ¬a and
¬l = ¬a if l is a. Given a set S of literals, ¬S = {¬l | l ∈ S}. A set of literals is
consistent if it does not contain any pair of a literal and its complement.

Given a logic program P and a consistent set of literals S. We write P ∪S � l
iff there is a sequence of literals l1, . . . , ln = l, n ≥ 1 such that for all m =
1 . . . n: lm ∈ S or there exists a clause lm ← l′1, . . . , l

′
k in P s.t. l′1, . . . , l

′
k ∈

S ∪ {l1, . . . , lm−1}.
An abductive logic program is a tuple 〈P, Ab〉 where P is a logic program,

Ab is a set of atoms in body(P) called abducible atoms such that no element of
Ab occurs in the head of any clause in P , i.e. Ab ∩ head(P) = ∅. Literals over
Ab called abducible literals or abducibles for short ([11], [10], [1]). 〈P, Ab〉 is
acyclic if P is acyclic.

Let 〈P, Ab〉 be an abductive program. The set of assumptions A of 〈P, Ab〉
comprises Ab and the set of all negative literals including negative abducibles.

A set of assumptions S attacks a set of assumptions R if there is α ∈ R such
that P ∪ S � ¬α.

A set of assumptions is admissible if it does not attack itself and attacks
every set of assumptions attacking it. It is not difficult to see that admissible
sets of assumptions are consistent.

A preferred extension of 〈P, Ab〉 is a maximal (wrt set inclusion) admissible
set of assumptions. Note that in difference to a normal acyclic logic program, an
acyclic abductive logic program may have more than one preferred extensions.

Lemma 1. Let 〈P, Ab〉 be an acyclic program. For each maximal consistent set
S of abducibles there is a unique preferred extension E of 〈P, Ab〉 such that
S ⊆ E.

A set of assumptions S ⊆ A is a stable extension of 〈P, Ab〉 iff for every a ∈ Ab,
either a ∈ S or ¬a ∈ S and for every a �∈ Ab, either P ∪ S � a or ¬a ∈ S

88 P.M. Dung, D.D. Hanh, and P.M. Thang

([3],[9]). Similarly to [3] we can show that each preferred extension of an acyclic
abductive program is also stable.

A set S of abducibles is an abductive solution (or explanation) for a
literal l wrt 〈P, Ab〉 iff there exists an admissible set of assumptions S′ ⊆ A such
that S = S′ ∩ (Ab ∪ ¬Ab) and P ∪ S′ � l. It is not difficult to show that if there
exists an abductive solution S for l wrt 〈P, Ab〉 then there exists a preferred
extension E of 〈P, Ab〉 such that S ⊆ E and P ∪ E � l.

An abduction solution for l wrt 〈P, Ab〉 is non-redundant if it contains only
abducibles relevant to l in P .

As for every abductive solution S for a literal l wrt 〈P, Ab〉 there is a non-
redundant abductive solution R for l wrt 〈P, Ab〉 such that R ⊆ S, we restrict
our attention on non-redundant abductive solutions.

Example 4. Consider an abductive logic program 〈P, Ab〉 where
P = {q ← r q ← ¬p p ← t} and Ab = {r, t}.

S0 = {¬t} is an abductive solution for q wrt 〈P, Ab〉 as S′
0 = {¬p, ¬t} is an

admissible set and P ∪ S′
0 � q. Note that P ∪ S0 �� q.

There are four preferred extensions E1 = {r, t}, E2 = {r, ¬p, ¬t}, E3 =
{¬r, ¬p, ¬t}, E4 = {¬q, ¬r, t} of 〈P, Ab〉 where P ∪ Ei � q, i = 1 . . . 3.

In general an admissible set of assumptions is determined largely by its subset
of abducibles as shown in the following lemmas.

Lemma 2. If E is a preferred extension of an acyclic abductive program 〈P, Ab〉
and R is an admissible set of assumptions such that all abducibles in R are in
E, i.e. R ∩ (Ab ∪ ¬Ab) ⊆ E, then R ⊆ E.

