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Abstract

We present two dialectic procedures for the sceptical ideal semantics for argumentation. The first procedure is defined in terms
of dispute trees, for abstract argumentation frameworks. The second procedure is defined in dialectical terms, for assumption-
based argumentation frameworks. The procedures are adapted from (variants of) corresponding procedures for computing the
credulous admissible semantics for assumption-based argumentation, proposed in [P.M. Dung, R.A. Kowalski, F. Toni, Dialectic
proof procedures for assumption-based, admissible argumentation, Artificial Intelligence 170 (2006) 114–159]. We prove that the
first procedure is sound and complete, and the second procedure is sound in general and complete for a special but natural class of
assumption-based argumentation frameworks, that we refer to as p-acyclic. We also prove that in the case of p-acyclic assumption-
based argumentation frameworks (a variant of) the procedure of [P.M. Dung, R.A. Kowalski, F. Toni, Dialectic proof procedures for
assumption-based, admissible argumentation, Artificial Intelligence 170 (2006) 114–159] for the admissible semantics is complete.
Finally, we present a variant of the procedure of [P.M. Dung, R.A. Kowalski, F. Toni, Dialectic proof procedures for assumption-
based, admissible argumentation, Artificial Intelligence 170 (2006) 114–159] that is sound for the sceptical grounded semantics.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Argumentation has proven to be a useful abstraction mechanism for understanding several AI problems, for exam-
ple non-monotonic reasoning (e.g. see [3,7]), defeasible logic (e.g. see [13]) and several forms of reasoning needed to
be performed by agents (e.g. see [15]).

Several formulations of argumentation have been proposed, including the frameworks of abstract argumentation
[7] and assumption-based argumentation [3,6,8]. For these two frameworks, several semantics have been proposed
defining what it means for a set of arguments to be deemed “acceptable” to a rational reasoner. All these semantics
rely upon the semantics of admissible arguments [3,7]. This semantics is credulous, in that it sanctions a set as
“acceptable” if it can successfully dispute every argument against it, without disputing itself. However, there might be
conflicting admissible sets. In some applications, it is more appropriate to adopt a sceptical semantics, whereby, for
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example, only beliefs sanctioned by all (maximally) admissible sets of assumptions are held. For example, in the legal
domain, different members of a jury could hold different admissible sets of assumptions but a guilty verdict must be
the result of sceptical reasoning. Also, in a multi-agent setting, agents may have competing plans for achieving goals
(where a plan can be interpreted as an argument for the goal it allows to achieve), and, when negotiating resources,
they may decide to give away a resource only if that resource is not needed to support any of their plans. Furthermore,
in the same setting, agents may decide to request an “expensive” resource from another agent only if that resource is
useful to render all plans for achieving its goals executable.

Several sceptical semantics have been proposed for argumentation frameworks, notably the grounded semantics
[7] and the semantics whereby beliefs held within all maximally admissible sets of arguments are drawn, referred to
as the sceptically preferred semantics. The grounded semantics can be easily computed but is often overly sceptical.
Procedures for the computation of the sceptically preferred semantic exist, e.g. the TPI procedure [21] for coherent
argumentation frameworks [10], namely frameworks where all preferred sets of arguments are guaranteed to be stable,
and the procedure of [5], for any argumentation framework, defined in non-dialectical terms. To the best of our
knowledge, no dialectical procedure exists for checking whether a given belief can be deemed to hold under the
sceptically preferred semantics for non-coherent cases.

In this paper we present two novel procedures for computing sceptical argumentation under the ideal semantics,
originally proposed for extended logic programming in [1]. We adapt this semantics for abstract [7] and assumption-
based [3] argumentation frameworks. The ideal semantics is sceptical, and has the advantage of being easily com-
putable by a modification of the machinery presented in [8], but without being overly sceptical.

We define a procedure for the ideal semantics in abstract argumentation frameworks in terms of a form of dispute
trees adapted from corresponding trees for computing the admissibility semantics in [8]. We prove that this procedure
is sound and complete for all abstract argumentation frameworks. We define a procedure for the ideal semantics in
assumption-based argumentation frameworks in terms of a form of dispute derivations adapted from corresponding
derivations for computing the credulous admissibility semantics in [8]. These derivations use arguments which can
be computed effectively by backward deductions in assumption-based frameworks. We prove that this procedure is
sound for all assumption-based frameworks, and complete for a special class of assumption-based frameworks we
define, with the property of being p-acyclic.

The paper is organised as follows. In Section 2 we review abstract and assumption-based argumentation frame-
works, define the ideal semantics for both types of frameworks and relate it to other well-known semantics. We also
provide a formal link between the two types of frameworks. In Section 3 we define dispute trees for abstract argu-
mentation frameworks under the ideal semantics, by extending corresponding trees from the admissibility semantics
proposed in [8]. In Section 4 we define dispute derivations for assumption-based argumentation under the ideal se-
mantics, by extending corresponding derivations from the admissibility semantics proposed in [8]. We also provide
two new variants of the derivations of [8], and prove that the first is sound for the sceptical grounded semantics, and
the second is sound in general and complete for p-acyclic frameworks. In Section 5 we discuss some related work.
Finally, in Section 6 we conclude.

