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Abstract

A logic program is considered as an abductive framework with
negative 1literals as hypotheses. We define a simple
declarative semantics for abduction and show that the new
semantics captures, generalizes and unifies different
semantic concepts (e.g. well-founded models, stable models)
in logic programming. We study the operational semantics of
abduction, and prove the soundness of the Eshghi and
Kowalski's abductive procedure with respect to cur new
declarative semantics.

1. Introduction

For a successful application of 1logic programming as a
paradigm for knowledge representation, it is necessary to
clarify +the semantic problems of negation in 1logic
programming and its relations to nonmonotonic 1logics. This
paper presents a contribution to the study of this problem.
OQur goal 1is to reveal the inherent relations between
abduction and logic programming.

Two major approaches to semantics of negation in 1logic
programming are the stable semantics and the well-founded
semantics.

The stable semantics of a program is defined by the set of
its stable models. This semantics has its root in
nonmonotonic logics where a logic program is considered as an
autoepistemic theory whose stable extensions correspond to
the stable models of the logic program [GL]. The problem of
stable semantics is that it is not defined for every 1logic
program, e.g. the program consisting of the only clause p<-—
9P, has no stable models. To illustrate the seriousness of
this problem, let us consider one more example.

Example 1 (The Barber's paradox) [GCH]

"Beardland is a small city where the barber Noel shaves every
citizen who does not shave himself.

Does Noel shaves the city mayor Casanova ?

Does Ncel shave himself ? "

The problem can be represented by a logic program consisting
of the clauses shave(Noel, t)<— qshave(t,t)
mayor(Casanova )<-

Despite the confusion about who shaves Noel, we expect that
Noel shaves the city mayor Casanova. But this program has no



stable model, i.e. we could not conclude any things with
respect to the stable semantics. ##

The idea of well-founded semantics is negation as (possibly
infinite) failure, i.e. the failure (possibly in infinitary)
to prove a fact (a ground atom) to be true leads to the
acceptance of this fact being false. Formally, the well-
founded semantics is defined by the well-founded model which
is defined as the least fixed point of a monotonic operator
[GRS]. In contrast to the stable semantics, the well-founded
semantics is defined for every logic program. Its major
shortcomming is its inability to handle conclusions which can
be reached only by "proof by cases". The following example
illustrates this problem.

Example 2 Let P be a<— 1b
b<— qa
c<{—~ a
c<— b

It is reasonable to expect that c holds. But wrt the
well-founded semantics, all a,b,c are unknown. Note that in
this case the stable semantics provides the expected
conclusions. ##

The diversity of different approaches in semantics of
negation suggests that there is probably not an unique
intended semantics for logic programs. Which semantics should
be used depends on concrete applications. To be able to
choose the "right" semantics among different ones, it is of
great importance to understand the inherent relations between
them.

Relations between logic programming and nonmonotonic logics
are subjects of intensive study in the literature. While the
relations between stable semantics and various different
nonmonotonic logics have been largely clarified [MT,GL,EK,6 KM,
YY,D1,W], the same can not be said for well-founded
semantics.?

One of the well-known and simple approach in nonmonotonic
reasoning is abduction. In the simplest case, it has the
form:

From A and A<-— B
infer B as a possible "explanation" of A.

Though abduction has been the focus of intensive research
[K,EK,KM,PO,CP], many questions concerning both declarative
and operational semantics of abduction remain unclear. Eshghi
and Kowalski [EK] have given an abductive procedure as the

1. since well-founded semantics is defined in the
framework of a three-valued logic [GRS],it is implicitely
accepted in the 1literature that the logical nature of the
semantics is three-valued. So the few works [PT2,PAA] devoted
to clarify the relations between well-founded semantics and
nonmonotonic logics are all based on three-valued logics. In
this paper, we will show that this point of view is not
undisputed, by giving a simple two-valued abductive
characterization of well-founded semantics. This constitutes
an interesting result cf this paper.



operational semantics of abduction and have also pointed out
that stable semantics does not provide the expected semantics
for abduction. But it is left open the gquestion cf the
soundness of the abductive procedure as well as the question
of what is the expected semantics of abduction.

