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Due to a proliferation and diversity of approaches to structured argumentation with 
prioritized rules, several simple and intuitive principles for characterization and evaluation 
of the proposed attack relations have recently been introduced in [23]. While the proposed 
principles and properties are helpful, they do not identify unique attack relations. Any 
user of structured argumentation still faces a fundamental problem of determining an 
appropriate attack relation for her/his application and further principles that could help 
in identifying such attack relation.
We argue that a key purpose of introducing priorities between defeasible rules is to remove 
undesired attacks while keeping the set of removed attacks to a minimum. This intuitive 
idea could be viewed as a kind of minimal-removal-principle. We show in this paper 
that the minimal-removal-principle together with a new simple and intuitive property of 
inconsistency-resolving and previously proposed properties indeed characterize a unique 
attack relation referred to as the canonical attack relation. We show that canonical attack 
relations could be characterized in three distinct ways, as the supremum of a complete 
upper-semilattice of regular attack relations, or by removing the undesired attacks from 
the basic attack relations where the undesired attacks are captured by a least-fixed point 
of an intuitive removal function, or as the normal attack relations introduced in an earlier 
paper for a class of well-prioritized knowledge bases.
We start our study with a language consisting only of literals and two type of attacks, 
rebut and undercut. We then show that our approach can easily be scaled up by showing 
that all key results still hold for general underlying logical languages and the inclusion of 
assumptions.
We apply our proposed approach to valued-based argumentation and show that it also 
leads to the canonical semantics.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

At its most abstraction, an argument system could be viewed as an argumentation framework [29] consisting of a set of 
arguments and a binary attack relation between them. Though simple, argumentation frameworks are powerful enough to 
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provide a sophisticated account of the acceptance of arguments representing different ways people could draw conclusions 
from exchanges of arguments.

While there is a good understanding about the acceptability of arguments due to an extensive amount of research [29,
7,6,8,34,35,14,2,19], more needs to be done to gain a better understanding about the structure of arguments and their 
attack relations. In domains like experimental medicine, arguments often have no internal structure as the purpose of the 
experiments is to uncover the underlining rules [41]. In contrast, arguments in commonsense reasoning and legal domains 
are often based on complex sets of rules [9,26]. The complex structure of arguments often leads to challenging questions 
about the structure of their attack relations.

There are extensive research on rule-based systems with prioritized rules (see for example [44,43,51,4,3,13,22,50,48,15,
39,38,49]). Amgoud&Cayrol [4] have proposed the use of priorities between rules to filter out certain undesired attacks. 
Continuing this idea, Prakken and Modgil&Prakken [47,43,44] have proposed ASPIC+, a rich framework for structured ar-
gumentation with prioritized rules with several distinct systems of attack relations. This rich diversity of proposed attack 
relations also poses a serious challenge for any potential user of structured argumentation as such a user would have to 
decide which attack relation should be selected and implemented for her/his domain.

For illustration, we recall and elaborate a simple example from [23] that is helpful in explaining many concepts and 
ideas later.

Example 1 (A Sherlock Holmes investigation). Sherlock Holmes is investigating a case involving three persons P1, P2 and S 
together with the dead body of a big man. The case could be represented by the following knowledge base.

1. The knowledge that one of the persons is the murderer is represented by three strict rules:1

r1 : Inno(P1), Inno(S) → ¬Inno(P2)

r2 : Inno(P2), Inno(S) → ¬Inno(P1)

r3 : Inno(P1), Inno(P2) → ¬Inno(S)

2. S is a small child who cannot kill a big man. This fact is captured in the base of evidence B E = {Inno(S)}.
3. The legal principle that people are considered innocent until proven otherwise could be represented by three defeasible 

rules

d1 :⇒ Inno(P1) d2 :⇒ Inno(P2) d :⇒ Inno(S)

4. After digging around, it becomes clear to Holmes that P1 has a strong motive to kill the victim while there is nothing 
connecting P2 to the dead man. He hence will focus his investigation on P1. This knowledge is represented by a 
preference

d1 ≺ d2

stating that Holmes gives higher priority (in his investigation) to the scenario in which P2 is innocent than to the other 
one.

Let K B be the knowledge base containing the strict rules r1, r2, r3, the three defaults d1, d2, d and the fact that S is 
innocent together with the preference d1 ≺ d2.

Relevant arguments concerning the innocence of P1, P2 wrt K B are given in Fig. 1.
Due to the preference of d2 over d1, N2 attacks A1 wrt all four MP-attack relations2 in the ASPIC+ framework. There-

fore N2 also attacks N1, N ′
1. Hence there is a stable extension containing A2, N2, N ′

2 implying the expected conclusion 
¬Inno(P1), Inno(P2).

According to the MP-attack relations based on the democratic order, N ′
1 attacks A2.3 Hence N ′

1 also attacks N2, N ′
2. 

Therefore there is another stable extension containing A1, N ′
1, N1 justifying Inno(P1), ¬Inno(P2), a rather counter-intuitive 

set of beliefs.
Even though N ′

1 attacks A2 wrt MP-attack relations based on the democratic order, N1 does not. This is rather surprising 
as N ′

1 could be seen as a weakened version of N1 where the undisputed fact “S is innocent” in N1 is replaced by a defeasible 
one in N ′

1 stating only that if there is no evidence to the contrary then S is innocent. As it has been pointed out in [23], 
MP-attack relations based on the democratic order do not satisfy the property of attack monotonicity stating that if a 
weakened version of an argument A attacks an argument B then A itself should also attack B. We can say the reason that 

1 Inno stands for Innocent.
2 For ease of reference, we refer to the attack relations proposed and studied by Modgil and Prakken in [43] as MP-attack relations in the rest of this 

example. See section 8.1 for their precise definitions.
3 To be precise, N ′

1 attacks A2 wrt the democratic order because the conclusion of N ′
1 contradicts the conclusion of A2 and N ′

1 is not less preferred than 
A according to the democratic order (i.e. there is a defeasible rule (d) in N ′

1 that is not less preferred than d2). See section 8.1 for the precise definition.
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Fig. 1. Sherlock Holmes arguments.

Fig. 2. Minimal removal.

MP-attack relations based on democratic order support counter-intuitive beliefs in this example is due to a violation of this 
property.

The example illustrates the need to establish general principles for the characterization and evaluation of alternative 
attack relations for rule-based systems.4 Caminada and Amgoud [17] have introduced the postulates of consistency and 
closure for argument-based systems. A subargument closure postulate stating that any extension should contain all subar-
guments of its arguments has been studied by Martinez&Garcia&Simari [42], Amgoud [1], Modgi&Prakken [43]. Though the 
three proposed postulates are very helpful, they are not sufficient to guarantee intuitive semantics, as they do not take into 
account the preferences of defeasible rules. To address this problem, Dung [30,23] has proposed a set of simple and intuitive 
properties, referred to as ordinary properties in [23] and showed that they can be used to characterize and evaluate the 
proposed attack relations in structured argumentation with prioritized rules.

As there could be in general many attack relations satisfying the ordinary properties, there still remains a huge challenge for 
any user/developer of structured argumentation with prioritized rules to decide which of the ordinary attack relations should be se-
lected/implemented for her/his domain and what are the guidelines for picking an appropriate one.

Amgoud&Cayrol [4] were arguably the first to study the application of priorities of defeasible rules to define a preference 
relation between arguments and then using the preference relation to define attack relation between arguments. Prakken 
[47] and Modgil&Prakken [43] distinguished between preference independent and preference dependent attacks and sim-
ilar to Amgoud&Cayrol [4], applied priorities to define a preference relation between preference dependent arguments. In 
essence, we can say that both Amgoud&Cayrol [4] and Modgil&Prakken [43] have applied priorities between defeasible rules 
to filter out undesired attacks. In this paper, we argue further that the removal of attacks should be kept to a minimum. 
This intuitive idea could be viewed as a kind of minimal-removal-principle.

The following very simple example illustrates the idea.

Example 2. Consider a knowledge base consisting of just four defeasible rules and four arguments A, A1, B, B1 as seen in 
Fig. 2. Without any preference between the rules, we have A, A1 attack each other. Similarly B, B1 attack each other.

Suppose that for whatever reason d3 is strictly less preferred than d2 (i.e. d3 ≺ d2). The introduction of the preference 
d3 ≺ d2 in essence means that the attack of B1 against B should be removed, but it does not say anything about the other 
attacks. Hence these other attacks should be kept, i.e. the attacks that should be removed should be kept to a minimum.

We introduce in this paper an intuitive property of inconsistency-resolving providing a deep structural insight into the 
nature of attack relations satisfying the postulate of consistency. We refer to the inconsistency-resolving property and the 
ordinary properties other than the credulous cumulativity as regular properties.

4 An extensive discussion on this topic could be found in [23].
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Fig. 3. Dependency graph.

It turns out that the minimal-removal principle coupled with regular properties indeed determine a unique attack re-
lation that can be viewed as the common attack relation by any user/developer who agrees with the regular properties. 
Formally, we show that attack relations satisfying the regular properties form a complete upper-semilattice whose supre-
mum referred to as the canonical attack relations could be viewed as uniquely identified by the minimal-removal principle. 
We also show that the canonical attack relations can be characterized by the least-fixed point of a removal-function defined 
by interpreting the regular properties contrapositively.

A class of normal attack relations has been introduced in [23]. Since every stable extension wrt any ordinary attack 
relation is also stable wrt a normal attack relation, normal attack relations are proposed as a kind of normal form for stable 
semantics, i.e. a kind of a standard candidate for selection as their attack relation by those users/developers of structured 
argumentation who adopt the stable extensions as their semantics. An interesting question is whether or under which 
conditions normal attack relations capture the intended attack relations of prioritized rules wrt to any extension semantics, 
not just stable semantics. More precisely, we are interested in the question of whether normal attack relations satisfy the 
property of consistency-resolving and the principle of minimal removal and whether or under which conditions normal 
attack relations capture the canonical attack relations. As determining whether an argument normal-attacks another is both 
simple and efficient, this question is hence both theoretically interesting and practically relevant.

When introducing preferences between defeasible rules, one key question is whether the introduced preferences are 
helpful and sensible. We introduce a class of well-prioritized systems and show that for this class, the canonical attack re-
lation assignments and the normal attack relation assignment are identical. This result is important as determining whether 
an argument normal attacks another is very simple. Moreover we show that the canonical and normal attack relation as-
signments are equivalent wrt the stable semantics, i.e. they deliver the same sets of stable extensions.

In order to provide a simpler and more focused presentation of the essential notions of our proposal, we first introduce 
them in the context of a basic system that is expanded further later. In particular, we start with a language consisting only 
of literals and two type of attacks, rebut and undercut. We then show that our approach can easily be scaled up by showing 
that all key results still hold for general underlying logical languages and the inclusion of assumptions.

The paper is organized as follows. We recall in the next section the key concepts and notions of argumentation and de-
feasible knowledge bases on which the paper is based. We then introduce the important property of inconsistency-resolving 
and discuss sufficient conditions for the postulates of consistency and closure. In section 4, we introduce the concepts of 
regular attack relations and regular attack relation assignments. In section 5, we study the semilattice of regular attack 
relation assignments and propose the canonical attack relations. We formalize the minimal removal intuition by providing 
a least fixed-point characterization of the canonical attack relation assignments in section 6. We study a relevant class of 
well-prioritized rule-based systems for which canonical attack relations and normal attack relations coincide in section 7. 
We discuss the relationship of our approach to others in section 8. We show in section 9 that our approach can easily be 
scaled up for general underlying logical languages and the inclusion of assumptions. We conclude in section 10.5 For ease 
of reading, the graph in Fig. 3 indicates the dependency between the sections.

2. Preliminaries

2.1. Abstract argumentation

An abstract argumentation framework [29] is defined simply as a pair A F = (AR, att) where AR is a set of arguments 
and att ⊆ AR × AR and (A, B) ∈ att means that A attacks B .

A set of arguments S attacks (or is attacked by) an argument A (or a set of arguments R) if some argument in S attacks 
(or is attacked by) A (or some argument in R); S is conflict-free if it does not attack itself. A set of arguments S defends an 
argument A if S attacks each argument attacking A.

S is admissible if S is conflict-free and defends each argument in it. A complete extension is an admissible set of arguments 
containing each argument it defends. A preferred extension is a maximal admissible set of arguments. A stable extension is 

5 The paper is both a follow-up and an extension of the papers [25,24]. It is a follow-up of [25,24] as it contains substantially novel results on character-
izing canonical attack relations by a least fixed point of an attack-removal function and on the coincidence between canonical and normal attack relations 
for well-prioritized systems. It is an extension as it offers a much improved presentation as well as detailed proofs of the materials in [25,24].
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a conflict-free set of arguments that attacks every argument not belonging to it. It is well-known that both preferred and 
stable extensions are complete but not vice versa.

The characteristic function of A F is defined by

F A F (S) = {A ∈ AR | S defends A}.
Since F A F is a monotonic function, there exists a least fixed point of F A F . The grounded extension is defined as the least 
fixed point of F A F . As complete extensions coincide with conflict-free fixed points of F A F , the grounded extension is also 
the least complete extension.

2.2. Defeasible knowledge bases

In this section, we recall the basic notions and notations on knowledge bases from [23]. We assume a non-empty set L
of ground atoms (also called a positive literal) and their classical negations (also called negative literals). A set of literals is 
said to be contradictory iff it contains an atom a and its negation ¬a. The complement of a positive literal α is ¬α while the 
complement of a negative literal ¬α is α. Abusing the notation slightly, we denote the complement of any literal λ by ¬λ.

We distinguish between domain atoms representing propositions about the concerned domains and non-domain atoms of 
the form abd representing the non-applicability of defeasible rules d (even if the premises of d hold).

We denote by Ldom the set of all domain literals.
We distinguish between strict and defeasible rules as often done in the literature [43,44,37,38,52,23]. A defeasible (resp. 

strict) rule r is of the form b1, . . . , bn ⇒ h (resp. b1, . . . , bn → h) where b1, . . . , bn ∈ Ldom and h ∈ Ldom or h is an atom of 
the form abd . The set {b1, . . . , bn} (resp. h) is referred to as the body (resp. head) of r and denoted by bd(r) (resp. hd(r)).

Definition 1.

1. A rule-based system is a triple R = (R S, R D, 	) where
(a) R S is a set of strict rules, and
(b) R D is a set of defeasible rules, and
(c) for each rule in R S ∪ R D whose head is a non-domain atom abd , it holds that d ∈ R D , and
(d) 	 is a transitive relation over R D representing the preferences between defeasible rules, whose strict core is ≺ (i.e. 

d ≺ d′ iff d 	 d′ and d′ �	 d for d, d′ ∈ R D).
2. A knowledge base is defined as a pair K = (R, B E) consisting of a rule-based system R, and a set B E ⊆Ldom , the base 

of evidence of K, representing unchallenged observations, facts etc.6

For convenience, knowledge base K is often written directly as a quadruple (R S, R D, 	, B E) where the components RS, 
RD, 	 or BE are often referred to by R S K , R D K , 	K or B E K respectively.

3. A knowledge base K is basic if its precedence relation is empty (i.e. 	K = ∅).

A knowledge base is essentially a defeasible theory in [17] together with a set of preferences between defeasible rules 
where following Modgil&Prakken [43] we separate the evidence base from the set of rules. The separation is necessary 
as many key properties of attack relations (like the properties of context-independence (Definition 17) or credulous cu-
mulativity (section 8.2) are defined across distinct knowledge bases with the same set of rules.7 A knowledge base is an 
argumentation theory as defined in [43] with only one kind of (classical) negation (another type of negation is added later 
in section 9).

Definition 2. Let K = (R S, R D, 	, B E) be a knowledge base. An argument wrt K is a proof tree defined inductively as 
follows:

1. For each α ∈ B E , [α] is an argument with conclusion α.
2. Let r be a rule of the forms α1, . . . , αn → / ⇒ α, n ≥ 0, from R S ∪ R D and A1, . . . , An be arguments with conclusions 

αi , 1 ≤ i ≤ n, respectively. Then A = [A1, . . . , An, r] is an argument with conclusion α and last rule r denoted by cnl(A)

and last(A) respectively.
Note that for argument of the form [α], α ∈ B E , last([α]) is not defined.

3. Each argument wrt K is obtained by applying the above steps 1, 2 finitely many times.

Example 3. Consider a knowledge base K (adapted from [15,16,23]), consisting of three defeasible rules

6 In [23], undercut rules (i.e. rules with heads of the form abd) are strict rules. Our more recent work on application of structured argumentation [46]
suggests that it is more convenient to allow undercut rules to be both strict and defeasible as it is the case in this paper. Note that allowing undercut 
rules to be both strict and defeasible do not make the system more expressive as each defeasible undercut rule of the form bd ⇒ abd could be equivalently 
replaced by two rules bd ⇒ η and η → abd where η is a new atom not appearing anywhere else.

7 Example 7 illustrates why separating the evidence base from the set of strict rules is needed.
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Fig. 4. Dean example.

d1 : Dean ⇒ Professor d2 : Professor ⇒ Teach d3 : Administrator ⇒ ¬Teach

and two strict rules

r : Dean → Administrator r′ : ¬Administrator → ¬Dean

together with a precedence relation consisting of just d2 ≺ d3. Suppose we know some dean who is also a professor.
The considered knowledge base is represented by K = (R S, R D, 	, B E) with R S = {r, r′}, R D = {d1, d2, d3}, 	= {(d2, d3)}

and B E = {D, P }.8

Relevant arguments can be found in Fig. 4 where A1 = [[D], d1], A2 = [A1, d2], A′
2 = [[P ], d2], A3 = [[[D], r], d3].

Notation 1.

1. The set of all arguments wrt a knowledge base K is denoted by AR K . The set of the conclusions of arguments in a set 
S ⊆ AR K is denoted by cnl(S).

2. A strict argument is an argument containing no defeasible rule. An argument is defeasible iff it is not strict. A defeasible 
argument A is called basic defeasible iff last(A) is defeasible.

3. For any argument A, the set of defeasible rules appearing in A is denoted by dr(A). The set of last defeasible rules 
in A, denoted by ldr(A), is {last(A)} if A is basic defeasible, otherwise it is equal ldr(A1) ∪ . . . ∪ ldr(An) where A =
[A1, . . . , An, r].

4. An argument B is a subargument of an argument A iff B = A or A = [A1, . . . , An, r] and B is a subargument of some Ai . 
B is a proper subargument of A if B is a subargument of A and B �= A.

Definition 3. Let K be a knowledge base and X ⊆L and l ∈ L. Further let Xdom = X ∩Ldom .9

1. We say that l is strictly derived from X wrt K, denoted by X �K l, iff l ∈ X or l is the conclusion of an argument 
constructed according to Definition 2 where in step 1 only elements from Xdom are used and in step 2, only the strict 
rules from K are used.

2. The closure of a set X ⊆L wrt knowledge base K, denoted by C NK (X), is defined by C NK (X) = {l | X �K l}.
3. X is said to be closed wrt K iff X = C NK (X). X is said to be inconsistent wrt K iff its closure C NK (X) is contradictory. X 

is consistent wrt K iff it is not inconsistent wrt K.
4. K is said to be consistent iff its base of evidence B E K is consistent wrt K.

As the notions of closure, consistency depends only on the set of strict rules in the knowledge base, we often write 
X �R S l or l ∈ C NR S (X) for X �K l or l ∈ C NK (X) respectively.

Definition 4. Let R = (R S, R D, 	) be a rule-based system and K = (R, B E) be a knowledge base.

1. R and K are said to be closed under transposition [17] iff for each strict rule of the form b1, . . . , bn → h in R S s.t. 
h ∈Ldom , all the rules of the forms b1, . . . , bi−1, ¬h, bi+1, . . . , bn → ¬bi , 1 ≤ i ≤ n, also belong to R S .

2. R and K are said to be closed under contraposition [47,44] iff for each set S ⊆ Ldom , each λ ∈ Ldom , if S �R S λ then for 
each σ ∈ S , S \ {σ } ∪ {¬λ} �R S ¬σ .