Lemma 3. Given an acyclic logic program 〈P, Ab〉 and a consistent set S of
abducibles (S ⊆ Ab ∪ ¬Ab). There is no abductive solution for a literal l wrt
〈P, Ab〉 consistent with S iff for every preferred extension E ⊇ S of 〈P, Ab〉:
P ∪ E � ¬l.

There are many ALP systems and abductive proof procedures proposed in the
literature (e.g. [5], [3], [7], [10], [1]). In this paper we do not consider complexity of
ALP systems. We simply assume the availability of abductive solution generation
algorithms.

3 Problem Formalization

Let l be a literal. A query whether l is true or a reply that l is true has a form
l? or l! respectively.

3.1 Agent and Multiagent System

Agents are situated in environments. An agent could sense some of the changes
of her surroundings though not all of them. Let ENV be a set of ground atoms
representing the fluents of the environments.

A multiagent system is a pair (A, ENV) where A is a set of agents situated
in an environment characterized by fluent atoms in ENV .

Stabilization of Information Sharing for Queries Answering 89

Definition 1 (Agent). An agent situated in an environment ENV is repre-
sented by a quadtuple A = (P, HBE, HBI, Λ) where

– P , is an acyclic logic program, representing the knowledge base of the agent.
– HBE ⊆ ENV , representing the sensing capability of the agent, is a set of

environment atoms whose truth values the agent could sense. Atoms in HBE
do not occur in the head of any clause of P .

– HBI is the set of input atoms, that occur in the body of some clause in
P but not in the head of any clause of P and not in HBE, i.e. HBI =
body(P) \ (head(P) ∪ HBE).

– Λ is the initial state of the agent and will be defined shortly.

It is not difficult to see that 〈P, HBE ∪ HBI〉 is an abductive logic program.

Definition 2 (Cooperative Multiagent System)
A multiagent system (A, ENV) with A = (A1, . . . , An), Ai = (Pi, HBEi,

HBIi, Λi) is cooperative iff the following conditions are satisfied:

– ENV =
⋃

i=1...n

HBEi, i.e. each environment change is sensed by some agent.

– For each atom a, if a ∈ head(Pi) ∩ head(Pj) then a has the same definition
in Pi and Pj. In other words, agents’ domain knowledge bases are consistent.

– For every agent Ai, for each a ∈ HBIi, there is an agent Aj such that
a ∈ head(Pj) ∪ HBEj, i.e. Ai can get the value of a or ¬a from Aj .

– No environment atom appears in the head of clauses in the knowledge base
of any agent, i.e. for all i: ENV ∩ head(Pi) = ∅.

– A state of (A, ENV) is the collection of states of its agents and (Λ1, . . . , Λn)
is the initial state of (A, ENV).

From now on, we focus solely on cooperative multiagent systems. Hence whenever
we say “multiagent systems”, we mean cooperative ones.

Definition 3 (Agent State). A state of agent A = (P, HBE, HBI, Λ) is a
quintuple σ = (EDB, RDB, SDB, IDB, t) where

– EDB ⊆ HBE ∪ ¬HBE is a maximal consistent set of environment literals
containing information the agent has sensed from the environment.

– SDB is a database containing the send–out requests whose replies have not
been received. An input literal l is inserted into SDB when A sends out a
query “l?” and is removed from SDB when A receives a reply “l!” or “¬l!”.

– RDB is a database of received queries of the form (sender,query, S, id)
where

• sender is the sender of the query;
• query is of the form l? where l is a literal;
• S is a non-redundant abductive solution for l wrt 〈P, HBE ∪ HBI〉 or

⊥ representing non-existence of abductive solutions;
• id is a nonnegative integer used as the identification of the query. Each

received query/reply is assigned a unique identification that is also served
as a timestamp. The greater is the identification of a query/reply, the
more recent the query/reply is received.

90 P.M. Dung, D.D. Hanh, and P.M. Thang

– IDB is a database containing input information A has obtained from other
agents. It is a consistent set of input literals associated with identifications.
When A receives a reply “l!”, 〈l, t〉 is inserted into IDB and the timestamp
counter t of A is increased by 1.

– t, a nonnegative integer, holds the current timestamp counter. In the initial
state t = 0.