In this paper, we attack all these problems, namely

* We define a simple and natural declarative semantics,
called preferential semantics, for abduction.

* We clarify the relationship between abduction and logic
programming by showing that the preferential semantics
captures, generalizes and unifies different semantic concepts
(e.g-. well-founded models, stable models) in 1logic
programming.

* We study the operational semantics of abduction. We show
that the Eshghi and Kowalski's abductive procedure is sound
wrt the preferential semantics.?

2. Declarative Semantics
N PREFERENTIAL SEMANTICS

Abduction can be considered as a special form of hypothetical
reasoning and the idea of hypothetical reasoning following in
this paper is that to predict the expected observations from
a incomplete knowledge base represented as a set of facts
known to be true the user supplies a set of hypotheses they
are prepared to accept as a part of an explanation to the
expected observations which is consistent with the facts.
This explanation is considered as a logical theory based on a
restricted set of possible hypotheses. An explanation can
also be viewed as a scenario in which some goal is true. The
user provides which hypotheses are acceptable in such
scenarios [PO].

Ir. general, the theory of abductive reasoning is based on the
notion of abduction frameworks [PO,EK] defined as triples
(KB,H,IC) where KB is a first order theory representing the
user supplied rules and facts, H is a set of first order
formulae representing the possible hypotheses, and IC is a
set of integrity constraints used to determine the admissible
explanations.

Given an abduction framework (KB,H,IC), a set of hypotheses E
is an abductive solution for a query Q iff

KBUE | Q and
KB U E satisfies IC

Thus, any theory of abductive reasoning has to provide
answers to the following two questions:

2, In the full version of this paper, we point out an

error in the original version of the abductive algorithm of
Eshghi and Kowalski. The algorithm given in this paper is a
modified version of the original one.




What does "KB U E satisfies IC" mean ?
(declarative semantics)
How to compute the abductive solutions E's for a query Q 2
(operational semantics)

Since our goal in this paper is to study the relations
between abduction and logic programming, we restrict ourself
on a special class of abduction frameworks corresponding to
logic programs.

We assume the existence of a fixed finite alphabet L, big
enough to contain all constants, function symbols, and
predicate symbols occurring in any program considered in this
paper. The Herbrand base (resp. Herbrand universe) of L is
denoted by HB (resp. HU). A logic program is a set of clauses
of the form A<-L,&..& L, where A is an atom and L, 's are
literals. To define the class of abduction frameworks
corresponding to logic programs, we introduce for each
predicate symbol p contained in L, a new predicate symbol p~
of the same arity. The new predicates are called abducible
predicates. Atoms of the abducible predicates are called
abducible atoms. Ground abducible atoms are called
hypotheses. The set of all hypotheses is denoted by HY. Atoms
in HB are called ordinary atoms. For every ordinary atom
A=p(t,,..,t ), A denotes the corresponding abducible atom
p'(tl,..,tn). From now on, if we speak of an atom then we
always mean an ordinary one.

An abductive program over the language L is an abduction
framework (KB,H,IC) such that

KB is a definite Horn theory over L U {p~ | p ¢ L} with no
abducible predicates appearring in the heads of its
clauses.

IC = { <—p(x) & p (%) | p is a predicate symbol in L }3
H = HY

Since the set of hypotheses and integrity constraints are
fixed for all abductive programs over the fixed language L,
we often write shortly KB for an abductive program
<KB, IC,HY>.

A logic program P is transformed into an abductive program P*
by replacing every negative literal ap(ty, .., ) in each
clause body by p (t,,..,t,). For example, let P be p<— 4Q.
Then P* is p<—q~ . Dually, the logic program corresponding to
an abductive program KB is denoted by KB~.

The semantics of abductive programs is based on the notions
of scenario and extension [PO] recalled in the following
definition.