3. R and K are said to satisfy the self-contradiction property [27] iff for each minimal inconsistent set X ⊆ Ldom , for each 
x ∈ X , it holds: X �R S ¬x.

Lemma 1. Let R be a rule-based system that is closed under transposition or contraposition. Then R satisfies the property of self-
contradiction.

Proof. A proof is given in [23]. To keep the paper self-contained, we recall the proof in Appendix A. �
8 D, P, T, A stand for Dean, Professor, Teach and Administrator respectively.
9 I.e. Xdom is X minus the non-domain atoms abd .
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Definition 5 (Attack relation). An attack relation for a knowledge base K is a relation att ⊆ AR K × AR K such that there is no 
attack against strict arguments, i.e. for each strict argument B ∈ AR K , there is no argument A ∈ AR K such that (A, B) ∈ att .

For convenience, we often say A attacks B wrt att for (A, B) ∈ att .

2.3. Basic postulates

We recall the postulates of consistency and closure from [17] and of subargument closure from [43,1,42].

Definition 6. Let att be an attack relation for a knowledge base K.

– att is said to satisfy the consistency postulate iff for each complete extension E of (AR K , att), the set cnl(E) of conclu-
sions of arguments in E is consistent.

– att is said to satisfy the closure postulate iff for each complete extension E of (AR K , att), the set cnl(E) of conclusions 
of arguments in E is closed.

– att is said to satisfy the subargument closure postulate iff for each complete extension E of (AR K , att), E contains all 
subarguments of its arguments.

For ease of reference, the above three postulates are often referred to as basic postulates.

3. Sufficient properties for basic postulates

As the basic postulates are more about the “output” of attack relations rather than about their structure, we present 
below two simple properties about the structure of attack relation that ensure the satisfaction of the basic postulates. We 
first recall two key notions of undercut and rebut from the literature [43,45,17].

Definition 7.

– We say A undercuts B (at B ′) iff B ′ is a basic defeasible subargument of B and cnl(A) = ablast(B ′) .
We say A rebuts B (at B ′) iff B ′ is a basic defeasible subargument of B and the conclusions of A and B ′ are contradictory.

– We say A directly attacks B iff A attacks B and A does not attack any proper subargument of B .
– An argument A is said to be generated by a set S of arguments iff all basic defeasible subarguments of A are subargu-

ments of arguments in S .

For an illustration of the notion of “being generated by a set of arguments”, consider S = {B0, B1} (see Fig. 5) and A0. 
The set of basic defeasible subarguments of A0 is {[d0]}. It is clear that [d0] is a subargument of B0. Hence A0 is generated 
by S. Similarly, A1 is also generated by S.

Definition 8 (Strong subargument structure). 10 Attack relation att is said to satisfy the property of strong subargument structure
for K iff for all A, B ∈ AR K , following conditions hold:

1. A attacks B (wrt att) iff A attacks a basic defeasible subargument of B (wrt att).
2. If A undercuts B then A attacks B wrt att .
3. If A directly attacks B (wrt att) then A undercuts B (at B) or rebuts B (at B).

We present the first result showing that strong subargument property is sufficient to guarantee the postulate of closure.

Lemma 2. Let att be an attack relation for knowledge base K satisfying the property of strong subargument structure. Further let E be 
a complete extension of (AR K , att).

1. E contains all arguments generated by E, and
2. att satisfies the postulates of closure and subargument closure.

Proof. Let E ′ be the set of all arguments generated by E. It is clear that

– E ⊆ E ′ , and
– the sets of basic defeasible subarguments of arguments in E and E ′ coincide.

10 The strong subargument structure property is a strengthened combination of two ordinary properties of subargument structure and attack closure in 
[23] stating that attacks directed against subarguments are attacks against the whole arguments and attacks are based on undercuts and contradictory 
conclusions.
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Fig. 5. Generated arguments.

Fig. 6. Effective rebuts.

Therefore from condition 1 in Definition 8, it follows that each attack against E ′ is also an attack against a basic defeasible 
subargument of some argument in E and hence an attack against some argument in E. Therefore each attack against E ′ is 
counterattacked by E, i.e. E ′ is defended by E. Since E is complete, E ′ is a subset of E. Therefore E ′ = E . Therefore cnl(E) is 
closed and all subarguments of arguments in E belong to E. The lemma holds obviously. �

A set S of arguments of a knowledge base K is said to be inconsistent (resp. consistent) (wrt K) if the set of the conclu-
sions of its arguments, cnl(S), is inconsistent (resp. consistent) (wrt K). We often ignore K if there are no possibilities for 
misunderstanding.

We introduce below a new simple property of inconsistency resolving that could be viewed as an adaptation of the 
consistency-covering property in [27] to structured argumentation systems.

Definition 9 (Inconsistency resolving). We say attack relation att satisfies the inconsistency-resolving property for K iff for each 
finite set of arguments S ⊆ AR K , if S is inconsistent then S is attacked (wrt att) by some argument generated by S.

As we will show later, the inconsistency-resolving property is satisfied by common conditions like closure under trans-
position or contradiction or the property of self-contradiction.

Example 4. Consider the basic knowledge base K consisting of just the rules appearing in arguments in Fig. 5. The set 
S = {B0, B1} is inconsistent. The argument A0 is generated by S. Let att = {(X, Y ) | X rebuts Y}. It is obvious that S is 
attacked by A0.

We show that att is inconsistency-resolving. Let A ⊆ AR K . Suppose A is inconsistent. It is clear that if only one defeasible 
rule appears in arguments in A then A is not inconsistent. Therefore both d0, d1 appear in A. Therefore A0 is generated 
by A. A0 rebuts any argument containing d1. Hence att is inconsistency-resolving.

We present now the first important result.

Theorem 1. Let att, att′ be attack relations for knowledge base K .

1. If att ⊆ att′ and att is inconsistency-resolving for K then att′ is also inconsistency-resolving for K .
2. If att satisfies the strong subargument structure and inconsistency-resolving then att satisfies the postulate of consistency.

Proof. Assertion 1 follows easily from the definition of inconsistency-resolving. We show assertion 2. Suppose E is a com-
plete extension of (AR K , att). From condition 1 in Lemma 2, each argument generated by E belongs to E. Since att is 
inconsistency-resolving, if E is inconsistent then E is not conflict-free. Since E is conflict-free, E is hence consistent. �
4. Regular attack relation assignments

In general, attack relations satisfying the basic postulates do not capture the semantics of prioritized rules. To see this 
point, consider a simple knowledge base consisting of exactly two defeasible rules d0 :⇒ a and d1 ⇒ ¬a with d0 ≺ d1. There 
are only two arguments A0, A1 as given in Fig. 6.

The attack relation att = {(A0, A1), (A1, A0)} has two preferred (also stable) extensions Ei = {Ai}, i = 0, 1. It is obvious 
that E0 satisfies both properties of inconsistency-resolving and strong subargument structure. As the prime purpose of the 
preference of d1 over d0 is to rule out extension E0, attack relation att does not capture the expected semantics.

Dung [30,23] has proposed several simple properties referred to as ordinary properties, to capture the intuition of pri-
oritized rules. We recall and adapt them below. We also motivate and explain their intuitions. We then present two novel 
concepts of regular attack relations and regular attack relation assignments that lie at the heart of the semantics of priori-
tized rules.
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Fig. 7. Modularity of attacks.

4.1. A minimal interpretation of priorities

We first recall from [23] the effective rebut property stating a “minimal interpretation” of a preference d0 ≺ d1 that in 
situations when both are applicable but accepting both d0, d1 is not possible, d1 should be preferred.

Definition 10 (Effective rebut). We say that attack relation att satisfies the effective rebut property for a knowledge base K iff 
for all arguments A0, A1 ∈ AR K such that each Ai , i = 0, 1, contains exactly one defeasible rule di (i.e. dr(Ai) = {di}), and 
A0 rebuts A1, it holds that A0 attacks A1 wrt att iff d0 �≺ d1.

In Fig. 6, the effective rebut property dictates that A1 attacks A0 but not vice versa.

4.2. Propagating attacks

Example 5. Consider the knowledge base in Example 3.
While the effective rebut property determines that A3 attacks A′

2 (see Fig. 4) but not vice versa (because d2 ≺ d3), it 
does not say whether A3 attack A2.

Looking at the structure of A2, A′
2, we can say that A2 is a weakening of A′

2 as the undisputed fact P on which A′
2 is 

based is replaced by a defeasible belief P (supported by argument A1). Therefore if A3 attacks A′
2 then it is natural to expect 

that A3 should attack A2 too.
The above analysis also shows that attacks generated by the effective rebut property, could be propagated to other 

arguments based on a notion of weakening of arguments. We recall this notion as well as the associated property of attack 
monotonicity from [23] below.

Let A, B ∈ AR K and A S ⊆ AR K . Intuitively, B is a weakening of A by AS if B is obtained by replacing zero, one or more 
premises of A by arguments in AS whose conclusions coincide with the premises.

Definition 11. Let A, B ∈ AR K and A S ⊆ AR K . B is said to be a weakening of A by AS iff

1. A = [α] for α ∈ B E , and (B = [α] or B ∈ A S with cnl(B) = α), or
2. A = [A1, . . . , An, r] and B = [B1, . . . , Bn, r] where each Bi is a weakening of Ai by AS.

By A ↓ A S we denote the set of all weakenings of A by AS.
For simplicity, we often say that A is a strengthening of B by AS if B is a weakening of A by AS.

For an illustration, consider again the arguments in Fig. 4. It is clear that [P ] ↓ {A1} = {[P ], A1}, A′
2 ↓ {A1} = {A′

2, A2}. In 
Fig. 1, Ni ↓ {[⇒ inno(S)]} = {Ni, N ′

i}, i = 1, 2.
The attack monotonicity property states that if an argument A attacks an argument B then A also attacks all weakenings 

of B. Moreover if a weakening of A attacks B then A also attacks B.

Definition 12 (Attack monotonicity). We say attack relation att satisfies the property of attack monotonicity for knowledge base 
K iff for all A, B ∈ AR K and for each weakening C of A, for each weakening D of B, the following assertions hold:

1. If (A, B) ∈ att then (A, D) ∈ att .
2. If (C, B) ∈ att then (A, B) ∈ att .

We introduce below the property of attack modularity that can be intuitively related to the fact that in a real world 
conversation, if you claim that my argument is wrong, I would naturally ask which part of my argument is wrong. For an 
illustration, consider Fig. 7. Suppose C is the argument consisting of B and arguments B0, B1 that support some premises 
of B. It follows that C ∈ B ↓ {B0, B1}. Suppose A attacks C. As C is composed by B, B0, B1, we would expect that A would 
attack one of the components B, B0, B1 of C. In other words, we expect the attack to be modular in the sense if A attacks 
an argument then A should attack one of its components. The link-oriented property introduced in [23] represents this 
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intuition. As the formal definition of the “link-orientation” property does not reflect directly the modularity intuition of the 
property, we introduce an equivalent version of it below and then show their equivalence.

Definition 13 (Modularity of attacks). We say that attack relation att satisfies the property of modularity for K iff for all 
arguments A, B, C ∈ AR K such that A attacks C where

1. C is a weakening of B by A S ⊆ AR K , and
2. C is not a weakening of B by any proper subset of A S ,

then A attacks B or some argument in AS.11

We recall the property of link-orientation below and then show its equivalence to the property of modularity of attacks.

Definition 14 (Link-orientation). We say that attack relation att satisfies the property of link-orientation for K iff for all argu-
ments A, B, C ∈ AR K such that C is a weakening of B by A S ⊆ AR K , it holds that if A attacks C (wrt att) and A does not 
attack any argument in AS (wrt att) then A attacks B (wrt att).

Lemma 3. An attack relation att satisfies the property of modularity for K iff att satisfies the property of link-orientation for K .

Proof. “⇒” Let A, B, C ∈ AR K such that C is a weakening of B by A S ⊆ AR K and A attacks C (wrt att) and A does not attack 
any argument in AS (wrt att). We show that A attacks B (wrt att).

Let A S0 be a minimal subset of A S such that C is a weakening of B by A S0. Since att satisfies the property of modularity 
for K , it follows that A attacks B or some argument in A S0. Since A does not attack any argument in AS and A S0 ⊆ A S , 
A does not attack any argument in A S0. Since A attacks B or some argument in A S0, it follows that A attacks B, i.e. the 
link-orientation is satisfied if modularity holds.

“⇐” Let A S ⊆ AR K such that C ∈ B ↓ A S and C is not a weakening of B by any proper subset of A S . Suppose A attacks 
C (wrt att). We show that A attacks B or some argument in AS.

If A attacks some argument in AS, we are done. Suppose A does not attack any argument in AS. From the link-orientation 
property, we have A attacks B (wrt att), i.e. the modularity is satisfied if link-orientation holds. �
Example 6. Consider again arguments in Fig. 4. Suppose d2 is now preferred to d3 (i.e. d3 ≺ d2). The effective rebut property 
dictates that A3 does not attack A′

2. Does A3 attack A2? Suppose A3 attacks A2. Since A3 does not attack A1 that is a 
subargument of A2, we expect that A3 should attack some other part of A2. In other words, we expect that A3 attacks A′

2. 
But this is a contradiction to the effective rebut property stating that A′

2 attack A3 but not vice versa. Hence A3 does not 
attack A2.

4.3. Attack relation assignments: propagating attacks across knowledge bases

While the properties of inconsistency-resolving, strong subargument structure, effective rebuts, attack monotonicity and 
link-orientation are natural and intuitive, they are still not sufficient for determining an intuitive attack relations wrt prior-
itized rules. The example below illustrates this point.

Example 7. Consider a knowledge base K0 obtained from knowledge base K in Example 3 by revising the evidence base to 
B E = {D}. It is clear that arguments A1, A2, A3 belong to AR K0 while A′

2 is not an argument in AR K0 .
As A′

2 does not belong to AR K0 , the effective rebut property does not “generate” any attacks between arguments in 
AR K0 . How could we determine the attack relation for K0?

As both A2, A3 belong to both AR K , AR K0 and the two knowledge bases K0, K have identical rule-based system, we 
expect that the attack relations between their common arguments should be identical. In other words, because A3 attacks 
A2 wrt K (see Example 5), A3 should attack A2 also wrt K0. This intuition is captured by the context-independence property 
[23] linking attack relations between arguments across the boundary of knowledge bases.

The example also indicates that attack relations of knowledge bases with the same rule-based system should be consid-
ered together. This motivates the introduction of the attack relation assignment in Definitions 15, 16.

Definition 15. Let R = (R S, R D, 	) be a rule-based system. The class consisting of all consistent knowledge bases of the 
form (R, B E) is denoted by CR .

11 The second condition ensures that each argument in AS is a subargument of C. Dropping the second condition would give an equivalent and technically 
slightly simpler version of the modularity though some argument in AS may not be a component of C.
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Assumption. From now on, whenever we mention a rule-based system R, we mean a consistent one, i.e. CR �= ∅.12

Definition 16 (Attack relation assignment). An attack relation assignment atts for a rule-based system R is a function assigning 
to each knowledge base K ∈ CR an attack relation atts(K ) ⊆ AR K × AR K .13,14

We next recall the context-independence property from [23] stating that the attack relation between two arguments 
depends only on the rules appearing in them and their preferences.

Definition 17 (Context-independence). We say attack relation assignment atts for a rule-based system R satisfies the property 
of context-independence iff for any two knowledge bases K , K ′ ∈ CR and for any two arguments A, B from AR K ∩ AR K ′ , it 
holds that (A, B) ∈ atts(K ) iff (A, B) ∈ atts(K ′).

The context-independence property is commonly accepted in many well-known argument-based systems like the 
assumption-based framework [12,32] and the ASPIC+ approach [47,43].

Notation 2.

– For ease of reference, we refer to the property of context-independence as well as the properties of inconsistency-
resolving, strong subargument structure, effective rebuts, attack monotonicity and link-orientation as regular properties.

– Let P be a regular property different to the context-independence one.
We say an attack relation assignment atts satisfies P iff for each knowledge base K ∈ CR , atts(K ) satisfies P .

We can now present two novel concepts of weakly regular and regular attack relation assignments.

Definition 18 (Regular attack relation assignments).

1. An attack relation assignment atts for a rule-based system R is said to be weakly regular iff it satisfies the regular prop-
erties of context-independence, strong subargument structure, effective rebuts, attack monotonicity and link-orientation.
The set of all weakly regular attack relation assignments for R is denoted by W R A AR .

2. A weakly regular attack relation assignment atts for a rule-based system R is said to be regular iff it satisfies the 
inconsistency-resolving property.
The set of all regular attack relation assignments for R is denoted by R A AR .

It is obvious that R A AR ⊆ W R A AR holds.

5. The complete upper-semilattice of regular attack relation assignments

5.1. Preliminaries: complete semilattice

We introduce the concept of semilattice. A partial order15 ≤ on a set S is a upper-semilattice (resp. lower-semilattice) 
[21,53] iff each pair of elements x, y from S has a supremum (resp. infimum) wrt ≤.

An upper-semilattice (resp. lower-semilattice) is complete iff each non-empty subset of S has a supremum (resp. infi-
mum).16

It follows immediately that each complete upper (resp. lower) semilattice S has a unique greatest (resp. least) element.17

12 A key postulate for evaluation of the semantics of structured argumentation is the postulate of consistency. That also means that any inconsistent 
extension is not considered to be meaningful. So if a rule-based system is inconsistent then there exists not even consistent knowledge base wrt it. Hence 
all extensions for any knowledge base with this rule-based system are inconsistent and therefore not meaningful.

Consider a rule-based system containing two rules → a and → ¬a. Any extension of any knowledge base of this rule-based system is inconsistent. The 
postulate of consistency is never satisfied for any such knowledge base.

So for a rule-based system to make sense, it should be consistent first, i.e. the knowledge base with this rule-based system and an empty set of 
evidences must be consistent. Otherwise there is no point to consider it (at least for those agents who consider the postulate of consistency to be relevant).
13 Note that atts(K ) is an attack relation (see Definition 5).
14 In [23], attack relation assignments are defined for sensible classes of knowledge bases that are unions of classes CR . All the results in this paper could 

be straightforwardly generalized for the attack relation assignments defined for sensible classes of knowledge bases (see section 8.2 for more discussion).
15 A reflexive, transitive and antisymmetric relation.
16 See [21], page 201.
17 Note that a complete upper-semilattice (resp. lower-semilattice) is a complete lattice iff the least (resp. greatest) element exists [21,53].
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Fig. 8. Non-existence of regular assignments.

5.2. Semilattice structure of regular attack relation assignments

From now on until the end of this section, we assume an arbitrary but fixed rule-based system R = (R S, R D, 	).

Definition 19. Let A be a non-empty set of attack relation assignments. Define 
⋃

A by:

∀K ∈ CR : (
⋃

A)(K ) =
⋃

{atts(K ) |atts ∈ A}

The following simple lemma and theorem present a deep insight into the structure of regular attack assignments.

Lemma 4. Let A be a non-empty set of attack relation assignments.

1. Suppose P is a regular property and every attack relation assignment atts ∈A satisfies P. Then 
⋃

A also satisfies P.
2. If the attack relation assignments in A are regular then 

⋃
A is also regular.

3. If the attack relation assignments in A are weakly regular then 
⋃

A is also weakly regular.

Proof. See Appendix B. �
For attack relation assignments atts, atts′ , define atts ⊆ atts′ iff ∀K ∈ CR , atts(K ) ⊆ atts′(K ).
From Lemma 4, the following Theorem 2 holds obviously.

Theorem 2. Suppose the set R A AR of regular attack relation assignments is not empty. Then (R A AR, ⊆) is a complete upper-
semilattice. �
Definition 20. Suppose the set R A AR of all regular attack relation assignments for R is not empty. The canonical attack 
relation assignment of R denoted by AttR is defined by: AttR = ⋃

R A AR .