Example 5. The multiagent system in Example 1 is represented by (A, ENV)
where A = (A, B), ENV = {f}, A = (PA, HBEA, HBIA, ΛA), B = (PB ,
HBEB, HBIB, ΛB) and

PA = {p ← q} HBEA = ∅ HBIA = {q} ΛA = (∅, ∅, ∅, ∅, 0)
PB = {q ← f} HBEB = {f} HBIB = ∅ ΛB = ({f}, ∅, ∅, ∅, 0)

Let S be a set of literals and IDB be the input database in an agent state.
Abusing the notation, we often say that S ∪ IDB is consistent meaning that
S ∪ {l | 〈l, id〉 ∈ IDB} is consistent.

Definition 4. Given a state σ = (EDB, RDB, SDB, IDB, t), let Θ =
(X, l?, S, id), S �= ⊥, be a query form in RDB. Θ is consistent wrt σ if
S ∪ EDB ∪ IDB is consistent. Otherwise it is inconsistent wrt σ. Θ is ver-
ified wrt σ if S ⊆ EDB ∪ IDB.

3.2 Agent Actions and Environment Changes

Let σ = (EDB, RDB, SDB, IDB, t) be the current state of an agent A =
(P, HBE, HBI, Λ). A state of A changes when the environment changes or A
receives/sends a query/reply from/to another agent or deletes some inputs from
IDB.

1. Environment change
An environment change is represented by a pair C = (T, F) where T (resp.
F) contains the atoms whose truth values have changed from false (resp.
true) to true (resp. false) and T ∩ F = ∅. Given an environment change
C = (T, F), what agent A could sense of this change is a pair (TA, FA)
where TA = T ∩ HBE and FA = F ∩ HBE. Hence if a change C = (T, F)
occurs then A will update her environment database EDB to

EDB′ = (EDB \ (FA ∪ ¬TA)) ∪ TA ∪ ¬FA

The new state of A is denoted by
UpeA(σ, C) = (EDB′, RDB, SDB, IDB, t).

2. Receiving a query
When A receives a query “l?” from some agent X (X �= A), A will generate
a query form Θ = (X, l?, S, t) where S is an abductive solution for l wrt
〈P, HBE ∪ HBI〉 consistent with EDB ∪ IDB and insert Θ into RDB. If
no such abductive solution exists, A will insert a query form (X, l?, ⊥, t) into
RDB. The new received query database is denoted by RDB′.
The new state of A is denoted by

UpiA(σ, l?, X) = (EDB, RDB′, SDB, IDB, t + 1).

Stabilization of Information Sharing for Queries Answering 91

3. Receiving a reply
When receiving a reply “l!” from some agent, A updates IDB by deleting
any input of the form 〈l, id〉 and 〈¬l, id〉 from it and inserting 〈l, t〉 into it.
The new input database is denoted by IDB′. A also removes l and ¬l from
SDB. The new sent–out database is denoted by SDB′.
The new state of A is denoted by

UpiA(σ, l!) = (EDB, RDB, SDB′, IDB′, t + 1).
4. Sending out a query

Definition 5. Let Θ = (X, l′?, S, id) be a query form in RDB.
We say that A is ready to request information l? from B for Θ wrt σ,
where l is an input literal, iff the following conditions are satisfied:
1. Θ is not verified wrt σ and

either S ∪ EDB ∪ IDB is consistent and l ∈ S
or Θ is inconsistent wrt σ and there is a nonredundant abductive solution
S′ for l′ wrt 〈P, HBE∪HBI〉 consistent with EDB∪IDB, S′ �⊆ EDB∪
IDB and l ∈ S′,

2.
a. l �∈ SDB and ¬l �∈ SDB i.e. A is not waiting for replies for queries

“l?” or “¬l?” (Postulate 1).
b. if 〈l, id′〉 or 〈¬l, id′〉 occurs in IDB then id′ < id (Postulate 1).1