Definition A scenario of an abductive program KB is a first
order theory KB U H where H is a subset of HY such that KB
U H U IC is consistent.

An extension of a abductive program KB is a maximal (with
respect to set inclusion) scenario of KB. #4

3. All variables occurring in any clause of KB U IC
are universally quantified at the front of this clause.



For any scenario S, hyp(S) denotes the set of hypotheses in
S, i.e. if S=KB U H then hyp(S)=H. Further, let Der(H,KB) =
{A ¢HB | KBUH |A}.

As indicated elsewhere [PO], not every extension specifies an
expected semantics of an abductive program. For example, let
KB = { p<—q~ }. KB has two extensions C,= KB U {q"}, C,= KB
U {p~ %} But it is clear that only C, captures the expected
semantics of KB.

The problem we are facing here is to determine those
extensions, called preferred extensions, which specify the
intended semantics of an abductive program.

Note that in practice, to explain some expected observation,
the user provides the hypotheses and a hypothesis is
acceptable only if there is no evidence to the contrary. Let
us take a closer look at this plausible rule.

It is clear that the contrary of a hypothesis A~ is the atom
A. Hence, an evidence to the contrary of A~ can be considered
as an evidence of A which itself can be seen as a set of
hypotheses E such that KB U E |} A. The existence of no
evidence to the contrary for a hypothesis A" wrt a scenario S
could mean that each evidence E of A is inconsistent with S U
IC. But unluckily, this can not go well as the following
example shows.

Example 3 Let KB: p<— p~. Let S be the scenario KB U {}.
The only evidence of p is {p~}. It is obvious that S U {p~} U
IC is inconsistent. Thus the hypothesis p~ has no evidence to
the contrary. So p-~ should be acceptable. But it is clear
that p- could not be accepted since S U {p~} U IC is
inconsistent. ##

How could we interprete the condition "No Evidence to the
Contrary" in the plausible rule ?

Note that the hypotheses are provided by the user. An user
observes and characterizes a system by its
input-output-behavior. Thus in a scenario S = KB U H, a user
"sees" only the "inputs" (the set H of hypotheses) and the
corresponding "outputs" (the set T of atoms which are
logically implied by S,i.e. T={ A¢HB | S} A } ). To decide
whether a hypothesis is acceptable or not, the user has to
rely on what he gets from the systems, i.e. on the sets T, H.
Thus the following definitions of the acceptability of
hypotheses. Let denote inout(S) = H U T.

Definition Let KB be an abductive program. A set of
hypotheses E is an evidence of an atom A ¢ HB wrt KB if KB U
E | A.4

A hypothesis A- is acceptable wrt a scenario S if for every
evidence E of A, E U inout(S) U IC is inconsistent. ##

It is clear that we are only interested in scenarios whose
hypotheses are acceptable. Hence the following definition.

4. Note that KB U E U IC can be inconsistent.



Definition A scenario S is admissible if every hypothesis
accepted in S is also acceptable wrt S, i.e. if A" ¢ S then A~
is acceptable wrt S.

A preferred extension of an abductive program KB is a maximal
(wrt set inclusion) admissible scenario of KB
##

Let call the semantics defined by the preferred extensions
preferential semantics.

The following lemma shows the correctness of this definition.
Lemma (Fundamental Lemma)

Let S be an admissible scenario and let A~ ,B- be acceptable
with respect to S. Then

1) S'= S U (A"} is admissible
2) B~ is acceptable with respect to S'. ##

Example 3 (Continued)

Let KB be p<— p-. Let S = KB U {}. Then inout(S) = {}. Since
{p~} is an evidence of p and {p~} U inout(S) U IC is
consistent, p~ is not acceptable with respect to S. Thus the
only admissible scenario of KB is KB U {} which is also its
unique preferred extension. ##

The following examples demonstrate that preferential
semantics captures and generalizes stable semantics.