Even though in general, regular attack relation assignments (and hence the canonical one) may not exist (as the Exam-
ple 8 below shows), they exist under natural conditions that we believe most practical rule-based systems satisfy, like the 
property of self-contradiction or closure under transposition or contraposition as proved in Theorem 3 below.

Example 8. Consider a rule-based system R consisting of d0 :⇒ a d1 :⇒ b r : a → ¬b and d0 ≺ d1. Suppose atts be a 
regular attack relation assignment for CR . Let K = (R, ∅). The contradicting arguments for K are given in Fig. 8. From 
the property of effective rebut, it is clear that (A, B) �∈ atts(K ). Hence atts(K ) = ∅. The inconsistency-resolving property is 
not satisfied by atts(K ), contradicting the assumption that atts is regular. Therefore there exists no regular attack relation 
assignment for CK .

While regular attack relation assignments may not exist, weakly regular ones always exist. It turns out that a special 
type of attack relations, the normal attack relations introduced in [23] are always weakly regular. If the rule-based systems 
is closed under transposition or contraposition or self-contradiction then normal attack relation assignments are regular.

Definition 21. Let K be a knowledge base and A, B ∈ AR K .

1. We say that A normal-rebuts B (at X) iff A rebuts B (at X) and there is no defeasible rule d ∈ ldr(A) such that 
d ≺ last(X).

2. The normal attack relation assignment attsnr is defined by: For any knowledge base K ∈R and any arguments A, B ∈ AR K , 
(A, B) ∈ attsnr(K ) if and only if A undercuts B or A normal-rebuts B .

Before presenting a central result in Theorem 3 below, let us introduce some helpful notations.
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Notation 3.

– A maximal basic defeasible subargument of B is a basic defeasible subargument of B that is not a proper subargument of 
any basic defeasible subargument of B .

– A maximal proper subargument of B is a proper subargument of B that is not a proper subargument of any proper 
subargument of B .

Theorem 3.

1. For any rule-based system R, the normal attack relation assignment attsnr is weakly regular.
2. Suppose the rule-based system R satisfies the self-contradiction property. Then the normal attack relation assignment attsnr is 

regular and the canonical assignment AttR exists and attsnr ⊆ AttR .

Proof. See Appendix B. �
The following lemma follows immediately from the above Theorem 3.

Lemma 5.

1. (W R A AR, ⊆) is a complete upper-semilattice whose supremum is denoted by W attR.
2. If the canonical attack relation assignment AttR exists, it holds:

AttR = W attR

3. If R satisfies the self-contradiction property then AttR exists and AttR = W attR .

Proof. As normal attack relation assignments are weakly regular (Theorem 3). W R A AR is hence not empty. Assertion 1 
follows then from Lemma 4.

We prove assertion 2. If AttR exists then it is weakly regular and hence AttR ⊆ W attR . From the first assertion in The-
orem 1, it follows immediately that W attR also satisfies the inconsistency-resolving property. Therefore W attR is regular. 
Hence W attR ⊆ AttR . Thus W attR = AttR .

Assertion 3 follows immediately from second assertion and the second statement in Theorem 3. �
The following lemma follows immediately from the second statement of Theorem 3.

Lemma 6. Suppose the rule-based system R satisfies the self-contradiction property. Let K ∈ CR and A, B ∈ AR K such that A rebuts 
B (at B) and (A, B) �∈ AttR(K ). Then there is d ∈ ldr(A) such that d ≺ last(B).

We show below that when all defeasible rules are “equal”, i.e. there are no preferences among them, the canonical 
attack relations coincide with the basic attack relations that are fully determined by undercuts and rebuts. We study further 
characteristics of canonical attack relations in the following two sections.

Definition 22. The basic attack relation assignment for a rule-based system R, denoted by Batts is defined by:

∀K ∈ CR : Batts(K ) = {(A, B) | A, B ∈ AR K , A undercuts or rebuts B}

Lemma 7.

1. Batts satisfies all regular properties except the inconsistency-resolving and effective rebut properties.
2. If R satisfies the self-contradiction property then Batts satisfies the inconsistency-resolving property.
3. If R is basic then Batts satisfies the effective rebut property and hence is weakly regular and Batts = W attR .

Proof. See Appendix B. �
From Lemma 7, the following theorem holds obviously.

Theorem 4. If R is basic and satisfies the self-contradiction property then Batts coincides with the canonical attack relation assign-
ment of R. �

The following Lemma 8 states that (R A AR, ⊆) is not a complete lattice by showing that it is not a lower-semilattice.
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Fig. 9. Infimum of regular assignments.

Fig. 10. Inconsistency “Infimum” of regular assignments.

Lemma 8. In general, (R A AR, ⊆) is not a lower-semilattice.

Proof. Consider a rule-based system R consisting of only four defeasible rules

d1 : a ⇒ b d2 : b ⇒ f d3 : d ⇒ c d4 : c ⇒ ¬ f

and there is no preferences between the defeasible rules.
Let A, B, D, C be the arguments given in Fig. 9.
Define two attack relation assignments atts, atts′ for R as follows.

– For K ∈ CR , atts(K ) = Batts(K ) \ {(D, A), (D, B)}.
– For K ∈ CR , atts′(K ) = Batts(K ) \ {(A, D), (A, C)}.

In Appendix G, we show that both atts, atts′ are regular.
We show now that there exists no infimum of atts, atts′ in (R A AR, ⊆).
Suppose on the contrary the infimum of atts, atts′ in (R A AR, ⊆) exists. Let it be denoted by atts0. It is clear that for 

any K ∈ CR , {(A, D), (D, A)} ∩ atts0(K ) = ∅.
Let B E0 = {a, d} and K0 = (R, B E0).
It is clear that AR K0 consists only of arguments in Fig. 10.
Therefore atts0(K0) = ∅. It is obvious that atts0(K0) does not satisfy the inconsistency-resolving property. Thus atts0 is 

not regular. Contradiction. �
6. Minimal removal semantics: a least-fixed-point characterization of canonical attack relation

From the strong subargument structure property, it is clear that AttR ⊆ Batts. In other words, ∀K ∈ CR , the set 
Batts(K ) \ AttR(K ) could be viewed as the set of attacks removed from Batts(K ) due to the priorities between defea-
sible rules.

Example 9. For illustration, consider again the rule-based system R and the associated knowledge base K in Example 3. It 
is clear that both A2, A′

2 attack A3 wrt Batts(K ). The introduction of the preference d2 ≺ d3 removed the attack (A′
2, A3). 

Since A2 is a weakening of A′
2, applying the property of attack monotonicity contrapositively, it follows that the attack 

(A2, A3) needs also to be removed.
Consider the knowledge base K ′ = (R, B E ′) where B E ′ = {D}. The argument A′

2 does not exist in AR K ′ . Still applying 
the context-independence property contrapositively, the attack (A2, A3) should be removed from the attack relation for K ′
since it has been removed from the argument system for K .

In general, a contra-positive reading of the regular properties propagates the removal of attacks that are at first removed 
by the introduction of priorities between defeasible rules.
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The discussion illustrates the idea that applying the regular properties in contrapositive forms could be viewed as “attack 
removal functions”. This view leads naturally to a least fixed-point characterization of canonical attack relation assignments. 
We formalize this insight in this section.

6.1. Preliminaries: complete lattice

A partial order ≤ on a set S is a complete lattice [21] iff each subset X of S has a supremum and infimum wrt ≤
denoted by �X and �X respectively. The greatest and least element of S are often denoted by �, ⊥ respectively.

A set X ⊆ S is said to be directed [21] iff for each pair x, y ∈ X there exists z ∈ X such that x ≤ z and y ≤ z.
Let (P , ≤) be a complete lattice. A function f : P → P is said to be

– monotone iff for each x, y ∈ P , if x ≤ y then f (x) ≤ f (y);
– continuous iff for each directed subset � ⊆ P , it holds:

f (��) = � f (�)

where f (�) = { f (x) | x ∈ �}.

It is not difficult to see that continuous functions are monotone.
The following fixpoint theorem for continuous function is well-known. To keep the paper self-contained, we also recall 

the proof.

Theorem 5. Let (P , ≤) be a complete lattice and f : P → P be continuous. Then f has a least fixpoint, denoted by lfp(f), of the form

lf p( f ) = �∞
i=0 f i(⊥)

Proof. It is obvious that ⊥ ≤ f (⊥). Therefore ⊥ ≤ f (⊥) ≤ f 2(⊥) ≤ . . .. Let γ = �∞
i=0 f i(⊥). Since f is continuous, it follows 

f (γ ) = f (�∞
i=0 f i(⊥)) = �∞

i=0 f ( f i(⊥)) = �∞
i=1 f i(⊥) = γ . It is obvious that γ is the least fixpoint of f . �

6.2. Least-fixed-point minimal-removal

For K ∈ CR , let R E BU T K be the set of all rebuts between arguments in AR K , i.e.

R E BU T K = {(X, Y ) | X, Y ∈ AR K and X rebuts Y }
Definition 23. A removal assignment is defined as a mapping assigning to each K ∈ CR , a subset of REBUT K representing a 
set of rebuts that should be removed.

The set of all removal assignments is denoted by REMASR .

For π, π ′ ∈ REMASR , define π ⊆ π ′ by: π(K ) ⊆ π ′(K ) for each K ∈ CR;
Further let A ⊆ REMASR . Define 

⋃
A, 

⋂
A by

– ∀K ∈ CR : (
⋃

A)(K ) = ⋃{π(K ) | π ∈A}
– ∀K ∈ CR : (

⋂
A)(K ) = ⋂{π(K ) | π ∈A}

It is obvious that (REMASR, ⊆) is a complete lattice where 
⋃

A, 
⋂

A represent the supremum and infimum of A ⊆
REMASR wrt ⊆. The infimum of (REMASR, ⊆), that assigns the empty set of rebuts to each knowledge base K ∈ CR , is 
denoted by ∅.

We introduce below the attack removal functions according to a contra-positive reading of the regular properties.
Let ER, AM, LO, SA, CI stand for effective rebuts, attack monotonicity, link-orientation, strong subargument structure and 

context-independence respectively.

Definition 24. The attack removal functions

F E R, F AM, F L O , F C I, F S A : REMASR −→ REMASR

are defined as follows:
Let K ∈ CR and π ∈ REMASR .

1. F E R(π)(K ) is the set of rebuts that have become ineffective (according to the effective rebut property) due to the 
introduction of the priorities between defeasible rules, i.e.

(A0, A1) ∈ F E R(π)(K ) iff A0, A1 ∈ AR K and each Ai , i = 0, 1, contains exactly one defeasible rule di and A0 rebuts A1
and d0 ≺ d1.
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2. F AM(π)(K ) is the set of rebuts that should be removed as the consequence of the removal of the rebuts in π(K )

according to a contrapositive reading of the attack monotonicity property, i.e.

F AM(π)(K ) = S1 ∪ S2

where

S1 = {(A, B) | A, B ∈ AR K , A rebuts B and there is a weakening B ′ of B s.t. (A, B ′) ∈ π(K )}
S2 = {(A, B) | A, B ∈ AR K , A rebuts B and there is a strengthening X of A s.t. (X, B) ∈ π(K )}

3. F L O (π)(K ) is the set of rebuts that should be removed as the consequence of the removal of the rebuts in π(K )

according to a contrapositive reading of the link-orientation property, i.e.

F L O (π)(K ) = {(A, B) | A, B ∈ AR K , A rebuts B and

∃B0 ∈ AR K , A S ⊆ AR K such that

B ∈ B0 ↓ A S, and

if A rebuts B0 then (A, B0) ∈ π(K ), and

∀X ∈ A S : if A rebuts X then (A, X) ∈ π(K )}
4. F C I(π)(K ) is the set of rebuts that should be removed as the consequence of the removal of the rebuts in π(K ′)

according to a contrapositive reading of the context-independence property, i.e.

F C I(π)(K ) = {(A, B) | A, B ∈ AR K , A rebuts B and ∃K ′ ∈ CR : (A, B) ∈ π(K ′)}
5. F S A(π)(K ) is the set of rebuts that should be removed as the consequence of the removal of the rebuts in π(K )

according to a contrapositive reading of the strong subargument structure property, i.e.

F S A(π)(K ) = {(A, B) | A, B ∈ AR K , A rebuts B and

for each basic defeasible subargument X of B:

if A rebuts X (at X) then (A, X) ∈ π(K )}

Example 10. Continuing Example 9, let π1 = F E R(∅). It holds: π1(K ) = {(A′
2, A3)} and π1(K ′) = ∅.

Let π2 = F AM(π1). Since A2 is a weakening of A′
2, and (A′

2, A3) ∈ π1(K ), it follows directly from the definition of FAM 
that (A2, A3) ∈ π2(K ).

It is not difficult to see that π2(K ′) = ∅.
Let π3 = F C I(π2). From (A2, A3) ∈ π2(K ), it follows (A2, A3) ∈ π3(K ′).

Suppose the preference is revised to d3 ≺ d2.
Let π1 = F E R(∅). It holds: π1(K ) = {(A3, A′

2)} and π1(K ′) = ∅.
Let π2 = F L O (π1). From A2 ∈ A′

2 ↓ {A1} and A3 rebuts A′
2 and (A3, A′

2) ∈ π1(K ) and A3 does not rebut A1, it follows 
(A3, A2) ∈ π2(K ).

Consider the knowledge base K B in Example 1 (Fig. 1).
Let π1 = F E R(∅). It is clear that π1(K B) = {(N1, A2), (N1, N2)}.
It holds that F S A(π1)(K B) = {(N1, A2), (N1, N2), (N1, N ′

2)}.

It is easy to see that all functions FER, FAM, FLO, FSA, FCI are monotone.

Lemma 9. Let π, π ′ ∈ REMASR such that π ⊆ π ′ . Further let X ∈ {F E R, F AM, F L O , F S A, F C I}. Then X (π) ⊆X (π ′).

Proof. Follows immediately from Definition 24. �
We define the operator � on functions of removal assignments. Let X ,Y : REMASR −→ REMASR . Define

X �Y : REMASR −→ REMASR

by

(X �Y)(π) = X (π) ∪Y(π)

Definition 25. Define

REMOVE = F E R � F AM � F L O � F S A � F C I

The following Lemma 9 holds obviously:
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Lemma 10. REMOVE is monotone, i.e. for all π, π ′ ∈ REMASR such that π ⊆ π ′ , REMOVE(π) ⊆ REMOVE(π ′).

We show next the continuity of removal functions.

Lemma 11.

1. All removal functions F E R, F AM, F L O , F C I, F S A are continuous, i.e. for each directed � ⊆ REMASR , for each X ∈ {F E R, F AM,

F L O , F C I, F S A}, it holds:

X (
⋃

�) =
⋃

X (�)

2. REMOVE is continuous and

lf p(REMOVE) =
∞⋃

i=1

REMOVEi(∅)

Proof. See Appendix C. �
Lemma 12. Batts \ l f p(REMOVE) is weakly regular and coincides with W attR , i.e.18

W attR = Batts \ l f p(REMOVE)

Proof. See Appendix C. �
Theorem 6 below gives a least-fixed point characterization of the canonical attack relation assignment.

Theorem 6.

1. If the canonical attack relation assignment AttR exists, it holds:

AttR = W attR = Batts \ l f p(REMOVE)

2. If R satisfies the self-contradiction property then AttR exists and

AttR = W attR = Batts \ l f p(REMOVE)

Proof. Follows immediately from Lemmas 5, 12. �
7. Canonical attack relations and normal attack relations

There is a close relationship between canonical and normal attack relations. Even though they are different as illustrated 
in the following Example 11, they coincide for a relevant class of well-prioritized rule-based systems. Moreover, normal and 
canonical attack relations are equivalent wrt stable semantics in general.

Example 11. Let R consist of the following rules:

d0 :⇒ a d1 :⇒ b d2 : a ⇒ c d3 : b ⇒ ¬c

r0 : a → ¬b r1 : b → ¬a

and d2 ≺ d3 (a graphical presentation of the rules is given in Fig. 11 where a bar on an arrow indicates that the conclusion 
of the rule is negated).

Let K0 = (R, ∅).
Consider the arguments A0 = [d0], A1 = [d1], A2 = [[d0], d2], A3 = [[d1], d3], B0 = [[d0], r0], B1 = [[d1], r1].
We show that the basic attack relation assignment Batts is also the canonical attack relation assignment. It is clear that 

R is closed under transposition. Hence from Lemma 7, it follows that all regular properties except the effective rebut one 
are satisfied.

Since the set {a, b} is inconsistent, there is no knowledge base K ∈ CR such that {a, b} ⊆ B E K . Therefore arguments 
[[a], d2] and [[b], d3] never coexist in the same knowledge base. Hence the effective rebut property is always satisfied. 
Therefore Batts is a regular attack relation assignment for R. Batts is hence also the canonical attack relation assignment.
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Fig. 11. Rebut-redundance.

It is not difficult to see that for any K ∈ CR , attsnr(K ) ⊆ Batts(K ) \ {(A2, A3)} (Note that for each K ∈ CR , (A2, A3) ∈
Batts(K )).

Looking closely at A2, A3, B0, B1, we can say that the rebutting between arguments A2, A3 is “redundant” as “their 
conflict” lies deeper down between B0, B1. Resolving the conflict between B0, B1 would lead to a resolution of the conflict 
between A2, A3. Introducing a priority between d2, d3 is unnecessary and unhelpful. This observation raises two interesting 
questions:

– When is it helpful and sensible to introduce preferences between defeasible rules?
We study this question by introducing a class of well-prioritized systems where priorities are sensible. We show that 
for well-prioritized knowledge bases, the canonical and normal attack relations coincide.

– What could we say about the relationship between canonical and normal attack relations in (possibly not well-
prioritized) systems?
We do not have a comprehensive answer to this question. We will show that in general, for any knowledge base, the 
canonical and normal attack relations are equivalent wrt stable semantics, i.e. they deliver the same stable extensions. 
We let it open the question whether the same can be said for other semantics like the preferred extension semantics. In 
a way, the coincidence of the two attack relations for the class of well-prioritized systems could be viewed as providing 
a partial answer to this open question.

Before showing the coincidence of normal and canonical attack relations for well-prioritized knowledge bases as well 
as their equivalence wrt stable semantics, we first present a result to shed further light on the structure of regular attack 
relations with regards to the strengthening operation.19

Let A be a defeasible argument and d ∈ ldr(A). Let X be a maximal basic defeasible subargument of A whose last link 
is d.20 It is clear that X is of the form X = [X1, . . . , Xn, d].

Let Y1, . . . , Ym be the maximal basic defeasible subarguments of A that are different to X.21

We define a d-strengthening of A, denoted by str(A, d) to be a strengthening of A where the subarguments X1, . . . , Xn,

Y1, . . . , Ym are replaced by their conclusions.22

Lemma 13. Let atts be a regular attack relation assignment for R. Further let K ∈ CR , A, B ∈ AR K and d ∈ ldr(A) such that the 
following properties hold:

– A attacks B (wrt atts(K)).
– A rebuts B (at B) and A does not rebut any proper subargument of B.
– Both str(B, last(B)) and str(A, d) belong to AR K .

The following conditions hold:

1. str(A, d) attacks str(B, last(B)) (wrt atts(K)).
2. d �≺ last(B).

Proof. See Appendix D. �

18 I.e. W attR(K ) = Batts(K ) \ l f p(REMOVE)(K ) for each K ∈ CR .
19 The readers could skip Lemma 13 below if they are not interested in the proofs of the following Lemmas 14, 18.
20 Note that a maximal basic defeasible subarguments of A is a basic defeasible subargument of A that is not a proper subargument of any basic defeasible 

subargument of A.
21 It is easy to see that if A is basic defeasible then X = A, d = last(A) and m = 0.
22 It is clear that str(A, d) contains exactly one defeasible rule that is d.
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7.1. Well-prioritized rule-based systems

For this section, let R = (R S, R D, 	) be an arbitrary but fixed rule-based system. Further let λ, β ∈L.
We say that λ directly depends on β iff there is a rule r ∈ R S ∪ R D such that λ = hd(r) and β ∈ bd(r).
λ depends on β iff λ = β or λ depends on α that directly depends on β .
The set of all sentences in L on which λ depends is denoted by �(λ). For a set S ⊆ L, �(S) is the union of �(λ) for 

λ ∈ S .