3. The atom of l is in head(PB) ∪ HBEB (queries are only sent to agents
that can answer them).

If A sends a request “l?” to B (B �= A) for a query form Θ = (X, l′?, S, id) ∈
RDB in state σ then the following conditions are satisfied:
1. A is ready to request information l? from B for Θ wrt σ.
2. If Θ is inconsistent wrt σ then Θ is replaced in RDB by a new query

form (X, l′?, S′, id) where S′ is a new generated abductive solution for l′

wrt 〈P, HBE ∪ HBI〉 consistent with EDB ∪ IDB, S′ �⊆ EDB ∪ IDB
and l ∈ S′,

After sending out “l?” to B, A will insert l into SDB. The new received
query and sent–out databases are denoted by RDB′ and SDB′ respectively.
The new state of A is denoted by

UpoA(σ, l?) = (EDB, RDB′, SDB′, IDB, t).
5. Sending out a reply

Definition 6. Let Θ = (X, l?, S, id) be a query form in RDB.
We say that A is ready to answer Θ by “l!” wrt σ iff either Θ is verified
wrt σ or if S ∪ EDB ∪ IDB is inconsistent then there must be an abductive
solution S′ for l wrt 〈P, HBE ∪ HBI〉 and S′ ⊆ EDB ∪ IDB.

1 Postulate 1 states that if A has been waiting for a reply l! or ¬l! then A should not
send a query l? or ¬l?. It implicitly implies that queries receiving before id′ (with
identification less than id′) should use 〈l, id′〉 or 〈¬l, id′〉 in their answers. Therefore,
if a new request for l is made, it should come from queries receiving after id′ (with
identification greater than id′).

92 P.M. Dung, D.D. Hanh, and P.M. Thang

A is ready to answer Θ by “¬l!” wrt σ iff either S = ⊥ or there is no
abductive solution for l wrt 〈P, HBE ∪HBI〉 consistent with EDB ∪ IDB.2

If A sends “l!” or “¬l!” to X (X �= A) in state σ then there must be a query
form Θ = (X, l?, S, id) in RDB such that A is ready to answer Θ by l! or
¬l! wrt σ respectively.

After sending out reply “l!” or “¬l!”, A will remove Θ from RDB. The
new received query database is denoted by RDB′.

The new state of A is denoted by
UpoA(σ, l!, X) = (EDB, RDB′, SDB, IDB, t).

6. Deleting possibly stale inputs
If A deletes an input 〈l, id〉 from IDB, then there is no query form Θ =
(X, l′?, S, id′) in RDB where l is relevant to l′ and id′ < id (Postulate 3).
A updates IDB to IDB′ = IDB \ {〈l, id〉}.
The new state of A is denoted by

UpdA(σ, del(l)) = (EDB, RDB, SDB, IDB′, t).

Example 6 (Continuation of Example 5). Consider the system in Example 1, 2
and 5 and the following table of changes in states of agents3.

Event A B
EDB RDB SDB IDB t EDB RDB SDB IDB t

0 ∅ ∅ ∅ ∅ 0 f ∅ ∅ ∅ 0
1 E, A, p? - (E, p?, {q}, 0) - - 1 - - - - -
2 A, B, q? - - q - - - (A, q?, {f}, 0) - - 1
3 B, A, q! - - ∅ 〈q, 1〉 2 - ∅ - - -

0. The initial states of A and B are shown in row 0.
1. A receives a query “p?” from an external agent E. A generates and adds

query form (E, p?, {q}, 0) into her received query database, and increases
her timestamp counter by 1.

2. A sends out a query “q?” to B and adds q into her sent–out database.
Receiving the query “q?”, B generates and adds query form (A, q?, {f}, 0)
into her received query database, and increases her timestamp counter by 1.

3. B sends out a reply “q!” to A and removes the only query form from her
received query database. Receiving the reply “q!”, A inserts input 〈q, 1〉 into
her input database and removes q from her sent–out database.

3.3 Runs

The semantics of a multiagent system is defined in terms of runs. A run of
a multiagent system is an infinite sequence of transitions that occur when the
environment changes or agents send out/receive queries/replies or delete possibly
stale inputs from their input databases.
2 Because by Lemma 3, for every preferred extension E of 〈P, HBE ∪HBI〉 consistent

with EDB ∪ IDB: P ∪ E � ¬l.
3 “-” means unchanged and event “A, B, π” means that A sends π to B.