Example 4 Let KB = { p<— q }. C;, = KB U {q°}, C;, = KB U
{p~} are two extensions of KB. Since g has no evidence, Qq~
is acceptable wrt C;. Since {gq"} is an evidence cf p and
{g"} U inout(C,) U IC = {p~,q"} U IC is consistent, p~ is
not acceptable wrt C,. Thus only C, is admissible. Hence C,
is the unique preferred extension of KB corresponding to the
unique stable model of KB~: p<- qq ). ##

Example 5 (Continuation of example 2)
Let consider again the abductive program
shave(Noel, t)<— shave~ (t,t)
mayor (Casanova)<-

It is not difficult to see that C = KB U (shave'(c,c)]c#Noel}
is the only preferred extension. Thus C} shave(Noel,c) for
each c#Noel. That means that our new semantics implies that
Noel shaves every person who is not Noel himself. Thus Noel
shaves the mayor Casanova. ##

Let denote the set of all admissible scenarios of KB by AS.;.
The existence of at least one preferred extension for every
program KB is guaranted by the following theorem.

Theorem 1

1) (ASgy, c) is a complete partial order, i.e. every
directed subset of AS,, has a least upper bound.

2) For every admissible scenario S, there is at least one
preferred extension K such that S c K. ##



The stable semantics of an abductive program is defined by
stable extensions which are defined as folows: A stable
extension is a scenario S such that for every ordinary atom
A ¢ HB, either S f A or A ¢ S holds.

Lemma [EK] Let P be a logic program and let M be a Herbrand
model of P. Then M is a stable model of P iff there is a
stable extension S of P* such that M = {A | S} A }. ##

The following theorem gives a formal account of the relations
between stable semantics and preferential semantics.

Theorem 2

1) Every stable extension is a preferred extension but not
vice versa.

2) If P is a locally stratified logic program then the
unique preferred extension S of P* is stable and M = {A |
s} A } is the unique stable model (also called perfect
model) of P. ##

2.2. WELL-FOUNDED SEMANTICS
We will show in this chapter how the idea of well-founded
semantics of 1logic programming can be captured in our

framework.

Let denote the least admissible scenario KB U {} of an
abductive program KB by $ig .

An abductive program may have different semantics which can
be defined as certain sets of admissible scenarios. The
interesting question is whether or not there is a general
characterization of these semantics. Since every semantics of
an abductive program represents in some sense a possible
world of the program, we expect that this world is complete
in the sense that every acceptable hypothesis must be
accepted. Thus, the class of scenarios in which all
acceptable hypotheses are accepted is of special interest to
us.

Definition An admissible scenario S is complete if every
acceptable hypothesis wrt S is accepted in S, i.e. for any
hypothesis A~, if A~ is acceptable wrt S then A~ ¢ S.

#4#

From the definition of preferred extensions as maximal
admissible scenarios, it follows immediately:

Lemma Preferred extensions are complete scenarios, but not
vice versa. ##

An example for the existence of a complete scenario which is
not a preferred extension is the least scenario $ of the
following program KB = { p<— q@~, q<— p~ }.

Let CSy, be the class of all complete scenarios of KB.
Each admissible scenario S has a complete closure which is

the least (wrt set inclusion) complete scenario containing
S. We give now a construction for computing the complete
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closure of a scenario S.

Let S ¢ AS,,. Define V. : AS,,->AS,, by

Ves (S) = S U ACk, (S)

where AC,,(S) is the set of all acceptable hypotheses wrt S
(the correctness of the definition follows directly from the
fundamental lemma).

The complete closure of an admissible scenario S can be
constructed as the limit of the following sequence (8;); of
scenarios.

Sp =S
S; = U;(3S; for limit ordinal i
Si.1 = Ve (Sy)

It is not difficult to see that (S;); is an increasing
sequence (wrt set inclusion). Hence, it has a 1limit S* at
some countable ordinal.