Definition 26 (Well-prioritized systems). A rule-based system R = (R S, R D, 	) is said to be well-prioritized iff for each defea-
sible rule d ∈ R D , the following condition holds:

If there exists d′ ≺ d then the set �(bd(d)) ∪ �(¬hd(d)) is consistent.

Example 12.

– Consider defeasible rule d3 in Example 11 again. Since �(bd(d3)) ∪ �(¬hd(d3)) = �(b) ∪ �(c) = {a, b, c} is inconsistent 
and d2 ≺ d3, the rule-based system not well-prioritized.

– Consider rule d2 in Example 1. �(bd(d2)) ∪�(¬hd(d2)) = �(¬Inno(P2)) = {¬Inno(P2), Inno(P1), Inno(S)} is consistent. 
Since d1 ≺ d2 is the only preference, the concerned rule-based system is well-prioritized.

– Consider rule d3 in Example 3. �(bd(d3)) ∪ �(¬hd(d3)) = �(A) ∪ �(T ) = {A, D, T , P } is consistent. Since d2 ≺ d3 is the 
only preference, the concerned rule-based system is well-prioritized.

To see the intuition of the idea of well-prioritized systems, let us remember that the “minimal interpretation” of a 
preference d′ ≺ d is that in situations when both d′, d are applicable but accepting both d′, d is not possible, d should be 
preferred. In other words, in situations where d′ is not applicable, a preference d′ ≺ d is redundant and unnecessary.

For simplicity, let us assume that the heads of d′, d are contrary.
It is obvious that in situation when bd(d′) ∪ bd(d) hold, but bd(d′) ∪ bd(d) ∪ {hd(d′)} = bd(d′) ∪ bd(d) ∪ {¬hd(d)} is 

inconsistent, d′ would not be applicable. Hence imposing a preference of d over d′ is unnecessary and unhelpful in this 
case.

Therefore we can say that imposing a preference of defeasible rule d over some defeasible rule d′ would be only helpful 
and sensible if bd(d′) ∪ bd(d) ∪ {¬hd(d)} is consistent.

From bd(d′) ∪bd(d) ∪{¬hd(d)} ⊆ �(bd(d)) ∪�(¬hd(d)), we can say that in well-prioritized systems, preferences between 
defeasible rules are sensible.

Before showing the coincidence of normal and canonical attack relations for well-prioritized knowledge bases, we first 
show a lemma stating in essence that for well-prioritized systems, the direct attacks wrt normal and canonical attack 
relations coincide.

Lemma 14. Suppose R be a well-prioritized rule-based system such that the canonical attack relation assignment AttR exists. Further 
let K ∈ CR and A, B ∈ AR K and d ∈ ldr(A) such that A rebuts B (at B) and d ≺ last(B). Then (A, B) �∈ AttR(K ).

Proof. See Appendix D. �
From Lemma 6 and the above Lemma 14, it follows immediately

Lemma 15. Suppose R be a well-prioritized rule-based system satisfying the self-contradiction property. Further let K ∈ CR and 
A, B ∈ AR K such that A rebuts B (at B). It holds that A does not attack B wrt AttR(K ) iff there exists d ∈ ldr(A) s.t. d ≺ last(B).

We can now prove the coincidence of canonical and normal attack relations for well-prioritized systems.

Theorem 7. Let R be a well-prioritized rule-based system satisfying the self-contradiction property. The canonical attack relation 
assignment AttR and the normal attack relation assignment attsnr coincide.

Proof. Because attsnr ⊆ AttR , we only need to show that for each K ∈ CR , if (A, B) �∈ attsnr(K ) then (A, B) �∈ AttR(K ).
Let K ∈ CR and (A, B) �∈ attsnr(K ). It is clear that A does not undercut B. If A does not rebut B then the theorem holds 

obviously.
Suppose A rebuts B. Therefore for all basic defeasible subarguments X of B, if A rebuts X (at X) then ∃dX ∈ ldr(A) s.t. 

dX ≺ last(X). From Lemma 15, it holds that for all basic defeasible subarguments X of B, if A rebuts X (at X) then A does 
not attack X wrt AttR(K ).

We show that A does not attack B wrt AttR(K ). Suppose the contrary that A attacks B wrt AttR(K ). Since AttR
is regular, it satisfies the strong subargument structure property. Let X0 be a basic defeasible subargument of B s.t. A 
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directly attacks X0 (wrt AttR). As A rebuts B, it follows A rebuts X0 (at X0). Therefore A does not attack X0 wrt AttR(K ). 
Contradiction. �

It is not difficult to see that checking the well-prioritizedness of a rule-based system is polynomial wrt number n of 
rules in it.

1. For each λ ∈L, computing �(λ) is polynomial as the computation of �(λ) could be done with maximal n iterations to 
check which rules could be backward-applied to generate �(λ) and once such a rule is found, it will be removed from 
the set of rules that have not been applied yet.

2. For any defeasible rule d, checking whether �(¬hd(d)) ∪ �(bd(d)) is consistent is polynomial as it could be done in 
two steps:
(a) Compute �(¬hd(d)) ∪ �(bd(d)).
(b) Compute the closure �(¬hd(d)) ∪ �(bd(d)). This step is polynomial as it could be done with maximal n iterations 

to check which strict rules could be forward-applied and once such a rule is found, it will be removed from the set 
of rules that have not been applied yet.

3. For any defeasible rule d, checking whether there exists d′ ≺ d is linear.

7.2. Equivalence of canonical and normal attack relations wrt stable semantics

Even though in general canonical attack relations and normal attack relations are different, they turn out to be equivalent 
for stable semantics in the sense that their stable extensions coincide as we will prove shortly below.

We first introduce some useful lemmas.

Lemma 16. Let atts, atts′ be regular attack relation assignments for R. Further let K ∈ CR and S ⊆ AR K such that S contains all 
arguments generated from its arguments. Then S is conflict-free wrt atts(K ) iff S is also conflict-free wrt atts′(K ).

Proof. Suppose S is conflict-free wrt atts(K ) and S is not conflict-free wrt atts′(K ). Since atts(K ) and atts′(K ) have the 
same set of undercuts, some argument in S rebuts another. Since all subarguments of arguments in S belong to S, S is 
inconsistent. Because atts(K ) satisfies the inconsistency-resolving property, some argument in S is attacked (wrt atts(K)) 
by some generated by S. Since S contains all arguments generated from its arguments, S is not conflict-free wrt atts(K). 
Contradiction. Therefore S is also conflict-free wrt atts′(K ). �
Lemma 17. Let atts, atts′ be regular attack relation assignments for R such that atts ⊆ atts′ . Then

1. each stable extension of (AR K , atts(K )) is a stable extension of (AR K , atts′(K )); and
2. each stable extension of (AR K , atts(K )) is a stable extension of (AR K , AttR(K )).

Proof. It is clear that assertion (2) follows immediately from assertion (1) and the definition of AttR . We hence need only 
to prove assertion (1).

Let E be a stable extension of (AR K , atts(K )). From Lemmas 2 and 16, it is clear that E is also conflict-free wrt atts′(K ). 
As E attacks each argument in AR K \ E wrt atts(K ) and atts(K ) ⊆ atts′(K ), it is obvious that E attacks each argument in 
AR K \ E wrt atts′(K ). E is hence stable wrt atts′(K ). �
Lemma 18. Let R be a rule-based system satisfying the self-contradiction property and atts be a regular attack relation assignment 
of R. Further let K ∈ CR . Each stable extension of (AR K , atts(K )) is also a stable extension of (AR K , attsnr(K )).

Proof. See Appendix D. �
Theorem 8. Suppose the rule-based system R satisfies the property of self-contradiction. Then for each K ∈ CR , each stable extension 
wrt attsnr(K ) is also a stable extension wrt AttR(K ) and vice versa.

Proof. From Theorem 3, the canonical attack relation assignment AttR exists. From Lemma 18, every stable extension wrt 
AttR(K ) is a stable extension wrt attsnr(K ). Since attsnr(K ) ⊆ AttR(K ), every stable extension wrt attsnr(K ) is a stable 
extension wrt AttR(K ) (Lemma 17). �
8. Discussion

8.1. The lower-semilattice structure of value-based semantics

The value-based approaches to argumentation [4,10,47,43,44] define the semantics of defeasible knowledge bases by first 
defining a preference relation between arguments and then using the preference relation to define attack relation between 
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arguments. We show in this section that the preference relations between arguments have a complete lower-semilattice 
structure and hence a least preference relation exists that captures the canonical semantics.

We first introduce a new operator about a “structured intersection” of relations that is needed to characterize the struc-
ture of preference relations between arguments.

Any relation R ⊆ X × X over a set X could be partitioned into a strict core, denoted by Rst and symmetric core, denoted 
by Rsy as follows: R = Rst ∪ Rsy where Rst = {(a, b) ∈ R | (b, a) �∈ R} and Rsy = {(a, b) ∈ R | (b, a) ∈ R}.

For any relations R, R ′ ⊆ X × X , we introduce a “strong intersection”-operator R � R ′ by: R � R ′ = (Rst ∩ R ′
st) ∪ (Rsy ∩ R ′

sy).
Further, we define a partial order R � R ′ by: R � R ′ iff Rst ⊆ R ′

st and Rsy ⊆ R ′
sy .

Definition 27. An argument preference assignment (or ap-assignment for short) for a rule-based system R is a function 
Γ assigning to each knowledge base K ∈ CR , a relation �Γ,K ⊆ AR K × AR K (whose strict core is �Γ,K ) representing a pref-
erence relation between arguments in AR K where strict arguments are not strictly less preferred than any other arguments.

For ap-assignments Γ0, Γ1, we write Γ0 � Γ1 iff for each K ∈ CR , Γ0(K ) � Γ1(K ).
We recall the definition of attack relations from the argument preferences [43,44] below.

Definition 28. Let Γ be an ap-assignment defined for R. The attack relation assignment derived from Γ and denoted by 
attsΓ , is defined by: For each K ∈ CR and all A, B ∈ AR K , (A, B) ∈ attsΓ (K ) iff A undercuts B or A rebuts B (at B ′) and 
A ��Γ,K B ′ .

It is easy to see that the following lemma holds.

Lemma 19. Let Γ0, Γ1 be ap-assignments defined for R such that Γ0 � Γ1 . It holds attsΓ1 ⊆ attsΓ0 .

Proof. Let K ∈ CR and A, B ∈ AR K such that (A, B) ∈ attsΓ1(K ).
If A undercuts B then it is obvious that (A, B) ∈ attsΓ0(K ).
Suppose A rebuts B (at B ′) and A ��Γ1,K B ′ . Since Γ0 � Γ1 it holds that �Γ0,K ��Γ1,K . Therefore �Γ0,K ⊆�Γ1,K . Therefore 

A ��Γ1,K B ′ implies A ��Γ0,K B ′ . Since A rebuts B (at B ′) and A ��Γ0,K B ′ , it follows that (A, B) ∈ attsΓ0 (K ). �
Definition 29. An ap-assignment Γ is regular for R iff its derived attack relation assignment attsΓ is regular.

The set of all regular ap-assignments for R is denoted by A PR .

Notation 4. The “strong intersection”-operator is extended to non-empty set P of ap-assignments and denoted by �P as 
follows: (�P)(K ) = �{Γ (K ) | Γ ∈P}.

The following lemma shows that the “strong intersection” forms an infimum operation for regular ap-assignments.

Lemma 20. Let P be a non-empty set of regular apr-assignments for R. Then �P is regular.

Proof. See Appendix E. �
Theorem 9.

1. If A PR is non-empty then (A PR, �, �) forms a complete lower-semilattice with C AR = �A PR being the least regular ap-
assignment for R and is referred to as the canonical ap-assignment.

2. If the rule-based system R satisfies the self-contradiction property then the set of regular ap-assignments A PR is not empty and 
attsC AR = AttR .

Proof. See Appendix E. �
One of the arguably most influential representatives of the value-based approach could be said to be ASPIC+ [43,44]

where four ap-assignments are introduced and studied.

Definition 30. [43,44] Let K be a knowledge base and 	 be the preference relation over defeasible rules of K and �, �′ be 
two finite sets of defeasible rules of K and y ∈ {E, D},23 define:

� �y �′ iff � �= ∅ and one of the following conditions holds:

23 E, D stand for Elitist and Democratic respectively.
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1. �′ = ∅.
2. y = E and ∃d ∈ � s.t. ∀d′ ∈ �′ : d 	 d′ .
3. y = D and ∀d ∈ � ∃d′ ∈ �′ : d 	 d′ .

�y denotes the strict core of �y .

Definition 31. [43,44] Let K be a knowledge base, A, B be two arguments in AR K and y ∈ {E, D}.

1. B is preferred to A according to the last link principle and the y-ordering (or y-principle), denoted by A �ly B if and 
only if ldr(A) �y ldr(B).

2. B is preferred to A according to the weakest link principle and the y-ordering (or y-principle), denoted by A �wy B
if and only if dr(A) �y dr(B).

As we have mentioned in Example 1, attack relations derived from ASPIC+ ap-assignments based on democratic principle 
do not satisfy the attack monotonicity property. To see this point, consider arguments N1, N ′

1 and A2 in Fig. 1. It is not 
difficult to see that N1 �xD A2, but N ′

1 ��xD A2 for both x = l and x = w . Therefore, with respect to the democratic princi-
ple, N ′

1 attacks A2, but N1 does not attack A2. A clear violation of the property of attack monotonicity. In other words, 
ASPIC+ ap-assignments based on democratic principle are not regular. This helps in explaining why applying the democratic 
principle leads to semantics that are counter-intuitive to commonsense in Example 1 as we have discussed before.

The following example taken from [23] shows that ASPIC+ ap-assignments based on elitist principle are not regular 
because their derived attack relations do not satisfy the consistency postulate.

Example 13. Consider the knowledge base K consisting of

1. an empty base of evidence, and
2. four strict rules

r1 : a2,a3,a4 → ¬a1 . . . . . . . . . r4 : a1,a2,a3 → ¬a4

together with four defeasible rules

di :⇒ ai, 1 ≤ i ≤ 4

and
3.

	 = {d1,d2} × {d1,d2} ∪ {d3,d4} × {d3,d4}
It is clear that 	 is a preorder and the knowledge base is consistent and closed under transposition.
There are in total 8 arguments:

Ai ≡ [⇒ ai], 1 ≤ i ≤ 4

and

B1 ≡ [A2, A3, A4 → ¬a1], . . . . . . , B4 ≡ [A1, A2, A3 → ¬a4]
We first show

{d1,d3,d4} �E {d2}
From d1 	 d2, it is clear that {d1, d3, d4} �E {d2}. From d2 �	 d3, it is obvious that {d2} � �E {d1, d3, d4}.

Similarly, it holds:

{d2,d3,d4} �E {d1} {d1,d2,d3} �E {d4} {d1,d2,d4} �E {d3}
Therefore for 1 ≤ i ≤ 4, Bi does not attack Ai according to the ASPIC+ argument preferences based on the elitist principle. 

Therefore both attack relations based on ASPIC+ elitist ap-assignments equal the empty set. It is obvious that the grounded 
extension (that is also stable) is {A1, . . . , A4, B1, . . . , B4} whose set of conclusions {a1, . . . , a4, ¬a1, . . . , ¬a4} is obviously 
inconsistent. Hence the consistency postulate is violated.24

24 The readers are referred to [23] for further discussion.
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8.2. Ordinary attack relations

A class of ordinary attack relation assignments defined on sensible classes of knowledge bases as well as their relation-
ship to other approaches on reasoning with prioritized rules has been studied in [30,23].

Formally, a class K of knowledge bases [23] is said to be sensible iff K is not empty, and every knowledge base in K is 
consistent, and for each knowledge base K = (R, B E) belonging to K, all consistent knowledge bases of the form (R, B E ′)
also belong to K.

Let K be a sensible class of knowledge bases. Further let CR be the set of all rule-based systems of knowledge bases 
in K. It is not difficult to see that K = ⋃{CR | R ∈ C R}.

It follows immediately that for each consistent rule-based system R, CR is a sensible class of knowledge bases.
To relate regular attack relations to ordinary ones, we will first consider only ordinary attack relation assignments de-

fined on CR . We will discuss the situations when attack relation assignments should be considered wrt sensible classes of 
knowledge bases at the end of this section.

An attack relation assignment att (defined for CR) is ordinary [23] if it is weakly regular and also satisfies the important 
property of credulous cumulativity stating intuitively that if some beliefs in your belief set are confirmed in the reality then 
your belief set will not change because of it. Credulous cumulativity is a key property satisfied by many argument-based 
and non-argument-based approaches to reasoning with prioritized rules [30,23]. We give the formal definition of credulous 
cumulativity below.

A set S ⊆ L is said to be a belief set of knowledge base K wrt an attack relation assignment atts iff there is a stable 
extension E of (AR K , atts(K )) such that S = cnl(E).

Definition 32 (Credulous cumulativity). [23] We say attack relation assignment atts satisfies the property of credulous cumula-
tivity if and only if for each K ∈ CR , for each belief set S of K wrt atts and for each finite subset Ω ⊆ S of domain literals, 
S is a belief set of K + Ω = (R S K , R D K , 	K , B E K ∪ Ω) wrt atts.

For an illustration, consider again Example 3. Let K ′ = (R, B E ′) where B E ′ = {D}. As {D, P , A, ¬T } is a belief set of K ′ , 
the property of credulous cumulativity dictates that {D, P , A, ¬T } is also a belief set of K = K ′ + {P } = (R S K , R D K , 	K ,

{D, P }).
We show below that regular attack relation assignments are ordinary by showing that they satisfy the credulous cumu-

lativity property.

Theorem 10. The credulous cumulativity property is satisfied by all regular attack relation assignments.

Proof. See Appendix E. �
In [23], a natural property of irrelevance of redundant defaults stating that adding a defeasible rule of the form ⇒ f to 

a knowledge base K for any evidence f ∈ B E K should not change its semantics is presented and shown that it is satisfied 
by attack relation assignments satisfying the properties of attack monotonicity and context-independence. Adding rules to 
knowledge bases change their underlining rule-based systems. Therefore attack relation assignments for sensible classes 
of knowledge bases should be considered when studying the semantics of knowledge base revisions involving adding or 
deleting rules from the rule-based systems.

In this paper we do not discuss the problems concerning revisions of knowledge bases involving adding or deleting 
rules from the rule-based systems. Hence we could safely restrict our consideration on sensible classes of knowledge bases 
sharing the same rule-based system.

8.3. Remark on the underlying domain language Ldom

We assume until now that the underlying language of knowledge bases consists only of literals. In contrast, the underly-
ing language of ASPIC+ systems [43] could be any logical language. Similarly, assumption-based systems [31,32] do not put 
any restriction on their underlying language.

From our own experiences in research on application of structured argumentation [33,28,26,40,46], we believe that 
many applications will be based on language of literals. Hence, from a pragmatic point of view, it is sensible to focus on an 
underlying language of literals first.

Anyway, readers who prefer to work with a general underlying language, could simply assume that the domain language 
Ldom be any logical language containing a classical negation operator ¬ (note that non-domain atoms of the form abd
do not belong to Ldom). In all definitions, notations, lemmas and theorems in this paper starting from Definition 1 up to 
the last definition, references are always made to Ldom , and not to a specific language of literals. Hence all theorems and 
lemmas in this paper are also correct with respect to a general language Ldom . More formally, we extend in the section 9
our framework to allow a general language Ldom together with negation-as-failure assumptions.
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Fig. 12. Extended knowledge base.

9. Extending knowledge bases with assumptions

Assumption-based argumentation [31,32] is a well-known approach to structured argumentation based on the concept 
that assumptions are acceptable if there is no evidence to the contrary. We show in this section that assumptions could 
naturally be incorporated into our framework.