Stabilization of Information Sharing for Queries Answering 93

Definition 7 (Transitions). Let Σ = (σ1, . . . , σn) and Σ′ = (σ′
1, . . . , σ

′
n) be

states of a multiagent system (A, ENV).

1. An environment transition Σ
C−→ Σ′ happens when there is an environment

change C = (T, F) and the following conditions are satisfied:
– For every Ak �∈ SC : σ′

k = σk and
– For each agent Ai ∈ SC : σ′

i = Upei(σi, C),4 where SC denotes the set of
agents which could sense parts of C, i.e. SC = {Ai | HBEi∩(T ∪F) �= ∅}.

2. A query transition Σ
(X,Ai,l?)−−−−−−→ Σ′ happens when agent X sends a query on

l to agent Ai and the following conditions are satisfied:
– For every Ak �∈ {X, Ai}: σ′

k = σk.
– σ′

i = Upii(σi, l?, X).
– If X = Aj then σ′

j = Upoj(σj , l?).

3. A reply transition Σ
(Ai,X,l!)−−−−−−→ Σ′ happens when Ai sends “l!” to X and the

following conditions are satisfied:
– For every Ak �∈ {Ai, X}: σ′

k = σk.
– If X = Aj then σ′

j = Upij(σj , l!).
– σ′

i = Upoi(σi, l!, X).

4. An input delete transition Σ
(Ai,del(l))−−−−−−−→ Σ′ happens when Ai deletes input

〈l, id〉 from IDBi and the following conditions are satisfied:
– For every Ak, k �= i: σ′

k = σk.
– σ′

i = Updi(σi, del(l)).

5. An empty transition Σ
nil−−→ Σ′ denotes that there is no change in the states

of agents.5

We often simply write Σ → Σ′ if there is a transition from Σ to Σ′.

Definition 8 (Run). Let (A, ENV) be a multiagent system. A run R of (A, ENV)
is an infinite sequence of transitions

R = Σ0 → Σ1 → · · · → Σm → . . .

where Σk = (σ1,k, . . . , σn,k), σi,k = (EDBi,k, RDBi,k, SDBi,k, IDBi,k, ti,k) such
that

1. Σ0 is the initial state of (A, ENV).
2. There is a point h such that at every k ≥ h in the run, there is no more

environment change.
3. R satisfies the following fairness condition:6 For every agent Ai, for each k:

there is no query form Θ = (X, l?, S, id) such that

4 We write Upei(σi, C) for UpeAi(σi, C).
5 This transition is introduced to ensure that runs are infinite (See Definition 8).
6 The fairness condition ensures that actions of sending out request/reply are not

delayed indefinitely if they are ready.

94 P.M. Dung, D.D. Hanh, and P.M. Thang

– for all m ≥ k, Θ ∈ RDBi,m and Ai is ready to request information from
other agents for Θ wrt σi,m

7 or
– for all m ≥ k, Θ ∈ RDBi,m and Ai is ready to answer Θ by l! or ¬l!

wrt σi,m.
4. For every k, for every input 〈l, id〉 ∈ IDBi,k: there is a m ≥ k such that

〈l, id〉 is deleted at m (Postulate 2)

– either explicitly by transition Σm
(Ai,del(l))−−−−−−−→ Σm+1

– or implicitly and replaced by 〈l, ti,m〉 or 〈¬l, ti,m〉 by transition Σm
(Aj,Ai,l!)−−−−−−→

Σm+1 or Σm
(Aj ,Ai,¬l!)−−−−−−−→ Σm+1 for some Aj in R.

5. If Σk
nil−−→ Σk+1 then for all m ≥ k: Σm

nil−−→ Σm+1.

Example 7 (Continuation of Example 6).
The sequence in Example 6 is a part of the following run:

Σ0
(E,A,p?)−−−−−→ Σ1

(A,B,q?)−−−−−→ Σ2
(B,A,q!)−−−−−→ Σ3

(∅,{f})−−−−→ Σ4
(A,E,p!)−−−−−→ Σ5 → . . .

It is easy to see from Definitions 7, 8 and conditions for sending out queries and
deleting inputs in section 3.2 that the following lemma holds.