Lemma S* is the complete closure of S, i.e. S* is a
complete scenario and for every complete scenario R, if S ¢ R
then S* c R. ##

Definition The complete closure of the least admissible
scenario $ 1is called the well-founded scenario denoted by
WFS., (i.e. WFSy, = $*). ##

Theorem 3

1) (CS¢y, C ) is a complete semilatticeS.
2) WFSy, is the least element of (CS,,, c). ##

If a program may have different semantics (represented by
some complete scenarios) representing the different views
peoples may draw from the program, then it is meaningful to
ask whether all of these different views may have some things
in common. From theorem 3, it follows immediately that the
well-founded semantics defined by well-founded scenario,
represents the common ground for different semantics of a
program. In other words, well-founded semantics is some kind
of a skeptical semantics.

That the well-founded semantics of a abductive program P*
corresponds to the well-founded semantics of its
corresponding 1logic program P 1is demonstrated by the
following theorem.

5. A partial order (R,<) is a complete semilattice if

every nonempty subset of R has an inf and every nonempty
directed subset of R has a sup.
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Theorem 4

Let P be a logic program and WFM be the well-founded model®
of P. Then

WFM = { A | A¢HB and WFS,, } A } U {qA | A¢HB and A~ ¢ WFS,,}
&% i

Summary

We can say that the set of complete scenarios, CS;,.,
represents the universe of all possible semantics (the set of
all possible worlds) of an abductive program in which
well-founded semantics corresponds to the "minimalism"
semantics where only things which hold in all possible worlds
are "believed" while the preferential semantics corresponds
to the "maximalism" semantics where each preferred extension
represents a "belief world" of an agent who tries to conclude
as many knowledges as possible from an abductive program
considered as an incomplete knowledge base.’

3. Operational Semantics

As we have seen in the previous part, there are two different
semantic intuitions, the minimalism corresponding to well-
founded semantics, and the maximalism corresponding to
preferential semantics, for abductive programs.

Questions related to the proof theoretic aspects of
well-founded semantics have been studied in the 1literature
[R,Ck,L]. It has been shown that the SLS-resolution is sound
and complete wrt well-founded semantics [R]. SLDNF-
resolution based on negation as (finite) failure can be
considered as a computable approximation of the
SLS-resolution.

In contrast, not much work has been done to study the proof
theoretic aspects of abduction with respect to the
preferential semantics. In [EK], an abduction procedure is
given as a proof theory for abduction. But it is left open
the question about the declarative.semantics of abduction.
In this chapter, we show the soundness of this abductive
procedure wrt preferential semantics.

6, See [GRS] for a formal definition of well-founded model
7. It seems that minimalism and maximalism are two main
semantic intuitions for knowledge representation schemes. In
the theory of nonmonotonic inheritance, these two intuitions
are known as skepticism and credulism respectively. A
skeptical reasoner refuses to daw conclusions in ambiguous
situations where a credulous (belief-hungry) reasoner tries
to conclude as much as possible [THT]. The correspondence
between the minimalism (resp. maximalism) in logic
programming and skepticism (resp. credulism) in nonmonotonic
inheritance theory is studied throughoutly in [D2].
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The Eshghi and Kowalski's Abductive Procedure

The abductive procedure can be viewed as an extension of the
SLDNF-resolution consisting of two interleaving activities:
(a) reasoning backward for a refutation and collecting the
required hypotheses, as shown inside an ordinary box in
example 6, and (b) checking that the collected hypotheses are
consistent, as shown in the bold boxes in example 6.

Let KB be a abductive program. Let R be a safe computation
rule (one that selects an abducible atom only if it is
ground).