Let Ldom be a logical language possibly containing a classical negation operator ¬. Further L be the language consisting 
of sentences in Ldom and non-domain atoms of the form abd .

Definition 33.

1. An extended rule-based system over L is a triple (R, A, ) where
(a) R = (R S, R D, 	) is a rule-based system over L, and
(b) A ⊆Ldom is a set of assumptions such that assumptions in A do not appear in the heads of rules in R, and
(c) is a (total) one-one mapping from A into Ldom , where x is referred to as the contrary of x.

2. An extended knowledge base consists of an extended rule-based system (R, A, ) and a set of evidences B E ⊆ Ldom
disjoint to A.

Remark 1. Abusing slightly the notation for simplicity, we often denote an extended rule-based system (R, A, ) simply by 
the pair (R, A) or just R if no misunderstanding is possible.

Similarly, an extended knowledge base (R, A, , B E) is often denoted by the triple (R, A, B E) or just the pair (R, B E)

if no misunderstanding is possible.

Remark 2. Extended knowledge bases could also be viewed as extended assumption-based systems where defeasible rules 
together with two new types of attacks, rebuts and undercuts, are added. As illustrated in the following example, such 
additions could provide a more flexible platform for developers for representing their domains.

Example 14. An extended knowledge base (R S, R D, 	, B E) representing the well-known example of “penguins don’t fly 
while birds and super-penguins do” is given by:

– RS consisting of the strict rules

sp → p, p → b, p → ab

stating that super-penguins are penguins, penguins are birds and penguins are abnormal birds, and
– RD containing three defeasible rules:

sp ⇒ f , not_ap, p ⇒ ¬ f , not_ab, b ⇒ f

stating that super-penguins fly by default while penguin normally do not fly and birds normally fly.
– 	 consisting of an unique preference

(not_ap, p ⇒ ¬ f ) 	 (sp ⇒ f )

stating that the rule “super-penguins fly (by default)” has higher priority than the rule “penguins normally do not fly”, 
and

– B E = {sp}.

The relevant arguments are given in Fig. 12.
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Notation 5 (Adaptations for extended knowledge bases).

1. Arguments wrt extended knowledge base K = (R, A, B E) are defined as in Definition 2 where condition 1 is revised as 
follows:

For each α ∈ B E ∪A, [α] is an argument with conclusion α

Arguments of the form [α], α ∈A, are also called assumption-arguments.
2. A strict argument is an argument containing no defeasible rule and no assumptions. An argument is defeasible iff the 

set of defeasible rules of A is not empty, i.e. ldr(A) �= ∅. A defeasible argument A is called basic defeasible iff last(A) is 
defeasible. An argument is non-defeasible iff it is not defeasible.
Note that a non-strict argument could also be non-defeasible if it contains some assumptions but no defeasible rules.

3. Let X ⊆L and l ∈ L. Further let Xdom = X ∩Ldom .
We say that l is strictly derived from X wrt K, denoted by X �K l, iff l ∈ X or l is the conclusion of an argument 
constructed using only elements from Xdom and the strict rules from K.25

The closure of a set X ⊆L wrt knowledge base K, denoted by C NK (X), is defined by C NK (X) = {l | X �K l}.
X is said to be closed wrt K iff X = C NK (X). X is said to be inconsistent wrt K iff its closure C NK (X) is contradictory. 
X is consistent wrt K iff it is not inconsistent wrt K .
K is said to be consistent iff its base of evidence B E K is consistent wrt K .

4. Attack relations are defined as in Definition 5.
5. The basic postulates are defined as in Definition 6.
6. R and K are said to satisfy the self-contradiction property iff for each minimal inconsistent set X ⊆Ldom , for each x ∈ X , 

it holds:
– X �R S ¬x if x �∈A
– X �R S x if x ∈A

Notation 6.

– We say an argument A undermines an argument B (at [α]) iff conl(A) = α, α ∈A and [α] is a subargument of B .
– The notions of undercut and rebut for extended knowledge bases are defined as in Definition 7.
– An argument A is said to be generated by a set S of arguments iff all basic defeasible subarguments of A as well as all 

assumption-subarguments of A are subarguments of arguments in S .
– Given an extended rule-based system (R, A), the class of all consistent extended knowledge bases of the form (R, A, B E)

is denoted by ER,A or just simply ER if no misunderstanding is possible.
– The notion of attack relation assignments are defined for extended knowledge bases in the same way as for knowledge 

bases (see Definition 16) where CR is replaced by ER .
– The notion of weakening is defined for extended knowledge bases in the same way as for knowledge bases (see Defini-

tion 11).

It is not difficult to see that in Example 14, B undermines A3 while A1, A2 as well as A2, A3 rebut each other.

Notation 7 (Adaptations for extended knowledge bases). All regular properties (see Definitions 9, 12, 14, 17), except the prop-
erties of effective rebuts and strong subargument structure, can be directly adopted for extended knowledge bases. We give 
the revised definition of properties of effective rebuts and strong subargument structure below.

We give an example explaining the reason for a slight revision of the effective rebut property.

Example 15. Let R be an extended rule-based system consisting only of two defeasible rules

d0 :⇒ a, d1 : not_a ⇒ ¬a

and a preference d0 ≺ d1 where not_a is an assumption s.t. not_a = a.
It is clear that argument A0 ≡ [d0] undermines argument A1 ≡ [[not_a], d1]. Therefore even though d0 ≺ d1, A0 still 

attacks A1.

Definition 34 (Effective rebut for extended knowledge base). We say that attack relation att satisfies the effective rebut property
for an extended knowledge base K iff for all arguments A0, A1 ∈ AR K such that

– each Ai , i = 0, 1, contains exactly one defeasible rule di (i.e. dr(Ai) = {di}), and

25 Note that Xdom could contain assumptions.
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– A0 rebuts A1, and
– A0 does not undermine A1,26

it holds that A0 attacks A1 wrt att iff d0 �≺ d1.

Definition 35 (Strong subargument structure for extended knowledge base). Attack relation att of an extended knowledge base 
K is said to satisfy the property of strong subargument structure iff for all A, B ∈ AR K , the following conditions hold:

1. A attacks B (wrt att) iff A attacks a basic defeasible subargument or an assumption-subargument of B (wrt att).
2. If A undercuts or undermines B then A attacks B wrt att .
3. A directly attacks B (wrt att) then A undercuts or undermines or rebuts B (at B).

It is not difficult to see that in Example 14, for any regular attack relation, A1 attacks A2 (from the effective rebut 
property) and B attacks A3 (from the strong subargument property).

It is straightforward to see that both Lemma 2 and Theorem 1 hold for extended knowledge bases.

Lemma 21. Let att be an attack relation for extended knowledge base K satisfying the property of strong subargument structure. 
Further let E be a complete extension of (AR K , att).

1. E contains all arguments generated by E, and
2. att satisfies the postulates of closure and subargument closure.

Proof. Similar to the proof of Lemma 2. �
Theorem 11. Let att, att′ be attack relations for knowledge base K .

1. If att ⊆ att′ and att is inconsistency-resolving for K then att′ is also inconsistency-resolving for K .
2. If att satisfies the strong subargument structure and inconsistency-resolving properties then att satisfies the postulate of consis-

tency.

Proof. Identical to the proof of Theorem 1. �
For any non-empty set S of attack relation assignments of extended rule-based system R, define 

⋃
S by:

∀K ∈ ER : (
⋃

S)(K ) =
⋃

{atts(K ) |atts ∈ S}
The notions of weakly regular and regular attack relations assignments are defined for extended knowledge bases in the 

same way as for knowledge bases (see Definition 18).
The set of all regular attack relation assignments of an extended rule-based system R is denoted by R AER .

Lemma 22. Let R be an extended rule-based system and P be a regular property. Further let S be a non-empty set of attack relation 
assignments wrt R satisfying P. Then 

⋃
S also satisfies P.

Proof. See Appendix F. �
From Lemma 22, the following Theorem 12 holds obviously.

Theorem 12. Suppose R AER is not empty. Then (R AER, ⊆) is a complete upper-semilattice.
The greatest element in (R AER, ⊆) is referred to as the canonical attack relation assignment of R and denoted by AteR =⋃
R AER . �
For extended rule-based systems, we define normal attack relation assignments in the same way as before, namely, for 

any extended knowledge base K ∈ ER and any arguments A, B ∈ AR K , (A, B) ∈ attsenr(K ) if and only if A undercuts or 
undermines B or A normal-rebuts B where the definition of normal-rebuts is the same like in section 5.2.

26 Note that because A0 rebuts A1, A0 can not undercut A1.
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Theorem 13.

1. For any extended rule-based system R, the normal attack relation assignment attsenr is weakly regular.
2. Suppose the extended rule-based system R satisfies the self-contradiction property. Then the normal attack relation assignment 

attsenr is regular and the canonical assignment AteR exists and attsenr ⊆ AteR .

Proof. See Appendix F. �
Notation 8. The notion of well-prioritized rule-based system (Definition 26) is adopted directly for extended rule-based 
systems.

Theorem 14. Let R be a well-prioritized extended rule-based system satisfying the self-contradiction property. The canonical attack 
relation assignment AteR and the normal attack relation assignment attsenr coincide.

Proof. See Appendix F. �
We show next that canonical attack relations and normal attack relations for extended knowledge bases are also equiva-

lent for stable semantics.

Theorem 15. Suppose an extended rule-based system R satisfies the property of self-contradiction. Then for each K ∈ CR , each stable 
extension wrt attsenr(K ) is also a stable extension wrt AteR(K ) and vice versa.

Proof. See Appendix F. �
It is not difficult to generalize the results on least-fixed point characterization of canonical attack relation assign-

ment for extended knowledge bases. While the removal functions REMOVE as well as FER, FAM, FLO, FSA, FCI could 
be adopted directly for the extended case, Lemmas 12, 26, 25 as well as Theorem 6 need to be revised slightly by 
AteR = W ateR = Battsuu ∪ (Battsrb \ l f p(REMOVE)) where W ateR is the supremum of weakly regular attack rela-
tion assignments for extended rule-based system, Battsuu(K ) = {(A, B) | A, B ∈ AR K , A undercuts or undermines B} and 
Battsrb(K ) = {(A, B) | A, B ∈ AR K , A rebuts B}. The reason for the slight modification is illustrated in Example 15. We omit 
the detailed proofs to avoid an unnecessarily long and repetitive presentation.

10. Conclusion

Ii essence, one can say that a key purpose of introducing preferences between defeasible rules is to rule out undesired 
attacks [4,43,47,30,25,23,24]. We develop this idea further by introducing the principle of minimal-removal of attacks stating 
that the removed attacks should be kept to a minimum. This principle is captured declaratively by the canonical attack re-
lation assignment that is the greatest element in the complete upper-semilattice of regular attack relations. We also provide 
a least-fixed point characterization of the canonical attack relation assignment. We further show that for well-prioritized 
rule-based systems, canonical attack relation assignment coincides with the normal attack relation assignments providing 
an efficient characterization of canonical attack relations. It is also worthwhile to note that our framework could easily and 
naturally extended for general underlining language with negation-as-failure assumptions.

Other well-known approaches to structured argumentation are deductive argumentation of Besnard&Hunter [11], defea-
sible logic programming of Garcia&Simari [36,5] and assumption-based argumentation [32]. As the question of how and 
by which principles and guidelines a user of structured argumentation selects an attack relation for her/his domain is a 
common and fundamental problem for all approaches to structured argumentation with preferences, and as the regular 
properties are defined at an abstraction level easily applicable to other approaches of structured argumentation27 and as 
the results we obtained in this paper hold for general underlining languages that could also include assumptions, we have 
convincing reasons to believe that the key results of this paper also hold in other approaches though their formal devel-
opment could be different. This expectation is confirmed for assumption-based argumentation and ASPIC+ by our study 
of extended knowledge bases.28 Further, section 8.1 also provides an in depth discussion about the relationship between 

27 A quick look at the property of inconsistency-resolving reveals that this definition could be applied to any approach to argumentation as long as a 
notion of consistency is present in it. Further the effective rebut property representing a minimal interpretation of preference between defeasible rule as 
well as the attack monotonicity property representing the intuition that an argument based on facts (like strict ones) should be preferred to the ones based 
on defeasible knowledge should obviously also hold across all approaches though their formal development could be different in different approaches. We 
could basically say the same on the definition of the context-independence property.
28 In a recent paper, Cyras&Toni [20] have introduced priorities between assumptions into assumption-based argumentation. It would be interesting to 

see how the two approaches are related.
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our approach and the other line of research that is based on defining pre-order between arguments before resolving their 
conflicts.

Brewka and Eiter [15] have proposed two principles for the evaluation of semantics of prioritized default reasoning. 
These principles, referred to as BE-principles, have been adapted to our framework in [23] and showed that both of them 
are satisfied by the ordinary attack relation assignments. As regular attack relation assignments are ordinary, they hence are 
also satisfied by regular attack relation assignments.29

A more liberal notion of unrestricted rebut where a basic defeasible argument could attack a non-basic defeasible ar-
gument is studied in [18,17]. Intuitively an unrestricted rebut is a rebut against a set of defeasible rules without explicitly 
rebutting any individual rule in it. As the notion of unrestricted rebut leads to counter-intuitive semantics wrt complete 
or stable extensions [17], the semantics of unrestricted rebuts is based on grounded extension. In [17,18], it is proved that 
grounded semantics wrt attack relations generated by the Aspic+ argument preference relations recalled in Definitions 30, 
31, satisfies the consistency postulate if the preference relation 	 between defeasible rules is either empty or a total pre-
order. We show shortly below that in general when the preference relation 	 is neither empty nor a total preorder, the 
grounded semantics of unrestricted rebuts wrt ASPIC+ ap-assignments that are based on the elitist principle fails to satisfy 
the consistency postulate.

Consider the knowledge base K in Example 13. From {d2, d3, d4} �E {d1}, {d1, d3, d4} �E {d2}, {d1, d2, d4} �E {d3}, 
{d1, d2, d3} �E {d4}, it follows that for 1 ≤ i ≤ 4, Ai attacks Bi but Bi does not attack Ai according to the ASPIC+ argu-
ment preferences based on the elitist principle and unrestricted rebuts. Therefore both attack relations based on ASPIC+ 
elitist principle equal {(Ai, Bi) | 1 ≤ i ≤ 4}.

It is obvious that the grounded extension (that is also stable) is {A1, . . . , A4} whose set of conclusion {a1, . . . , a4} is 
obviously inconsistent. Hence the consistency postulate is violated.

In general, the requirement that preference relation 	 should be total preorder is rather strong if we consider that the 
purpose of introducing preferences between rules is to resolve conflicts among them. Hence there is nothing wrong when 
there is no preference between rules if there are no conflicts to be resolved. Further imposing artificial priorities between 
rules could lead to contradictory semantics. For an illustration, consider again the arguments in Fig. 1. Two of the possible 
total preorders that are consistent with the preference d1 ≺ d2 are d1 ≺ d2 ≺ d and d ≺ d1 ≺ d2. Let us consider each of them.

– d ≺ d1 ≺ d2. It is obvious that N ′
1 �D A2 and N1 �D A2. Therefore there is only one stable extension E that is also 

grounded consisting of [S], [d], A2, N2, N ′
2.

– d1 ≺ d2 ≺ d. It is obvious that N ′
1 ��D A2. Therefore N ′

1 attacks A2. Hence apart from the stable extension E, the set 
{A1, N1, N ′

1} is part of another stable extension. The grounded extension consists only of the arguments [S] and [d].

The above discussion raises several interesting questions: Which one of the two cases should be viewed as “natural 
and intuitive”? What are the criteria for picking the “right total preorders” from a partial preorder of priorities between 
defeasible rules? Nevertheless, it would be interesting to see how the notion of unrestricted rebut interacts with the regular 
properties.
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Appendix A. Recall proof of Lemma 1

Note that for a strict argument A over a set X ⊆ Ldom , the set of premises of A, Prem(A), is defined by Prem(A) = {α ∈
X | [α] is a subargument of A}.

Lemma 23. Let R be a knowledge base closed under contraposition or transposition and A be a strict argument wrt K = (R, X) with 
conclusion σ . Then for each α ∈ Prem(A), there is a strict argument B wrt (R, X ∪ {¬σ }) with Prem(B) ⊆ Prem(A) ∪ {¬σ } and 
conclusion ¬α.

Proof. If R is closed under contraposition, the lemma is obvious. We prove the lemma for the case of closure under 
transposition by induction on the structure of A.

Base Case: A = [α], α ∈ X . Obvious.
Inductive Case: Suppose A is of the form [A1, . . . , An → σ ] where cnl(Ai) = αi . Let α ∈ Prem(A). Without loss of gener-

ality, let α ∈ Prem(An). From the closure under transposition, the rule α1, . . . , αn−1, ¬σ → ¬αn also belongs to R S . Let B
be the argument A1, . . . , An−1, ¬σ → ¬αn .

From the induction hypothesis, there is an argument T whose premises are in Prem(An) ∪ {¬αn} and whose conclusion 
is ¬α.

29 The readers are referred to [23] for further discussion.
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Let T ′ be the argument obtained from T by replacing each occurrence of premise ¬αn by the argument B . It is clear 
that Prem(T ′) ⊆ Prem(A) ∪ {¬σ } and cnl(T ′) = ¬α. �
Lemma 1. If R is closed under transposition or contraposition then R satisfies the self-contradiction property.

Proof. Let X be a minimal inconsistent subset of Ldom . Since X is inconsistent, there is a λ ∈ Ldom such that X �R λ and 
X �R ¬λ.

– Let R be closed under contraposition. Let x ∈ X . It is clear {x, λ} �R λ. Since R is closed under contraposition, it follows 
obviously {λ, ¬λ} �R ¬x. Therefore X �R ¬x.

– Let R be closed under transposition. There are two arguments A0, A1 with premises in X and conclusions λ, ¬λ

respectively. From the minimality of X, it holds: X = Prem(A0) ∪ Prem(A1). Let x ∈ X . Without loss of generality, 
suppose x ∈ Prem(A0). From the Lemma 23, it follows that there exists an argument B with conclusion ¬x and 
Prem(B) ⊆ Prem(A0) ∪ {¬λ}. Let A be the argument obtained by replacing each subargument of the form [¬λ] in 
B by argument A1. It is clear that Prem(A) ⊆ X and the conclusion of A is ¬x. �

Appendix B. Upper semilattice of regular attack relations

Lemma 4. Let A be a non-empty set of attack relation assignments.

1. Suppose P is a regular property and every attack relation assignment atts ∈A satisfies P. Then 
⋃

A also satisfies P.
2. If the attack relations assignments in A are regular then 

⋃
A is also regular.

3. If the attack relation assignments in A are weakly regular then 
⋃

A is also weakly regular.

Proof. As statements 2, 3 follow immediately from (1), we need only to prove statement (1). Let atts0 = ⋃
A.