Lemma 4. Each run of a multiagent system satisfies Postulates 1 to 3 of
information sharing.

3.4 Superagent

The superagent of a multiagent system represents the combined capacity (both
reasoning and sensing) of the multiagent system as the whole in the ideal case
where all agents are instantly provided all necessary information (e.g. located at
one place).

Let (A, ENV) be a multiagent system with A = (A1, . . . , An) and Ai =
(Pi, HBEi, HBIi, Λi), Λi = (EDBi, RDBi, SDBi, IDBi, 0). The superagent
of (A, ENV) is the agent SA = (PA, ENV, ∅, ΛA), where PA = P1 ∪ · · · ∪ Pn

and ΛA = (EDB, ∅, ∅, ∅, 0), EDB = EDB1 ∪ · · · ∪ EDBn.
Note that as SA can answer all queries by herself without the need to send re-

quests to other agents, her database of received queries, database of sent–out re-
quests and input database are all empty. Her timestamp is always 0 too. Her state
is therefore represented by EDB, a maximal consistent set of literals over ENV .

The answer of the superagent SA to a query “l?” at a state EDB is “l!” (resp.
“¬l!”) iff E ∪ PA � l (resp. E ∪ PA � ¬l) where E is the preferred extension of
〈PA, ENV 〉 such that EDB ⊆ E.

Intuitively, an answer of an agent in a multiagent system is correct if it
coincides with the answer of the superagent. Hence stabilization refers to the
convergence of agents’ answers to the answers of the superagent.

7 We say that A is ready to request information from other agents for a query form
Θ ∈ RDB wrt her state σ = (EDB, RDB, SDB, IDB, t) if there is an input literal
l such that A is ready to request information l? from some agent B for Θ wrt σ.

Stabilization of Information Sharing for Queries Answering 95

3.5 Stabilization

Let R = Σ0 → · · · → Σh → . . . be a run of a multiagent system (A, ENV).

Definition 9.

– A query “l?” from agent X to agent Ai at point k in R 8 has an answer l!
or ¬l! at m (m > k) iff there is a reply transition of the form

Σm
(Ai,X,l!)−−−−−−→ Σm+1 or Σm

(Ai,X,¬l!)−−−−−−−→ Σm+1

in R and there exist query forms Θ = (X, l?, S, id), Θ′ = (X, l?, S′, id) such
that RDBi,k+1 \ RDBi,k = {Θ} and RDBi,m \ RDBi,m+1 = {Θ′} 9.

– A query “l?” from X to Ai at k in R is said to be correctly answered iff
• it has the answer l! or ¬l! at some m > k and
• the superagent provides the same answer at state

EDBm = EDB1,m ∪ · · · ∪ EDBn,m.

– R is convergent if there is a point h such that every query appearing in R
at any point k ≥ h is answered correctly.

Definition 10. A multiagent system is said to be stabilizing iff each of its
runs is convergent.

Example 3 shows that stabilization is not guaranteed in general. The following
example illustrates that even if the program of each agent is finite, stabilization
is not guaranteed.

Example 8. Consider a multiagent system (A, ENV) where A = (A, B), ENV =
{f} and

PA = {p ← q} HBEA = ∅ HBIA = {q} ΛA = (∅, ∅, ∅, ∅, 0)
PB = {q ← p q ← f} HBEB = {f} HBIB = {p} ΛB = ({¬f}, ∅, ∅, ∅, 0)

Consider the following run where A receives a query “p?” from an external
agent E and there is no environment change.

Σ0
(E,A,p?)−−−−−→ Σ1

(A,B,q?)−−−−−→ Σ2
(B,A,p?)−−−−−→ Σ3

nil−−→ Σ4
nil−−→ . . .

To answer the query “p?” from E, A sends out a query “q?” to B. To answer
the query “q?” from A , B sends out a query “p?” to A. According to Postulate
1, to answer the query “p?” from B, A should not send another query on q to B.
As B does not receive any new query, B will not send or receive anything from
A. Similarly A will not send or receive anything from B. Thus there is a deadlock
and both A and B would never get information about q and p respectively. So
the query “p?” will never be answered.