An abductive derivation from (erH1) to (G, ,H,) is a
sequence .
(G, ,H,),(6,,H),...,(G, ,H )

such that, for each i, 0<i<n, G; has the form <-1,1' where
(without 1loss of generality) R selects 1, and 1' is a
(possibly empty) collection of atoms, H; is a set of
hypotheses, and

abdl) If 1 is not abducible
then G;,, =C and H;,, = H;

where C is the resolvent of some clause in KB with
the clause G; on the selected literal 1.

abd2) 1If 1 abducible and 1¢H;
then Gj,;, = <1' and H;,6, = H

abd3) If 1 is abducible (1=k") and 1#¢ H; and
there is a consistency derivation from
({<—k}.H;U {1}) to ({},H")

then Gy,, = <~1' and H,, = H'

An abductive refutation is an abductive derivation to a pair
([1,H").

A consistency derivation from (F,,H;) to (F,,H ) is a
sequence
(Fy ,H), (F; , Hy),...., (F, ,H)

such that, for each i, 0<i<n, F; has the form {<-1,1'} U F, ',
where (without loss of generality) the clause <-1,1' has been
selected (to continue the search), R selects 1 and

conl) If 1 is not abducible
then F;,,,=C' UF;' and H;, 6, = H

where C' is the set of all resolvents of clauses in
KB with the selected clause on the selected literal,

and [] # C'.
con2) If 1 is abducible, 1¢H; and 1' is not empty
then F;,;,= {<-1'} UF;' and H,,,= H;

con3) If 1 is abducible (1l=k~ ), 1f H,

1
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then if there is an abductive derivation from
(<-k,H; ) to ([],H")

then F;,, = F;'" and H; ,, = H'
else 1if 1' is not empty

then F;, ;= {<-1'} U F;' and H;,,= H; 8
#4

The correctness of the abduction procedure for a abductive
program KB means that! whenever there exists an abductive
derivation from (<—A,{}) to ([],H) for A¢HB then there exists
a preferred extension K of KB such that K} A and H ¢ K. We
will prove the soundness of the abductive procedure by
proving the following stronger result.

Theorem 5 (Soundness of the abductive procedure)

Let (<-A,{}),...,([]1,H) be an abductive refutation. Then KB U
H is an admissible scenario and KB U H } A.

Proof See appendix. ##

Another characterization of the abduction procedure is given
in the following.

Theorem 6 Let KB be an abductive program and (G,{}),.-.
([]1,K) be an abductive refutation. Then

comp(KB) U R U IC | b for any b”¢K,
where R = Dear(K,XB) and comp(KB) is the Clark's predicate

completion of KB without the completed definitions of
abducible predicates. ##

Example 6 Let KB: a<— b~
b<— a°

We obtain the following search space for the goal (<-b,{})

<_br (}
<—a~,{}
(<—?},{a'}
{<-b"},{a"}
<-b,{a"}
I
<—a",{a"}
|
[1.{a"}
{},.{a"}
[1,{a"}

8, In the original definition of this procedure, H, =
H; U {1} which is an error. See [D3] for more details.
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Conclusion

We have shown that abductive frameworks provide a simple
basis for declarative and operational semantics of logic
programs. We have introduced the notions of preferred
extensions and complete scenarios and demonstrated how these
new notions provide an unified framework which captures and
generalizes different semantic concepts (e.g. well-founded
models, stable models, negation as failure) in logic
programming. The key step is the way we interprete the
plausitle rule that a hypothesis is acceptable if there is no
evidence to the contrary.

We argue that, in general, there are two main semantic
intuitions for knowledge representation schemes: the
minimalism (formalized by well-founded semantics) and the
maximalism (formalized by preferential semantics).

In [D4], we apply the theory developed in this paper to give
a logical foundation for nonmonotonic truth maintenance
systems.

Following interesting special classes of programs can be
identified and a further study is anticipated:

Stable programs: Programs whose preferred extensions are
stable. This class contains the locally stratified programs
[PT] as well as the sufficiently stratified programs [DK].

Well-founded programs: Programs where the well-founded
scenario is the unique complete scenario.

Constructive programs: Programs which are both stable and
well-founded.
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Appendix
We show now the correctness of the abductive procedure.