– Suppose every attack relation assignment atts ∈A satisfies the property of strong subargument structure. We show that 
atts0 also satisfies the property of strong subargument structure. Let K ∈ CR and A, B ∈ AR K .
• It is clear that A attacks B (wrt atts0(K )) iff A attacks B (wrt atts(K )) for some atts ∈ A iff A attacks a basic defeasible 

subargument B0 of B (wrt atts(K )) iff A attacks a basic defeasible subargument B0 of B (wrt atts0(K )).
• It is obvious that if A undercuts B then A attacks B wrt atts(K ) for any atts ∈A and hence A attacks B wrt atts0(K ).
• It is obvious that if A directly attacks B (wrt atts0(K )) then A directly attacks B (wrt some atts(K ), atts ∈ A) and 

hence A undercuts B (at B) or rebuts B (at B).
– Suppose every attack relation assignment atts ∈ A satisfies the inconsistency-resolving property. From Theorem 1, it 

follows immediately that atts0 also satisfies the inconsistency-resolving property.
– It is obvious that atts0 satisfies the effective rebut property if each attack relation assignment in A satisfies this prop-

erty.
– Suppose every attack relation assignment atts ∈ A satisfies the attack monotonicity property. We show that atts0 also 

satisfies this property. Let K ∈ CR and A, B, C, D ∈ AR K such that C is a weakening of A and D is a weakening of B.
• Suppose (A, B) ∈ atts0(K ). There exists thus atts ∈ A s.t. (A, B) ∈ atts(K ). Since atts(K ) satisfies the attack mono-

tonicity property, it follows (A, D) ∈ atts(K ). Therefore (A, D) ∈ atts0(K ).
• Suppose (C, B) ∈ atts0(K ). There exists thus atts ∈ A s.t. (C, B) ∈ atts(K ). Since atts(K ) satisfies the attack mono-

tonicity property, it follows (A, B) ∈ atts(K ). Therefore (A, B) ∈ atts0(K ).
– Suppose every attack relation assignment atts ∈ A satisfies the link-orientation property. We show that atts0 also sat-

isfies this property. Let K ∈ CR and A, B, C ∈ AR K such that C is a weakening of B by A S ⊆ AR K (i.e. C ∈ B ↓ A S) and 
A attacks C (wrt atts0(K )) and A does not attack AS (wrt atts0(K )). We show that A attacks B (wrt atts0(K )).
From A attacks C (wrt atts0(K )), it follows that there exists atts ∈ A s.t. (A, C) ∈ atts(K ).
Because A does not attack AS (wrt atts0(K )), A does not attack AS (wrt atts′(K ) for any atts′ ∈ A). Therefore A does 
not attack AS (wrt atts(K ). Since atts satisfies the link-orientation property, it follows that A attacks B (wrt atts(K )). 
Therefore A attacks B (wrt atts0(K )).

– Suppose every attack relation assignment atts ∈ A satisfies the context-independence property. We show that atts0 also 
satisfies this property. Let K , K ′ ∈ CR and A, B ∈ AR K ∩ AR K ′ .
It is clear that (A, B) ∈ atts0(K ) iff there exists atts ∈A s.t. (A, B) ∈ atts(K ) iff (A, B) ∈ atts(K ′) (since atts satisfies the 
context-independence property) iff (A, B) ∈ atts0(K ′). �

Theorem 3.

1. For any rule-based system R, the normal attack relation assignment attsnr is weakly regular.
2. Suppose the rule-based system R satisfies the self-contradiction property. Then the normal attack relation assignment attsnr is 

regular and the canonical assignment AttR exists and attsnr ⊆ AttR .



30 P.M. Dung, P.M. Thang / Artificial Intelligence 255 (2018) 1–42
Proof.

1. Let R be a rule-based system and K ∈ CR .
It is straightforward to see that attsnr satisfies the property of context-independence. It is also obvious that attsnr(K )

satisfies the properties of strong subargument structure, effective rebuts.
We show that attsnr(K ) satisfies the property of link-orientation.
Let A, B, C ∈ AR K for a knowledge base K such that C is a weakening of B by A S ⊆ AR K (i.e. C ∈ B ↓ A S) and A 
does not attack AS wrt attsnr(K ) and (A, C) ∈ attsnr(K ). There is a basic defeasible subargument C ′ of C such that 
either cnl(A) = ablast(C ′) or cnl(A) = ¬cnl(C ′) and there is no d ∈ ldr(A) s.t. d ≺ last(C ′). Since A does not attack AS 
wrt attsnr(K ), the defeasible rule last(C ′) does not occur in any argument belonging to AS. Hence last(C ′) occurs in B. 
Therefore (A, B) ∈ attsnr(K ).
We next show that attnr(K ) satisfies the property of attack monotonicity.
Let K ∈ K and C attacks B wrt attsnr(K ) and C is a weakening of A. It is not difficult to see that if C undercuts B then 
A also undercuts B. Suppose now that C rebuts B (at B ′) and there is no d ∈ ldr(C) s.t. d ≺ last(B ′). From ldr(A) ⊆ ldr(C)

and cnl(C) = cnl(A), it follows obviously that A rebuts B (at B ′) and there is no d ∈ ldr(A) s.t. d ≺ last(B ′). We have 
proved that A also attacks B wrt attnr .
Suppose A attacks B wrt attsnr(K ) and D is a weakening of B. It is easy to see that there exists a basic defeasible 
subargument B ′ of B such that either last(A) = ablast(B ′) or A normal-rebuts B ′ (at B ′). It is easy to see that there is 
a subargument D ′ of D such that D ′ is also a weakening of B ′ . Hence last(D ′) = last(B ′) and D ′ is basic defeasible. It 
holds obviously that either last(A) = ablast(D ′) or A normal-rebuts D ′ (at D ′). A thus attacks D wrt attsnr(K ).

2. We only need to show that attsnr(K ) satisfies the inconsistency-resolving property.
Let K ∈ CR . Let S ⊆ AR K s.t. S is inconsistent.
Let B E0 = cnl(S). Since S is inconsistent, there are two strict arguments A, B of the knowledge base (R, B E0) with 
contradictory conclusions. Let A′ be weakening of A by replacing each subargument [e], e ∈ B E0, of A by an argument 
in S with conclusion e. B ′ is obtained by weakening B in the similar way. Let B E1 be the set of premises of arguments 
A′, B ′ . It is clear that B E1 ⊆ B E K .
Let M D A, M D B be the sets of maximal basic defeasible subarguments of A′, B ′ respectively.
Since A′, B ′ have contradictory conclusion, it follows immediately that the set cnl(M D A ∪ M D B) ∪ B E1 is inconsistent.
Let C be a minimal inconsistent subset of cnl(M D A ∪ M D A) ∪ B E1. Because K is consistent and B E1 ⊆ B E K , C \ B E1 �= ∅.
Let S0 be a minimal subset of M D A0 ∪ M D A1 such that cnl(S0) = C \ B E1. S0 therefore is non-empty and finite. Because 
S0 is minimal and rules do not contain non-domain atoms in their bodies, cnl(S0) does not contain any non-domain 
atom.
Let LD = {last(X) | X ∈ S0}. LD is hence finite and non-empty. From the transitivity of 	, it follows that ≺ is a strict 
partial order. Therefore ≺ is a strict partial order on LD . Thus there exists a minimal element wrt ≺ in LD. Let A ∈ S0
s.t. last(A) is minimal (wrt ≺) in LD. Since cnl(S0) does not contain any non-domain atom, hd(last(A)) ∈ Ldom . From the 
self-contradiction property, C � ¬hd(last(A)). We could then construct an argument B such that B rebuts A (at A) and 
all maximal basic defeasible subarguments of B are arguments in S0 . Therefore ldr(B) ⊆ LD . Since last(A) is minimal 
(wrt ≺) in LD , there is no d ∈ ldr(B) s.t. d ≺ last(A). Therefore B normal-rebuts A, i.e. B attacks A wrt attsnr(K ) (what 
we need to prove). �

Lemma 7.

1. Batts satisfies all regular properties except the inconsistency-resolving and effective rebut properties.
2. If R satisfies the self-contradiction property then Batts satisfies the inconsistency-resolving property.
3. If R is basic then Batts satisfies the effective rebut property and hence is weakly regular and Batts = W attR .

Proof. Let R = (R S, R D, 	). Further let R′ = (R S, R D, ∅). Let atts′
nr be the normal attack relation assignment wrt R′ . It is 

clear that atts′
nr = Batts. From Theorem 3 (note that Batts satisfies the effective rebut property for R′ , not for R), it is clear 

that assertions 1,2 hold. If R is basic, R =R′ . Hence assertion 3 also holds. �
Appendix C. Minimal removal semantics

Lemma 11.

1. All removal functions F E R, F AM, F L O , F C I, F S A are continuous, i.e. for each directed � ⊆ REMASR , for each X ∈ {F E R, F AM,

F L O , F C I, F S A}, it holds:

X (
⋃

�) =
⋃

X (�)

2. REMOVE is continuous and
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l f p(REMOVE) =
∞⋃

i=1

REMOVEi(∅)

Proof. Assertion 2 follows directly from assertion 1. We prove assertion 1 below.
From the definition of F E R , it is easy to see that F E R(π) is constant, i.e. for any removal assignments π, π ′ , F E R(π) =

F E R(π ′). It is hence obvious that F E R(
⋃

�) = ⋃
F E R(�).

Let X ∈ {F AM, F L O , F C I, F S A}.
From Lemma 9, it is clear that X (

⋃
�) ⊇ ⋃

X (�).
It remains to be shown that X (

⋃
�) ⊆ ⋃

X (�).

1. Let X = F AM and K ∈ CR , (A, B) ∈ F AM(
⋃

�)(K ).
Therefore
– there is a weakening B ′ of B such that (A, B ′) ∈ ⋃

π∈� π(K ), or
– there exists a strengthening X of A such that (X, B) ∈ ⋃

π∈� π(K ).
Hence
– there is a weakening B ′ of B and a π ∈ � such that (A, B ′) ∈ π(K ), or
– there exists a strengthening X of A and a π ′ ∈ � such that (X, B) ∈ π ′(K ).
Thus
– there is a π ∈ � such that (A, B) ∈ F AM(π)(K ), or
– there exists a π ′ ∈ � such that (A, B) ∈ F AM(π ′)(K ).
It is obvious (A, B) ∈ ⋃

π∈� F AM(π)(K ).
2. Let X = F L O and K ∈ CR .

F L O (
⋃

�)(K )= {(A, B) | A, B ∈ AR K , A rebuts B and

∃B0 ∈ AR K , A S ⊆ AR K such that

B ∈ B0 ↓ A S, and

if A rebuts B0 then (A, B0) ∈
⋃

π∈�

π(K ), and

∀X ∈ A S : if A rebuts X then (A, X) ∈
⋃

π∈�

π(K )}

= {(A, B) | A, B ∈ AR K , A rebuts B and

∃B0 ∈ AR K , A S ⊆ AR K such that

B ∈ B0 ↓ A S, and

if A rebuts B0 then ∃π0 ∈ � : (A, B0) ∈ π0(K ), and

∀X ∈ A S : if A rebuts X then ∃πX ∈ � : (A, X) ∈ πX (K )}
Without loss of generality, we could assume that AS is finite. Further, due to the directedness of �, there exists π ∈ �

s.t. π0 ⊆ π and ∀X ∈ A S : πX ⊆ π . Therefore it holds:

= {(A, B) | A, B ∈ AR K , A rebuts B and

∃B0 ∈ AR K , A S ⊆ AR K ,∃π ∈ � such that

B ∈ B0 ↓ A S, and

if A rebuts B0 then (A, B0) ∈ π(K ), and

∀X ∈ A S : if A rebuts X then (A, X) ∈ π(K )}
⊆

⋃

π∈�

F L O (π)(K ).

3. Let X = F C I and K ∈ CR .

F C I(
⋃

�)(K ) = {(A, B) |A rebuts B and ∃K ′ ∈ CR : (A, B) ∈
⋃

π∈�

π(K ′)}

= {(A, B) |A rebuts B and ∃K ′ ∈ CR,∃π ∈ � : (A, B) ∈ π(K ′)}
⊆

⋃

π∈�

F C I(π)(K ).
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4.

F S A(
⋃

�)(K )= {(A, B) |A rebuts B and

for each basic defeasible subargument X of B:

if A rebuts X (at X) then (A, X) ∈
⋃

π∈�

π(K )}

= {(A, B) |A rebuts B and

∃π ∈ � s.t. for each basic defeasible subargument X of B:

if A rebuts X (at X) then (A, X) ∈ π(K )}
(because B has only finitely many basic defeasible subarguments)

⊆
⋃

π∈�

F S A(π)(K ). �

Lemma 12. W attR = Batts \ l f p(REMOVE), i.e. W attR(K ) = Batts(K ) \ l f p(REMOVE)(K ) for each K ∈ CR .

Proof. The lemma follows directly from Lemmas 26, 25 below. �
Before proving Lemmas 26, 25 below, we need another lemma.
From now until the end of this section, let

πi = REMOVEi(∅) and π = l f p(REMOVE)

Lemma 24. For each i, for each K ∈ CR , for all A, B ∈ AR K if (A, B) ∈ πi(K ) then for each basic defeasible subargument X of B, if A 
rebuts X then (A, X) ∈ πi(K ).

Proof. By induction. It is obvious that the assertion holds for i = 0.
Suppose the assertion holds for i. We show that it holds for i + 1.
Let K ∈ CR and A, B ∈ AR K such that (A, B) ∈ πi+1(K ). It follows immediately that A rebuts B. From πi+1 = REMOVE(πi), 

it follows (A, B) ∈ REMOVE(πi).

1. “(A, B) ∈ F E R(πi)(K )”. Let X be a basic defeasible subargument of B such that A rebuts X. It is clear that dr(B) = dr(X). 
Therefore from the definition of FER, (A, X) ∈ F E R(πi)(K ).

2. “(A, B) ∈ F AM(πi)(K )”.
Therefore
– there is a weakening B ′ of B such that (A, B ′) ∈ πi(K ), or
– there exists a strengthening Z of A such that (Z , B) ∈ πi(K ).
We consider each case in turn.
– Suppose there is a weakening B ′ of B such that (A, B ′) ∈ πi(K ).

From the induction hypothesis, for each basic defeasible subargument Y of B ′ , if A rebuts Y then (A, Y ) ∈ πi(K ).
Let X be a basic defeasible subargument of B such that A rebuts X. Therefore there is a basic defeasible subargument 
Y of B ′ that is a weakening of X. Therefore A rebuts Y. From (A, Y ) ∈ πi(K ), it follows that (A, X) ∈ F AM(πi)(K ). 
Thus (A, X) ∈ πi+1(K ).

– Suppose there exists a strengthening Z of A such that (Z , B) ∈ πi(K ). From the induction hypothesis, for all basic 
defeasible subargument X of B, if Z rebuts X then (Z , X) ∈ πi(K ). It is clear that Z rebuts some argument iff A rebuts 
the same argument. Since Z is a strengthening of A, it follows that for each basic defeasible subargument X of B, 
if A rebuts X then (Z , X) ∈ πi(K ). Since Z is a strengthening of A, from the definition of FAM, it follows directly 
(A, X) ∈ F AM(πi)(K ) ⊆ πi+1(K ).

3. “(A, B) ∈ F L O (πi)(K )”. It holds that
A rebuts B and
∃B0 ∈ AR K , A S ⊆ AR K such that
B ∈ B0 ↓ A S , and if A rebuts B0 then (A, B0) ∈ πi(K ), and
∀Z ∈ A S : if A rebuts Z then (A, Z) ∈ πi(K ).
Let X be a basic defeasible subargument of B such that A rebuts X. There are two cases:
– X is a subargument of some Z ∈ A S , or
– X is not a subargument of any Z ∈ A S .
We consider each case in turn.
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– “X is a subargument of some Z ∈ A S”.
Therefore A rebuts Z. Hence (A, Z) ∈ πi(K ). From the induction hypothesis, (A, X) ∈ πi(K ).

– “X is not a subargument of any Z ∈ A S”.
Therefore there exists a subargument X0 of B0 such that X ∈ X0 ↓ A S . Since X is basic defeasible, X0 is basic defea-
sible.
There are two cases:
• A does not rebut X0. Therefore the condition “if A rebuts X0 then (A, X0) ∈ πi(K )” holds. Therefore, it holds that

X ∈ X0 ↓ A S , and if A rebuts X0 then (A, X0) ∈ πi(K ), and
∀Z ∈ A S : if A rebuts Z then (A, Z) ∈ πi(K ).
Therefore, (A, X) ∈ F L O (πi)(K ) ⊆ πi+1(K ).

• Suppose A rebuts X0. Therefore A rebuts B0. Hence (A, B0) ∈ πi(K ). Since X0 is a basic defeasible subargument of 
X , it follows from the induction hypothesis that (A, X0) ∈ πi(K ). Since X ∈ X0 ↓ A S , it follows from the definition 
of FLO that (A, X) ∈ F L O (πi)(K ) ⊆ πi+1(K ).

4. “(A, B) ∈ F C I(πi)(K )”. Therefore A rebuts B and ∃K ′ ∈ CR : (A, B) ∈ πi(K ′).
Let X be a basic defeasible subargument of B such that A rebuts X. From the induction hypothesis, (A, X) ∈ πi(K ′). 
Therefore (A, X) ∈ F C I(πi)(K ).

5. “(A, B) ∈ F S A(πi)(K )”.
Therefore A rebuts B and for each basic defeasible subargument Z of B: if A rebuts Z (at Z) then (A, Z) ∈ πi(K ).
Let X be a basic defeasible subargument of B s.t. A rebuts X. Thus for each basic defeasible subargument Y of X: if A 
rebuts Y (at Y) then (A, Y ) ∈ πi(K ). Hence (A, X) ∈ F S A(πi)(K ). �

Lemma 25. For each weakly regular attack relation atts ∈ W R A AR , it holds:

atts ⊆ Batts \ l f p(REMOVE)

Proof. Let atts be a weakly regular attack relation assignment for R. It is clear that atts ⊆ Batts \ l f p(REMOVE) iff atts ∩
l f p(REMOVE) = ∅.

We show below that for each K ∈ CR , atts(K ) ∩ π(K ) = ∅.
We show by induction that for each K ∈ CR , atts(K ) ∩ πi(K ) = ∅ holds.
As π0 = ∅, it is clear that atts(K ) ∩ π0(K ) = ∅.
Suppose atts(K ) ∩ πi(K ) = ∅ holds. We want to show that atts(K ) ∩ πi+1(K ) = ∅ also holds.
Suppose ∃(X, Y ) ∈ atts(K ) ∩ πi+1(K ). From πi+1 = REMOVE(πi), there are five cases to consider.

1. Suppose (X, Y ) ∈ F E R(πi)(K ). Therefore each of X, Y contains exactly one defeasible rule. Let the defeasible rules in X, 
Y be respectively d, d′ . Since X rebuts Y , it holds that d ≺ d′ .
Since atts satisfies the effective rebut property, it follows that (X, Y ) �∈ atts(K ). Contradiction. Hence (X, Y ) �∈ F E R(πi).

2. Suppose (X, Y ) ∈ F AM(πi)(K ).
Therefore
– there is a weakening Y ′ of Y such that (X, Y ′) ∈ πi(K ), or
– there exists a strengthening Z of X such that (Z , Y ) ∈ πi(K ).
From the induction hypothesis that atts(K ) ∩ πi(K ) = ∅, it follows that
– there is a weakening Y ′ of Y such that (X, Y ′) �∈ atts(K ), or
– there exists a strengthening Z of X such that (Z , Y ) �∈ atts(K ).
Since atts satisfies the attack monotonicity (and hence also a contrapositive reading of it), it holds that (X, Y ) �∈ atts(K ). 
Contradiction. Hence (X, Y ) �∈ F AM(πi).

3. Suppose (X, Y ) ∈ F L O (πi)(K ).
It follows that

X rebuts Y and

∃Y0 ∈ AR K , A S ⊆ AR K such that

Y ∈ Y0 ↓ A S, and

if X rebuts Y0 then (X, Y0) ∈ πi(K ), and

∀Z ∈ A S : if X rebuts Z then (X, Z) ∈ πi(K )

From the induction hypothesis that atts(K ) ∩ πi(K ) = ∅, it follows that

X rebuts Y and

∃Y0 ∈ AR K , A S ⊆ AR K such that

Y ∈ Y0 ↓ A S, and
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if X rebuts Y0 then (X, Y0) �∈ atts(K ), and

∀Z ∈ A S : if X rebuts Z then (X, Z) �∈ atts(K )

It follows that (X, Y0) �∈ atts(K ) and ∀Z ∈ A S : (X, Z) �∈ atts(K ).
Since atts satisfies the link-orientation property (and hence also a contrapositive reading of it), it holds that (X, Y ) �∈
atts(K ). Contradiction. Hence (X, Y ) �∈ F L O (πi).

4. Suppose (X, Y ) ∈ F C I(πi)(K ).
Therefore X rebuts Y and ∃K ′ ∈ CR, ∃i : (X, Y ) ∈ πi(K ′).
From the induction hypothesis, it holds that X rebuts Y and ∃K ′ ∈ CR : X, Y ∈ AR K ′ and (X, Y ) �∈ atts(K ′).
Since atts satisfies the context-independence property (and hence also a contrapositive reading of it), it holds that 
(X, Y ) �∈ atts(K ). Contradiction. Hence (X, Y ) �∈ F C I(πi).