We introduce now sufficient conditions for stabilization.

8 i.e. there is a query transition Σk
(X,Ai,l?)−−−−−−→ Σk+1 in R.

9 i.e. Θ is generated when Ai receives “l?” from X at k and Θ′ is deleted when Ai

sends “l!” at m. Θ, Θ′ have the same identification.

96 P.M. Dung, D.D. Hanh, and P.M. Thang

Definition 11. Let (A, ENV) be a multiagent system and PA be its supera-
gent’s program. The I/O graph of (A, ENV) is a graph obtained from the
atom dependency graph of PA by removing all nodes that are not relevant to any
input atom of agents. (A, ENV) is IO-acyclic if there is no infinite path in its
I/O graph. (A, ENV) is bounded if PA is bounded. (A, ENV) is IO-finite if
its I/O graph is finite.

Theorem 1. IO–acyclic and IO–finite multiagent systems are stabilizing.

Theorem 1 introduces sufficient conditions for stabilization. Unfortunately these
conditions are rather strong. Could we weaken them? Are IO-acyclicity and
boundedness sufficient to guarantee the stabilization of a multiagent system?

Theorem 2. IO-acyclicity and boundedness are not sufficient to guarantee the
stabilization of a multiagent system.

Proof. We give a counterexample in Example 9.

Example 9. Consider a multiagent system (A, ENV) with A = (A, B), ENV =
{p, q} and

PA = {r(1) ← p r(n + 1) ← s(n)} PB = {s(1) ← q s(n + 1) ← r(n)}
HBEA = {p} HBEB = {q}
HBIA = {s(n) | n ≥ 1} HBIB = {r(n) | n ≥ 1}
ΛA = ({¬p}, ∅, ∅, ∅, 0) ΛB = ({q}, ∅, ∅, ∅, 0)

Obviously, (A, ENV) is bounded and IO–acyclic. It is easy to see that the se-
mantics of agents’ programs are as follows: If p is true (resp. false) then all
r(2n + 1) and s(2n + 2), n ≥ 0, are true (resp. false). Similarly, if q is true (resp.
false) then all s(2n + 1) and r(2n + 2), n ≥ 0, are true (resp. false).

Suppose that at the beginning p is false, q is true. Consider the following
infinite sequence S of message exchanges between agents:

1. Steps 0 to 5 are given in Figure 2.
2. For every n ≥ 2, steps 3n to 3n + 5 in S follow the patterns in Figure 3.

In Figure 2 A receives two queries on r(2) and sends only one request on s(1)
to B at step 1 (following Postulate 1). A uses the information in B’s reply
“s(1)!” to answer both queries on r(2). Because q is true, B’s answer to A’s

Fig. 2. Sequence S : Steps 0-5

Stabilization of Information Sharing for Queries Answering 97

(a) Sharing on s(n + 1) (Even n) (b) Sharing on r(n + 1) (Odd n)

Fig. 3. Sequence S : Steps 3n to 3n + 5

request on s(1) is “s(1)!” (s(1) is true) and A’s answers to both queries on r(2)
are “r(2)!” (r(2) is true).

In Figure 3(a), there are two queries on r(n+2) to A (at steps 3n and 3n+4)
but only one query on s(n + 1) to B (at step 3n + 1). Similarly in Figure 3(b),
there are two queries on s(n + 2) to B (at steps 3n and 3n + 4) but only one
query on r(n + 1) to A (at step 3n + 1).

To answer all user queries, A needs to request B to provide the value of each
s(n), n odd, only once (at step 1 if n = 1 and 3n − 2 if n > 1) and uses the
information in B’s reply on s(n) (at step 4 if n = 1 and 3n + 2 if n > 1) to
answer both queries on r(n + 1) from E and B (at step 3n + 5). Similarly, B
needs to request A to provide the value of each r(n), n even, only once (at step
3 if n = 2 and 3n − 2 if n > 2) and uses the information in A’s reply on r(n)
(at step 3n + 2) to answer both the queries on s(n + 1) from E′ and A (at step
3n + 5). As a result, the answers to queries on r(2), r(4), . . . and s(3), s(5),. . .
by A and B are all true.