Let B: (G, ,H,), (G2,H ),..,([1,H) be an abductive refutation

[]
p: (F, K, ),(F,,Ky),. ,({},Kn) be a consistency derivation

Define

8 > u if there is G;= <-1,1' such that 1=k, 1 £ H;, and p
is a consistency derlvatlon from ({<—k) Hi U {1}) to
({},H') such that G; = <=1' and H; B
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B > B8 if there is F;= {<=1,1"} ¥ F, ' such that 1=k-, 1 £ K;
and B is an abductive derivation from (<—k,Ki) to
([1,K'") such that F;,,=F;' and K;,,= K'

If G, = <-A then the set of all hypotheses appearing in goals

G; 's in B is called the evidence of A generated by B.

Further let >> be the transitive closure of >.
It is obvious that the following lemmas Al,A2 hold.
Lemma Al

1) Let B be an abductive refutation and p: ({<-B},K),..,
({},K') be a consistency derivation such that B8 >> p.
Then B~ ¢ K.

2) Let B be an abductive derivation and B8': (<-B,M),..,
([],M'") be an abductive derivation such that B8 >> B8'.
Then B~ £ M.

3) Let p be a consistency derivation from ({<-A},K) to
({},K'"). Let E be an evidence of A. Then for some B~ ¢ E,
there exists an abductive refutation 8 from (<-B,H) to
([],H') such that p > B. ##

Lemma A2 If there exists an abductive refutation from
(<-A,H) to ([],H'") then there exists no consistency
derivation from ({<-A},K) to ({},K') for any K with H'c K.

##

Lemma A3 Let B be an abductive refutation from (<-A,H) to
([],H') such that A~ §¢ H. Then A~ £ H'.

Proof Assume the contrary. Then there exists a consistency
derivation p: ({<-A},K),..,({},K') for some K such that B8 >>
p. Let E be the evidence of A generated by B8. Thus there
exists an abductive refutation B': (<-B,M),...,([],M") for
some B~ ¢E such that p>8' (lemma Al.3). It is clear that

B~ £ M (lemma Al.2). Since B ¢ E and E is generated by 8,
there is a consistency derivation' p' from ({<-B},R) to
({},R'") such that B>p'. It is clear that B~ ¢ R. Since B~ ¢ M
and B"¢ R, it follows that p' (as a process) starts after B'
in the process of 8. Then either 8' >> p' or B8',p' are
disjoint. Since B > p' and B > np > B', it follows
immediately that 8',p' are disjoint. Thus M' ¢ R. Lemma A2
implies that p' does not exist. Contradiction !! ##

It follows immediately

Lemma A4 Assume that there is an abductive refutation B from
(<-A,{}) to ([]1,H). Then H U KB U IC is consistent.

Proof From lemma Al.3, it follows immediately

Proposition Let B~ ¢ H and E is an evidence of B. Then for
some hypothesis X~ ¢ E there exist a abductive refutation B'
from (<—X,R) to ([],R') such that B >> 8'.

#

Assume that KB U H U IC is inconsistent. Then there is an
atom X such that X" ¢ H and X ¢ Der(H,KB). From X" ¢H and H is
an evidence of X, it follows from the above proposition that
there is B ¢ H with an abductive refutation B8' from (<-B,K)
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to ([],K') such that B >> B'. It is clear that B~ ¢ K (lemma
Al.2). But since B" ¢ H, there is a consistency derivation n
from ({<-B},R) to ({},R') such that B8>>n and B~ ¢ R. There are
two cases:

Case 1 B8'>>u. That means that B- ¢ K'. Contradiction to lemma
A3.

Case 2 p and B' are disjoint. Thus p' (as a process) starts
after B' (as a process) terminates in B8 (as a process). Then
it is clear that K' c R. Lemma A2 implies that p does not

exist. Contradiction !! ##
It follows immediately

Theorem 5 (Soundness of the abduction procedure)

Let (<-A,{}),...,([]1,H) be an abductive refutation. Then KB U
H is an admissible scenario such that KB U H b A

##
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