5. Suppose (X, Y ) ∈ F S A(πi)(K ).
Therefore X rebuts Y and for each basic defeasible subargument Z of Y: if X rebuts Z (at Z) then (X, Z) ∈ πi(K ).
From the induction hypothesis that atts(K ) ∩ πi(K ) = ∅, it follows that
(*) X rebuts Y and for each basic defeasible subargument Z of Y: if X rebuts Z (at Z) then (X, Z) �∈ atts(K ).
Since (X, Y ) ∈ atts(K ) and atts satisfies the strong subargument structure property, X directly attacks (wrt atts(K)) some 
basic defeasible subargument C of Y. Therefore X rebuts C (at C). Hence (X, C) ∈ atts(K ). Contradiction to assertion (*). 
Hence (X, Y ) �∈ F S A(πi).

Therefore (X, Y ) �∈ πi+1(K ). Contradiction. Therefore there exists no (X, Y ) ∈ atts(K ) ∩ πi+1(K ). �
Lemma 26. Batts \ l f p(REMOVE) is weakly regular.

Proof. Let watt = Batts \ l f p(REMOVE).
It is not difficult to see that for each K ∈ CR , for all arguments A, B , if A undercuts B then (A, B) ∈ watt(K ).

1. Let K ∈ CR and A0, A1 ∈ AR K such that each Ai , i = 0, 1, contains exactly one defeasible rule di (i.e. dr(Ai) = {di}), and 
A0 rebuts A1.
Let d0 �≺ d1. Therefore A0 normal-rebuts A1. From Theorem 3 and Lemma 25, it follows attsnr ⊆ watt . Therefore 
(A0, A1) ∈ watt(K ).
Let (A0, A1) ∈ watt(K ). We show that d0 �≺ d1. Suppose d0 ≺ d1. Therefore from the definition of the removal function 
FER, it follows that (A0, A1) ∈ F E R(l f p(REMOVE))(K ′) for any K ′ ∈ CR . Hence (A0, A1) ∈ l f p(REMOVE)(K ′) for any K ′ ∈
CR . Thus (A0, A1) �∈ watt(K ). Contradiction.
We have proved that watt satisfies the effective rebut property.

2. Suppose watt does not satisfy the attack monotonicity property. Let K ∈ CR and A, A′, B, B ′ ∈ AR K such that A′ is a 
weakening of A and B ′ is a weakening of B and
(a) (A, B) ∈ watt(K ) and (A, B ′) �∈ watt(K ), or
(b) (A′, B) ∈ watt(K ) and (A, B) �∈ watt(K ).

We consider each case in turn.
– Suppose (A, B) ∈ watt(K ) and (A, B ′) �∈ watt(K ). Since A rebuts B and B ′ is a weakening of B, it follows that A also 

rebuts B ′ . From (A, B ′) �∈ watt(K ), it follows (A, B ′) ∈ π(K ). Hence (A, B ′) ∈ πi(K ) for some i. From the definition of 
REMOVE and FAM, (A, B) ∈ F AM(πi)(K ) ⊆ πi+1(K ) ⊆ π(K ). Thus (A, B) �∈ watt(K ). Contradiction.

– (A′, B) ∈ watt(K ) and (A, B) �∈ watt(K ). Since A rebuts B and A′ is a weakening of A, it follows that A′ also rebuts 
B . From (A, B) �∈ watt(K ), it follows (A, B) ∈ π(K ). Hence (A, B) ∈ πi(K ) for some i. From the definition of REMOVE 
and FAM, (A′, B) ∈ F AM(πi)(K ) ⊆ πi+1(K ) ⊆ π(K ). Thus (A′, B) �∈ watt(K ). Contradiction.

3. Suppose watt does not satisfy the link-orientation property. Therefore there exists K ∈ CR and there are arguments 
A, B, C ∈ AR K such that C is a weakening of B by A S ⊆ AR K (i.e. C ∈ B ↓ A S) and A attacks C (wrt watt(K)) and A does 
not attack AS (wrt watt(K)) and A does not attack B (wrt watt(K)).
It is obvious that A does not undercut C (otherwise, A would undercut B or some in AS, and hence attacks B or 
some in AS). Therefore A rebuts C. Since A does not attack AS (wrt watt(K)), it follows obviously that if A rebuts 
any argument X ∈ A S then (A, X) �∈ watt(K ). From watt = Batts \ π , it holds that if A rebuts any argument X ∈ A S
then (A, X) ∈ π(K ). As A does not attack B (wrt watt(K)), it follows that if A rebuts B then (A, B) ∈ π(K ). Therefore 
(A, C) ∈ F L O (π)(K ) ⊆ π(K ). From watt = Batts \ π , it follows that (A, C) �∈ watt(K ). Contradiction. Hence we have 
proved that watt satisfies the link-orientation property.

4. Suppose watt does not satisfy the context-independence property. Therefore there are two knowledge bases K , K ′ ∈ CR
and there are two arguments A, B from AR K ∩ AR K ′ such that (A, B) ∈ watt(K ) and (A, B) �∈ watt(K ′). It is obvious that 
A does not undercut B. Therefore A rebuts B. From (A, B) �∈ watt(K ′) and watt = Batts \π , it follows that (A, B) ∈ π(K ′). 
Hence (A, B) ∈ F C I(π)(K ). Thus (A, B) �∈ watt(K ). Contradiction.
We have proved that watt satisfies the context-independence property.

5. We show that watt satisfies the strong subargument property by showing that each of the three assertions in Defini-
tion 8 holds.
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(a) It is obvious that if A undercuts B then A attacks B wrt watt(K ).
(b) Suppose there are A, B ∈ AR K s.t. A directly attacks B (wrt watt(K )).

Since watt ⊆ Batts, it follows that A undercuts or rebuts B.
Since A directly attacks B (wrt watt(K )), if A undercuts B then it is clear that A undercuts B (at B).
Suppose now that A rebuts B. We show that A rebuts B (at B). Suppose A does not rebut B (at B).
Since A directly attacks B wrt watt(K) it follows that for each basic defeasible subargument X of B, if A rebuts X 
(at X) then X �= B and (A, X) �∈ watt(K ). Hence for each basic defeasible subargument X of B, if A rebuts X (at 
X) then (A, X) ∈ π(K ). Therefore (A, B) ∈ F S A(π)(K ). Hence (A, B) ∈ π(K ). Thus (A, B) �∈ watt(K ). Contradiction. 
This case can not happen.

(c) We show that for each K ∈ CR , for all A, B ∈ AR K , it holds that A attacks B (wrt watt(K )) iff A attacks a basic 
defeasible subargument of B (wrt watt(K )).
“⇒” We show that for each K ∈ CR , for all A, B ∈ AR K , if A attacks B (wrt watt(K )) then A attacks a basic 
defeasible subargument of B (wrt watt(K )).
Suppose on the contrary there is K ∈ CR and A, B ∈ AR K such that A attacks B (wrt watt(K )) and A does not 
attack any basic defeasible subargument of B (wrt watt(K )).
Therefore A rebuts B. Since A does not attack any basic defeasible subargument of B (wrt watt(K )), and watt =
Batts \ π , it holds that for any basic defeasible subargument Z of B, if A rebuts Z then (A, Z) ∈ π(K ). Therefore 
(A, B) ∈ F S A(π)(K ) ⊆ π(K ). Hence (A, B) �∈ watt(K ). Contradiction. This case can not happen.
“⇐” We show that for each K ∈ CR , for all A, B ∈ AR K , if A attacks a basic defeasible subargument of B (wrt 
watt(K )) then A attacks B (wrt watt(K )).
Let K ∈ CR and A, B ∈ AR K s.t. A attacks a basic defeasible subargument X of B (wrt watt(K )). We show that A 
attacks B (wrt watt(K )).
If A undercuts a basic defeasible subargument of B then A undercuts B. There is nothing to prove.
Let A rebut a basic defeasible subargument of B. Therefore A rebuts B. Suppose A does not attack B (wrt watt(K )). 
Therefore (A, B) ∈ π(K ). From Lemma 24, it follows that (A, X) ∈ π(K ). Contradiction. We have proved that A 
attacks B wrt watt(K ). �

Appendix D. Canonical and normal attack relation assignment

Lemma 13. Let atts be a regular attack relation assignment for R. Further let K ∈ CR , A, B ∈ AR K and d ∈ ldr(A) such that the 
following properties hold:

– A attacks B (wrt atts(K)).
– A rebuts B (at B) and A does not rebut any proper subargument of B.
– Both str(B, last(B)) and str(A, d) belong to AR K .

The following conditions hold:

1. str(A, d) attacks str(B, last(B)) (wrt atts(K)).
2. d �≺ last(B).

Proof.

1. From the attack monotonicity, str(A, d) attacks B. Since A does not rebut any proper subargument of B and the con-
clusion of A (and hence also of str(A, d)) belongs to Ldom , str(A, d) does not attack any proper subargument of B. 
Therefore from the link-orientation property, str(A, d) attacks str(B, last(B)).

2. Since atts is regular and str(A, d) attacks str(B, last(B)), the effective rebut property directly implies d �≺ last(B). �
Lemma 14. Suppose R be a well-prioritized rule-based system. Further let K ∈ CR and A, B ∈ AR K and d ∈ ldr(A) such that A rebuts 
B (at B) and d ≺ last(B). Then (A, B) �∈ AttR(K ).

Proof. Suppose (A, B) ∈ AttR(K ). Let B E0 be the set of evidences from B E K on which arguments A,B are based, i.e. B E0 =
{e ∈ B E K | [e] is a subargument of A or B}.

Let A0 = str(A, d) and B0 = str(B, last(B)). Let B E1 be the set of evidences on which the arguments A0, B0 are based.
Since d ≺ last(B), it follows from the well-prioritizedness of R that �(bd(last(B))) ∪�(¬hd(last(B))) is consistent. There-

fore hd(last(B)) �∈ �(bd(last(B))). Since cnl(A) = ¬hd(last(B)), it follows that A does not rebut any proper subargument of B.
From bd(last(B)) ⊆ �(bd(last(B))), it follows B E ′ = B E0 ∪ B E1 ⊆ �(cnl(A)) ∪ �(bd(last(B)) = �(¬hd(last(B))) ∪

�(bd(last(B)).
From the well-prioritizedness of R, B E ′ is consistent. Therefore K ′ = (R, B E ′) ∈ CR and the arguments A, B, A0, B0

belong to AR K ′ . From the context-independence property, it follows that A attacks B wrt AttR(K ′) by rebut at B.
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We have proved that A attacks B wrt AttR(K ′), A rebuts B (at B), and A does not rebut any proper subargument of B 
and A, B, A0, B0 belong to AR K ′ . From assertion 2 of Lemma 13, it follows that d �≺ last(B). Contradiction. We have proved 
that (A, B) �∈ AttR(K ) holds. �
Lemma 18. Let R be a rule-based system satisfying the self-contradiction property and atts be a regular attack relation assignment 
of R. Further let K ∈ CR . Each stable extension of (AR K , atts(K )) is also a stable extension of (AR K , attsnr(K )).

Proof. Let K = (R, B E) and E be a stable extension of (AR K , atts(K )).

– From Theorem 3, Lemma 2 and Lemma 16, it is clear that E is conflict-free wrt attsnr(K ).
– We show that E attacks (wrt attsnr(K )) each argument not belonging to E. Let B ∈ AR K \ E . Without loss of generality, 

we can assume that all proper subarguments of B belong to E (otherwise just pick a subargument of B satisfying this 
property). From Lemma 2, it follows immediately that B is basic defeasible.
Since each proper subargument of B belongs to E, no proper subargument of B is rebutted by any argument in E.
Since E is stable wrt atts(K ), there is A ∈ E s.t. A attacks B wrt atts(K ).
If A undercuts B then A attacks B (wrt attsnr(K )).
Suppose that A rebuts B. Therefore A rebuts B (at B) and A does not rebut any proper subargument of B.
There are two cases:
• A is strict. It is obvious that A normal-rebuts B.
• A is defeasible. Let S be the set consisting of all evidences on which all arguments of the form str(A, d), d ∈ ldr(A)

and str(B, last(B)) are based. It is clear that S ⊆ cnl(E). Let B E ′ = B E ∪ S . It is clear that K ′ = (R, B E ′) ∈ CR . Therefore 
str(A, d), d ∈ ldr(A) and str(B, last(B)) all belong to AR K ′ .
Since atts is regular and hence satisfies the context-independence property, A attacks B wrt atts(K ′). We have proved 
that A rebuts B (at B) and A does not rebut any proper subargument of B. Further for each d ∈ ldr(A), both str(A, d)

and str(B, last(B)) all belong to AR K ′ .
From Lemma 13, it follows that there is no d ∈ ldr(A) s.t. d ≺ last(B). Therefore A normal-rebuts B, i.e. A attacks B 
wrt normal attack relation attsnr(K ).

We have proved that E is stable wrt attsnr(K ). �
Appendix E. Discussion

Lemma 20. Let P be a non-empty set of regular apr-assignments for R. Then �P is regular.

Proof. We show the equation atts�P = ⋃{attsΓ | Γ ∈P}. The regularity of �P follows from Lemma 4.

1. We show atts�P (K ) ⊆ ⋃{attsΓ | Γ ∈P}.
Let K ∈ CR and A, B ∈ AR K such that (A, B) ∈ atts�P (K ).
If A undercuts B then it is obvious that (A, B) ∈ attsΓ (K ) for each Γ ∈P . Hence (A, B) ∈ ⋃{attsΓ | Γ ∈P}(K ).
Suppose A rebuts B (at B ′) and A ���P,K B ′ .
From ��P,K = ⋂{�Γ,K | Γ ∈P}, it follows that A ���P,K B ′ implies that A ��Γ,K B ′ for some Γ ∈P .
From A rebuts B (at B ′) and A ��Γ,K B ′ for Γ ∈P , it follows that (A, B) ∈ attsΓ (K ). Hence (A, B) ∈ ⋃{attsΓ | Γ ∈P}(K ).

2. We show 
⋃{attsΓ | Γ ∈P} ⊆ atts�P (K ).

Let K ∈ CR and A, B ∈ AR K such that (A, B) ∈ attsΓ (K ) for some Γ ∈P .
If A undercuts B then it is obvious that (A, B) ∈ atts�P (K ).
Suppose A rebuts B (at B ′) and A ��Γ,K B ′ for Γ ∈ P . Hence (A, B ′) �∈ ⋂{�Γ,K | Γ ∈ P} implying that A ���P,K B ′ . 
Therefore (A, B) ∈ atts�P (K ). �

Theorem 9.

1. If A PR is non-empty then (A PR, �, �) forms a lower semilattice with C AR = �A PR being the least regular ap-assignment for 
R and is referred to as the canonical ap-assignment.

2. If the rule-based system R satisfies the self-contradiction property then the set of regular ap-assignments A PR is not empty and 
attsC AR = AttR .

Proof.

1. The first assertion follows immediately from Lemma 20.
2. Define an ap-assignment Γ as follows: Let K ∈R and A, B ∈ AR K . A �Γ,K B iff A rebuts B (at B) and (A, B) �∈ AttR(K ).

We show that �Γ,K =�Γ,K .
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Suppose on the contrary there are X �Γ,K Y and Y �Γ,K X . Therefore X rebuts Y (at Y) and Y rebuts X (at X) and 
(X, Y ), (Y , X) �∈ AttR(K ). Since attnr(K ) ⊆ AttR(K ) (Theorem 3), it follows (X, Y ), (Y , X) �∈ attnr(K ). Hence last(X) ≺
last(Y ) and last(Y ) ≺ last(X). Contradiction. We have proved that �Γ,K =�Γ,K .
We show attsΓ (K ) = AttR(K ).
Let (X, Y ) ∈ attsΓ (K ) and X does not undercut Y. Therefore X rebuts Y (at Y ′) and X ��Γ,K Y ′ . Therefore (X, Y ′) ∈
AttR(K ). Since AttR is regular, (X, Y ) ∈ AttR(K ).
Let (X, Y ) ∈ AttR(K ) and X does not undercut Y. Therefore there exists a basic defeasible argument Y ′ of Y such that 
X directly attacks Y ′ (wrt AttR(K )). Therefore X rebuts Y ′ (at Y ′) and (X, Y ′) ∈ AttR(K ). Hence X ��Γ,K Y ′ . Therefore 
(X, Y ) ∈ attsΓ (K ).
Therefore attsΓ = AttR . Therefore Γ is regular.
We show that Γ is the least regular ap-assignment.
Let � ∈ A PR . We show that Γ � � holds.
Let A �Γ,K B . From the definition of Γ , it follows A rebuts B (at B) and (A, B) �∈ AttR(K ). From atts� ⊆ AttR , it follows 
(A, B) �∈ atts�(K ) implying that A ��,K B . Since �Γ,K =�Γ,K , it follows Γ � �.
As C AR is the least regular ap-assignment, it holds that Γ = C AR . From attsΓ = AttR , it follows that attsC AR =
AttR . �

Theorem 10. The credulous cumulativity property is satisfied by all regular attack relation assignments.

Proof. Let R be a rule-based system, atts be a regular attack relation assignment of R, K ∈ CR and E be a stable extension 
of (AR K , atts(K )), S = cnl(E) and Ω ⊆ S ∩Ldom be a finite set of domain sentences. Further let K ′ = K + Ω and E ′ = {X ∈
AR K ′ | ∃X ′ ∈ E, A S ⊆ E s.t. cnl(A S) ⊆ Ω and X ′ ∈ X ↓ A S}.30 We show that E ′ is a stable extension of (AR K ′ , att(K ′)) by 
showing that it is conflict-free and attacks each argument not belonging to it.

– Suppose E ′ is not conflict-free. Let X, Y ∈ E ′ s.t. X attacks Y . Hence there are X ′, Y ′ in E such that X ′ ∈ X ↓ A S and 
Y ′ ∈ Y ↓ A S for A S ⊆ E s.t. cnl(A S) ⊆ Ω . Since E is conflict-free, X ′ does not undercut Y ′ . Therefore X does not 
undercut Y . Therefore X rebuts Y . Thus X ′ also rebuts Y ′ (at Z). Since E contains all subarguments of its arguments, 
Z ∈ E and hence E is inconsistent. From the inconsistency property, E is not conflict-free. Contradiction.

– Let Z ∈ AR K ′ \ E ′ s.t. all proper subarguments of Z belong to E ′ .
We first show that the last rule of Z is defeasible.
Suppose on the contrary, Z = [Z1, . . . , Zn, r] where r is a strict rule. From Z1, . . . , Zn ∈ E ′ , it follows that there are 
Z ′

1, . . . , Z
′
n ∈ E and A S ⊆ E s.t. cnl(A S) ⊆ Ω and Z ′

i ∈ Zi ↓ A S for 1 ≤ i ≤ n. Let Z ′ = [Z ′
1, . . . , Z

′
n, r]. It is clear that Z ′ ∈

Z ↓ A S . Since atts is regular, it follows from Lemma 2 and Z ′
1, . . . , Z

′
n ∈ E that Z ′ ∈ E . Therefore Z ∈ E ′ . Contradiction. 

Therefore the last rule of Z is defeasible.
From Z ∈ AR K ′ , it follows that ∃Z ′ ∈ AR K , A S ⊆ E s.t. cnl(A S) ⊆ Ω and Z ′ ∈ Z ↓ A S . Since Z �∈ E ′ , it follows that Z ′ �∈ E . 
Therefore there is A ∈ E s.t. A attacks Z ′ wrt atts(K ). It is obvious A does not attack AS wrt atts(K ). Hence from the 
context-independence property, A attacks Z ′ wrt atts(K ′) and A does not attack AS wrt atts(K ′). Since atts(K ′) satisfies 
the link-orientation property, it is clear that A attacks Z wrt atts(K ′).