As q is false at step 5 and there is no change in the environment after that,
the correct answers to queries on r(2), r(4), . . . , and s(3), s(5), . . . are all false.

Because of sharings, the wrong information in B’s reply “s(1)!′′ propagates to
A’s reply on r(2), the wrong information in A’s reply “r(2)!′′ propagates to B’s
reply on s(3). This propagation continues upward to replies on r(4), s(5), . . .
and never stops. Consequently, all these replies are incorrect. There is no point
in S where after it the user queries could be answered correctly again. Hence the
system is not stabilizing.

4 Related Works and Conclusions

Stabilization of distributed protocols has been studied extensively in the liter-
ature ([2],[6],[12]) where agents are defined operationally as automata. Dijkstra
([2]) defined a system as stabilizing if it is guaranteed to reach a legitimate state
after a finite number of steps regardless of the initial state. The definition of
what constitutes a legitimate state is left to individual algorithms.

There are many research works on multiagent systems where logic program-
ming is used to model agent interaction and/or dialogs/negotiations (e.g. [8],

98 P.M. Dung, D.D. Hanh, and P.M. Thang

[11]). But until now research on multiagent systems has not considered the ques-
tion of stabilization.

Agent communications are either push-based or pull-based. In the push-based
communication, agents periodically send information to specific recipients with-
out being requested. Push–based communications are common in internet sys-
tems like routing systems. On the other hand, in the pull-based communication,
agents have to send requests for information to other agents and wait for replies.
Dung et al. ([4]) for the first time studies the stabilization of cooperative infor-
mation multiagent systems for the push-based communication mode.

In this paper we study the stabilization of multiagent systems based on pull–
based communication with information sharing.

Acknowledgments. We thank the referees for constructive comments and crit-
icisms. This work was partially funded by the Sixth Framework IST program of
the European Commission under the 035200 ARGUGRID project.

References

1. Denecker, M., Kakas, A.C.: Abduction in logic programming. In: Kakas, A.C.,
Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS,
vol. 2407, pp. 402–436. Springer, Heidelberg (2002)

2. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

3. Dung, P.M.: An argumentation-theoretic foundations for logic programming. Jour-
nal of Logic Programming 22(2), 151–171 (1995)

4. Dung, P.M., Hanh, D.D., Thang, P.M.: Stabilization of cooperative information
agents in unpredictable environment: a logic programming approach. TPLP 6(1-
2), 1–22 (2006)

5. Eshghi, K., Kowalski, R.A.: Abduction compared with negation by failure. In:
ICLP, pp. 234–254 (1989)

6. Flatebo, M., Datta, A.K.: Self-stabilization in distributed systems. In: Flatebo, M.,
Datta, A.K. (eds.) Readings in Distributed Computer Systems, ch. 2, pp. 100–114.
IEEE Computer Society Press, Los Alamitos (1994)

7. Fung, T., Kowalski, R.A.: The Iff proof procedure for abductive logic programming.
Journal of Logic Programming 33(2), 151–165 (1997)

8. Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An abductive framework for
information exchange in multi-agent systems. In: Dix, J., Leite, J. (eds.) CLIMA
2004. LNCS, vol. 3259, pp. 34–52. Springer, Heidelberg (2004)

9. Gelfond, M., Vladimir Lifschitz, V.: The stable model semantics for logic program-
ming. In: ICLP/SLP, pp. 1070–1080 (1988)

10. Kakas, A.C., Robert, A., Kowalski, R.A., Toni, F.: The role of abduction in logic
programming. Handbook of Logic in AI and Logic Programming, OUP 5, 235–324
(1998)

11. Satoh, K., Yamamoto, K.: Speculative computation with multi-agent belief revi-
sion. In: AAMAS, pp. 897–904 (2002)

12. Schneider, M.: Self-stabilization. ACM Computing Survey 25(1), 45–67 (1993)

	Introduction
	Acyclic Logic Programs and Admissibility Semantics
	Problem Formalization
	Agent and Multiagent System
	Agent Actions and Environment Changes
	Runs
	Superagent
	Stabilization

	Related Works and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