The theorem follows from the fact that cnl(E) = cnl(E ′). �
Appendix F. Extended knowledge bases

Lemma 22. Let R be an extended rule-based system and P be a regular property. Further let S be a non-empty set of attack relation 
assignments wrt R satisfying P. Then 

⋃
S also satisfies P.

Proof. Let atts0 = ⋃
S .

– Let P be the strong subargument property. We show that atts0 also satisfies the strong subargument property. Let 
K ∈ ER and A, B ∈ AR K .
• It is clear that A attacks B (wrt atts0(K )) iff A attacks B (wrt atts(K )) for some atts ∈ S iff A attacks a basic defeasible 

subargument B0 of B (wrt atts(K )) or A attacks an assumption-subargument [α] of B (wrt atts(K )) iff A attacks a 
basic defeasible subargument B0 of B (wrt atts0(K )) or A attacks an assumption-subargument [α] of B (wrt atts0(K )).

• It is obvious that if A undercuts or undermines B then A attacks B wrt atts(K ) for any atts ∈ S and hence A attacks 
B wrt atts0(K ).

• It is obvious that if A directly attacks B (wrt atts0(K )) then A directly attacks B (wrt some atts(K ), atts ∈ S) and 
hence A undercuts or undermines or rebuts B (at B).

– The proofs for other regular properties are identical to the ones in the proof of Lemma 4. �
30 In other words, E ′ consists of arguments obtained from arguments X ∈ E by replacing some subarguments of X by their conclusions provided that the 

conclusions belong to Ω .
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Theorem 13.

1. For any extended rule-based system R, the normal attack relation assignment attsenr is weakly regular.
2. Suppose the extended rule-based system R satisfies the self-contradiction property. Then the normal attack relation assignment 

attsenr is regular and the canonical assignment AteR exists and attsenr ⊆ AteR .

Proof.

1. We show that attsenr is weakly regular. Let K ∈ ER .
(a) It is straightforward to see that attsenr satisfies the property of context-independence. It is also obvious that 

attsenr(K ) satisfies the properties of strong subargument structure.
(b) We show that attsenr(K ) satisfies the property of effective rebut. Let A0, A1 ∈ AR K such that

– each Ai , i = 0, 1, contains exactly one defeasible rule di (i.e. dr(Ai) = {di}), and
– A0 rebuts A1, and
– A0 does not undermine A1.
Since A0 neither undercuts nor undermines A1, it is obvious that A0 normal-rebuts A1 iff d0 �≺ d1. Hence A0 attacks 
A1 wrt att iff d0 �≺ d1.

(c) We show that attsenr(K ) satisfies the property of link-orientation.
Let A, B, C ∈ AR K such that C is a weakening of B by A S ⊆ AR K (i.e. C ∈ B ↓ A S) and A does not attack AS wrt 
attsenr(K ) and (A, C) ∈ attsenr(K ). Therefore there are two cases:
– There is a basic defeasible subargument C ′ of C such that cnl(A) = ablast(C ′) or cnl(A) = ¬cnl(C ′) and there is no 

d ∈ ldr(A) s.t. d ≺ last(C ′).
Since A does not attack AS wrt attsenr(K ), the defeasible rule last(C ′) does not occur in any argument belonging 
to AS. Hence last(C ′) occurs in B. Therefore (A, B) ∈ attsenr(K ).

– ∃α ∈ A s.t. cnl(A) = α and [α] is subargument of C. Since A does not attack AS wrt attsenr(K ), [α] is not a 
subargument of any argument in AS. Therefore [α] is a subargument of B. Hence (A, B) ∈ attsenr(K ).

(d) We next show that attenr(K ) satisfies the property of attack monotonicity.
– Let K ∈ K and C attacks B wrt attsenr(K ) and C is a weakening of A. It is not difficult to see that if C undercuts 

or undermines B then A also undercuts or undermines B respectively. Suppose now that C rebuts B (at B ′) and 
there is no d ∈ ldr(C) s.t. d ≺ last(B ′). From ldr(A) ⊆ ldr(C) and cnl(C) = cnl(A), it follows obviously that A rebuts 
B (at B ′) and there is no d ∈ ldr(A) s.t. d ≺ last(B ′). We have proved that A also attacks B wrt attenr(K ).

– Suppose A attacks B wrt attsenr(K ) and D is a weakening of B. There are two cases:
• There exists a basic defeasible subargument B ′ of B such that last(A) = ablast(B ′) or A normal-rebuts B ′ (at B ′).

It is easy to see that there is a subargument D ′ of D such that D ′ is a weakening of B ′ . Hence last(D ′) = last(B ′)
and D ′ is basic defeasible. It holds obviously that either last(A) = ablast(D ′) or A normal-rebuts D ′ (at D ′). A 
thus attacks D wrt attsenr(K ).

• ∃α ∈ A s.t. cnl(A) = α and [α] is a subargument of B. It is clear that [α] is also a subargument of D. A hence 
undermines D. A thus attacks D wrt attsenr(K ).

2. To show that attsenr is regular, we need to show that attsenr(K ) satisfies the inconsistency-resolving property.
We first introduce a helpful notation. An assumption argument [α] is said to be maximal assumption-subargument 
of an argument A iff [α] is an assumption-subargument of A and [α] is not a subargument of any basic defeasible 
argument of A.
Let S ⊆ AR K s.t. S is inconsistent. Let B E0 = cnl(S) \A. Since S is inconsistent, there are two non-defeasible arguments 
A0, A1 of the knowledge base (R, B E0) with contradictory conclusions. Let A′

i , i = 0, 1, be weakening of Ai by replacing 
each subargument [e], e ∈ B E0, of Ai by an argument in S with conclusion e. Let B E1 be the set of (non-assumption) 
premises of arguments A′

0, A
′
1. It is clear that B E1 ⊆ B E K .

Let M D Ai = {X | X is a maximal basic defeasible subargument of A′
i} ∪ {[α] | [α] is a maximal assumption-subargument

of A′
i} for i = 0, 1.

Since A′
0, A

′
1 have contradictory conclusion, it follows immediately that the set cnl(M D A0 ∪M D A1) ∪ B E1 is inconsistent.

Let C be a minimal inconsistent subset of cnl(M D A0 ∪ M D A1) ∪ B E1. Because K is consistent and B E1 ⊆ B E K , 
C \ B E1 �= ∅.
Let S0 be a minimal subset of M D A0 ∪ M D A1 such that cnl(S0) = C \ B E1. S0 therefore is non-empty and finite. Because 
S0 is minimal and rules do not contain non-domain atoms in their bodies, cnl(S0) does not contain any non-domain 
atom.
Let LD = {last(X) | X ∈ S0, X is basic defeasible} ∪ {α | α ∈A, [α] ∈ S0}.
LD is hence finite and non-empty.
There are two cases:
– LD contains an assumptions α. From the self-contradiction property, it holds that C � α. We could construct an 

argument B such that cnl(B) = α and all maximal basic defeasible subarguments of B as well as all maximal 
assumption-subarguments of B are arguments in S0. Therefore B is generated by S and B undermines some argu-
ment in S0. Hence B undermines some argument in S (q.e.d).



P.M. Dung, P.M. Thang / Artificial Intelligence 255 (2018) 1–42 39
– LD contains no assumptions. From the transitivity of 	, it follows that ≺ is a strict partial order. Therefore ≺ is 
a strict partial order on LD . Thus there exists a minimal element wrt ≺ in LD. Let A ∈ S0 s.t. last(A) is minimal 
(wrt ≺). Since cnl(S0) does not contain any non-domain atom, hd(last(A)) ∈ Ldom \ A. From the self-contradiction 
property, C � ¬hd(last(A)). We could then construct an argument B such that B rebuts A (at A) and all maximal basic 
defeasible subarguments of B as well as all maximal assumption-subarguments of B are arguments in S0 . Therefore 
ldr(B) ⊆ LD . Since last(A) is minimal (wrt ≺) in LD , there is no d ∈ ldr(B) s.t. d ≺ last(A). Therefore B normal-rebuts 
A, i.e. B attacks A wrt attsenr(K ). �

Theorem 14. Let R be a well-prioritized extended rule-based system satisfying the self-contradiction property. The canonical attack 
relation assignment AteR and the normal attack relation assignment attsenr coincide.

Proof. Because attsenr ⊆ AteR , we only need to show that for each K ∈ CR , if (A, B) �∈ attsenr(K ) then (A, B) �∈ AteR(K ).
Let K ∈ CR , (A, B) �∈ attsenr(K ).
Suppose that (A, B) ∈ AteR(K ).
From (A, B) �∈ attsenr(K ), it is clear that A neither undercuts nor undermines B. From (A, B) ∈ AteR(K ), it follows that A 

rebuts B. From (A, B) �∈ attsenr(K ), it holds immediately that A does not normal-rebut B.
Therefore for all basic defeasible subarguments Y of B, if A rebuts Y (at Y) then ∃dY ∈ ldr(A) s.t. dY ≺ last(Y ).
From (A, B) ∈ AteR(K ) and the regularity of AteR , A directly attacks a basic defeasible subargument X of B wrt 

AteR(K ). Since A neither undercuts B nor undermines B, it follows that A neither undercuts X nor undermines X. From 
the property of strong subargument structure, it holds directly that A rebuts X (at X). Therefore dX ≺ last(X).

Let B E0 be the set of evidences from B E K on which arguments A,X are based, i.e. B E0 = {e ∈ B E K | [e] is a subargument
of A or X}.

Let A0 = str(A, d) and X0 = str(X, last(X)). Let B E1 be the set of (non-assumption) evidences on which the arguments 
A0, X0 are based.

Since dX ≺ last(X), it follows from the well-prioritizedness of R that �(bd(last(X))) ∪ �(¬hd(last(X))) is consistent. 
Therefore hd(last(X)) �∈ �(bd(last(X))). Since cnl(A) = ¬hd(last(X)), it follows that A does not rebut any proper subargu-
ment of X.

From bd(last(X)) ⊆ �(bd(last(X))), it follows B E ′ = B E0 ∪ B E1 ⊆ �(cnl(A)) ∪ �(bd(last(X)) = �(¬hd(last(X))) ∪
�(bd(last(X)).

From the well-prioritizedness of R, B E ′ is consistent. Therefore K ′ = (R, B E ′) ∈ CR and the arguments A, X, A0, X0
belong to AR K ′ . From the context-independence property, it follows that A attacks X wrt AteR(K ′).

We have proved that A attacks X wrt AteR(K ′), A does not undermine X, A rebuts X (at X), and A does not rebut any 
proper subargument of X and A, X, A0, X0 belong to AR K ′ . From assertion 2 of Lemma 27, it follows that dX �≺ last(X). 
Contradiction.

Therefore the assumption that (A, B) ∈ AteR(K ) is false. �
Lemma 27. Let atts be a regular attack relation assignment for extended rule-based system R. Further let K ∈ CR , A, B ∈ AR K and 
d ∈ ldr(A) such that the following properties hold:

– A attacks B (wrt atts(K)).
– A does not undermine B.
– A rebuts B (at B) and A does not rebut any proper subargument of B.
– Both str(B, last(B)) and str(A, d) belong to AR K .

The following conditions hold:

1. str(A, d) attacks str(B, last(B)) (wrt atts(K)).
2. d �≺ last(B).

Proof.

1. From the attack monotonicity, str(A, d) attacks B. Since A rebuts B, A does not undercut B. Therefore A neither undercuts 
not undermines B. Thus str(A, d) neither undercut not undermines B. It is also clear that str(A, d) rebuts B and does 
not rebut any proper subargument of B. Therefore str(A, d) does not attack any proper subargument of B. Therefore 
from the link-orientation property, str(A, d) attacks str(B, last(B)).

2. Since atts is regular and str(A, d) attacks str(B, last(B)) and str(A, d) does not undermine str(B, last(B)), the effective 
rebut property directly implies d �≺ last(B). �

Theorem 15. Suppose the extended rule-based system R satisfies the property of self-contradiction. Then for each K ∈ CR , each stable 
extension wrt attsenr(K ) is also a stable extension wrt AteR(K ) and vice versa.
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Proof. From Theorem 13, the canonical attack relation assignment AteR exists. Since attsenr(K ) ⊆ AteR(K ), every stable 
extension wrt attsenr(K ) is a stable extension wrt AteR(K ) (Lemma 28).

Let atts be a regular attack relation assignment of R. Further let K = (R, B E) ∈ CR and E be a stable extension of 
(AR K , atts(K )).

To show that every stable extension wrt AteR(K ) is a stable extension wrt attsenr(K ), we show that E is a stable 
extension wrt attsenr(K ).

– From Theorem 13, Lemma 21 and Lemma 28, it is clear that E is conflict-free wrt attsenr(K ).
– We show that E attacks (wrt attsenr(K )) each argument not belonging to E. Let B ∈ AR K \ E . Without loss of generality, 

we can assume that all proper subarguments of B belong to E (otherwise just pick a subargument of B satisfying this 
property). It follows immediately that B is either a basic defeasible argument or an assumption-argument (otherwise B 
would be generated by its basic defeasible subarguments and its assumption-subarguments belonging to E and hence B 
also belongs to E).
Since each proper subargument of B belongs to E, no proper subargument of B is rebutted by any argument in E.
Since E is stable wrt atts(K), there is A ∈ E s.t. A attacks B wrt atts(K).
If A undercuts or undermines B then A attacks B (wrt attsenr(K )).
Suppose that A rebuts B and A does not undermine B. Therefore A rebuts B (at B) and A does not rebut any proper 
subargument of B.
If A is strict then it is obvious that (A, B) ∈ attsenr(K ). Hence E attacks B (wrt attsenr(K )).
Suppose A is defeasible. Let S be the set consisting of all (non-assumption) evidences on which all arguments of the 
form str(A, d), d ∈ ldr(A) and str(B, last(B)) are based. It is clear that S ⊆ cnl(E). Let B E ′ = B E K ∪ S . Since B E K ⊆ cnl(E), 
it is clear B E ′ ⊆ cnl(E). Therefore K ′ = (R, B E ′) ∈ CR . Therefore str(A, d), d ∈ ldr(A) and str(B, last(B)) all belong to 
AR K ′ .
Since atts is regular and hence satisfies the context-independence property, A attacks B wrt atts(K ′). We have proved 
that A rebuts B (at B) and A does not rebut any proper subargument of B and A does not undermine B. Further for each 
d ∈ ldr(A), both str(A, d) and str(B, last(B)) all belong to AR K ′ .
From Lemma 27, it follows that there is no d ∈ ldr(A) s.t. d ≺ last(B). Therefore A normal-rebuts B, i.e. A attacks B wrt 
normal attack relation attsenr(K ).

We have proved that E is stable wrt attsenr(K ). �
Lemma 28. Let atts, atts′ be regular attack relation assignments for an extended rule-based system R.

1. Let K ∈ CR and S ⊆ AR K such that S contains all arguments generated from its arguments. Then S is conflict-free wrt atts(K ) iff 
S is also conflict-free wrt atts′(K ).

2. Suppose atts ⊆ atts′ . Then
(a) each stable extension of (AR K , atts(K )) is a stable extension of (AR K , atts′(K )); and
(b) each stable extension of (AR K , atts(K )) is a stable extension of (AR K , AteR(K )).

Proof.

1. Suppose S is conflict-free wrt atts(K ) and S is not conflict-free wrt atts′(K ). Since atts(K ) and atts′(K ) have the same 
set of undercuts and undermines, some argument in S rebuts another. Since all subarguments of arguments in S belong 
to S, S is inconsistent. Because atts(K ) satisfies the inconsistency-resolving property, some argument in S is attacked 
(wrt atts(K)) by some generated by S. Since S contains all arguments generated from its arguments, S is not conflict-free 
wrt atts(K). Contradiction. Therefore S is also conflict-free wrt atts′(K ).

2. Identical to the proof of Lemma 17. �
Appendix G. Infimum of regular attack relation assignments

We only need to show that atts is regular as the proof of the regularity of atts′ is identical.
It is obvious that atts satisfies the properties of context-independence, effective rebut.
Let K ∈ CR .

1. We show that atts(K ) satisfies the property of inconsistency-resolving.
Let S ⊆ AR K be inconsistent. Since R contains no strict rule, there are two arguments X, Y ∈ S with contradictory 
conclusions. Since K is consistent and R contains no strict rule, one of X, Y is basic defeasible. Let Y be basic defeasible. 
Therefore X rebuts Y (at Y).
If X �= D then from Lemma 29 (below), (X, Y ) ∈ atts(K ).
Suppose X = D . Since D rebuts Y (at Y), Y rebuts D (at D). It is obvious Y �= D . From Lemma 29, (Y , D) ∈ atts(K ).
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2. We show that atts(K ) satisfies the property of link-orientation.
Let X, Y , Z ∈ AR K such that Z is a weakening of Y by A S ⊆ AR K and X attacks Z (wrt atts(K )) and X does not attack 
any argument in AS (wrt atts(K )). We show that X attacks Y (wrt atts(K )).
From (X, Z) ∈ atts(K ) and Lemma 29, it follows that X �= D and X rebuts Z.
Since X does not attack any argument in AS (wrt atts(K )) and X �= D , it follows from Lemma 29 that X does not rebut 
any argument in AS.
Therefore X rebuts Y. From X �= D and X rebuts Y, it follows (X, Y ) ∈ atts(K ) (Lemma 29).

3. We show that atts(K ) satisfies the property of attack-monotonicity.
Let X, X ′, Y , Y ′ ∈ AR K such that X ′ is a weakening of X and Y ′ is a weakening of Y .
– Suppose (X, Y ) ∈ atts(K ). We show that (X, Y ′) ∈ atts(K ).

From Lemma 29, X �= D and X rebuts Y. Therefore X rebuts Y ′. It follows from Lemma 29 that (X, Y ′) ∈ atts(K ) holds.
– Suppose (X ′, Y ) ∈ atts(K ). We show that (X, Y ) ∈ atts(K ).

From Lemma 29, X ′ �= D and X ′ rebuts Y. Therefore X rebuts Y .
We show that X �= D . Suppose on the contrary X = D . Because X ′ is a weakening of X and R has no rule with head 
d, it follows immediately that X ′ = X = D . Contradiction.
We have proved X �= D . It follows from Lemma 29 that (X, Y ) ∈ atts(K ) holds.

4. We show that atts(K ) satisfies the property of strong subargument structure.
Let X, Y ∈ AR K .
– We first show that X attacks Y (wrt atts(K )) iff X attacks a basic defeasible subargument of Y (wrt atts(K )).

• Suppose X attacks Y (wrt atts(K )). Therefore X �= D and X rebuts Y (at Y ′). Therefore (X, Y ′) ∈ atts(K ) and Y ′ is a 
basic defeasible subargument.

• Suppose X attacks a basic defeasible subargument Y ′ of Y (wrt atts(K )). Therefore X �= D and X rebuts Y ′ . Therefore 
X rebuts Y. From Lemma 29, (X, Y ) ∈ atts(K ).

– We show that if X directly attacks Y (wrt atts(K )) then X rebuts Y (at Y ).
From Lemma 29, it follows X �= D and X rebuts Y. Since X does not attack any proper subargument of Y (wrt atts(K )), 
it follows from Lemma 29 that X does not rebut any proper subargument of Y. Therefore X rebuts Y (at Y).

Lemma 29. Let K ∈ CR and X, Y ∈ AR K . The following assertions hold.

1. X rebuts Y iff (X, Y ) ∈ Batts(K ).
2. (X, Y ) ∈ atts(K ) iff X �= D and X rebuts Y.
3. Let X �= D. (X, Y ) ∈ atts(K ) iff X rebuts Y.

Proof. Assertion 1 is obvious. Assertion 3 follows immediately from assertion 2. We prove assertion 2.
Let (X, Y ) ∈ atts(K ) = Batts(K ) \ {(D, A), (D, B)}.
Suppose X = D . Therefore D rebuts Y. Hence Y ∈ {A, B}. Contradiction. From assertion 1, it is clear that X rebuts Y.
The other direction follows obviously from the definition of atts. �
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