This paper is an extended and improved version of the paper [9]: with respect to its predecessor, it presents a formal
analysis of the ideal semantics also for abstract argumentation, a procedure (in terms of dispute trees) for the ideal
semantics for abstract argumentation, a procedure in terms of dispute derivations for the grounded semantics, and
contains proofs of all results.

2. Argumentation frameworks and semantics

In this section we briefly review the notions of abstract argumentation [7] and assumption-based argumentation
[3,4,8,14,16], and present the ideal semantics for argumentation, adapted from [1].

2.1. Abstract argumentation

Definition 2.1. An abstract argumentation framework is a pair (Arg,attacks) where Arg is a finite set, whose ele-
ments are referred to as arguments, and attacks ⊆ Arg × Arg is a binary relation over Arg. Given sets X,Y ⊆ Arg of
arguments, X attacks Y iff there exists x ∈ X and y ∈ Y such that (x, y) ∈ attacks.
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Given an abstract argumentation framework, several notions of “acceptable” sets of arguments can be defined [3,7].
In this paper, we focus on the notions of admissible and ideal sets, defined below:

Definition 2.2. A set X of arguments is

• admissible iff X does not attack itself and X attacks every set of arguments Y such that Y attacks X;
• preferred iff X is maximally admissible;
• complete iff X is admissible and X contains all arguments x such that X attacks all attacks against x;
• grounded iff X is minimally complete;
• ideal iff X is admissible and it is contained in every preferred set of arguments.

Example 2.1. Consider the abstract framework (Arg,attacks) where:

Arg = {a, b, c, d}
attacks = {(a, a), (a, b), (b, a), (c, d), (d, c)}

The attacks relation can be depicted as follows, where a pair (x, y) is represented by a directed arrow x → y.

It is easy to see that:

• {} is grounded;
• {b, d} and {b, c} are preferred;
• {b} is the maximal ideal set.

Hence, the maximal ideal set is less sceptical than the grounded set. In the example, it coincides with the intersection
of all preferred sets, but this does not hold in the general case. The following example shows that the maximal ideal
set can be a proper subset of the intersection of all preferred sets. Consider the abstract framework (Arg′,attacks′)
which extends the above one as follows:

Arg′ = Arg ∪ {e, f }
attacks′ = attacks ∪ {(c, e), (d, e), (e, f )}

namely,

Then it is easy to see that:

• {b, d,f } and {b, c, f } are preferred;
• {b} is the maximal ideal set, and {b} ⊂ {b,f } = {b, d,f } ∩ {b, c, f }.
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It is easy to see that the union of two ideal sets is still an ideal set.1

Lemma 2.1. Let X and Y be two ideal sets of arguments. Then X ∪ Y is ideal.

The following properties of the ideal semantics hold.

Theorem 2.1.

(i) Every abstract argumentation framework admits a unique maximal ideal set of arguments.
(ii) The maximal ideal set of arguments is complete.

(iii) The maximal ideal set of arguments is a superset of the grounded set and is a subset of the intersection of all
preferred sets.

(iv) If the intersection of all preferred sets of arguments is admissible, then it coincides with the maximal ideal set.

Thus, the ideal semantics is sceptical, but less sceptical than the (overly sceptical) grounded semantics. It is, in
general, more sceptical than the sceptical version of the preferred semantics, but, as we will prove in this paper, has
the advantage of being easily computable by a modification of the machinery presented in [8].

2.2. Assumption-based argumentation frameworks

The abstract view of argumentation does not deal with the problem of actually finding arguments and attacks
amongst them. Typically, arguments are built by connecting rules in the belief set of the proponent of arguments, and
attacks arise from conflicts amongst such arguments. In assumption-based argumentation, arguments and attacks are
not given as primitive. Instead, they are derived from the notions of inference rules, assumptions and contraries, as
follows:

• arguments are obtained by reasoning backwards with a given set of inference rules (the “beliefs”) from conclu-
sions to assumptions, and

• attacks are defined in terms of a notion of “contrary” of assumptions.

Computationally, the use of assumption-based argumentation allows to exploit the fact that different arguments can
share the same assumptions and thus avoid recomputation in many cases and the need to worry about sub-arguments
of arguments.

Concretely, assumption-based argumentation frameworks are concrete instances of abstract argumentation frame-
works where arguments in Arg are defined as deductions from assumptions in an underlying logic, viewed as a
deductive system, and where attacks is defined in terms of a notion of contrary.

Definition 2.3. A deductive system is a pair (L, R) where

• L is a formal language consisting of countably many sentences, and
• R is a countable set of inference rules of the form

α1, . . . , αn

α

α ∈ L is called the conclusion of the inference rule, α1, . . . , αn ∈ L are called the premises of the inference rule
and n � 0.

If n = 0, then the inference rule represents an axiom. A deductive system does not distinguish between domain-
independent axioms/rules, which belong to the specification of the logic, and domain-dependent axioms/rules, which
represent a background theory.

1 All the proofs of the main results are given in Appendix A.
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For notational convenience, we write α ← α1, . . . , αn instead of α1,...,αn

α
and α instead of α ←, throughout the

paper.
Deductions can be understood as proof trees: the root of the tree is labelled by the conclusion of the deduction and

the leaves are labelled by the premises supporting the deduction. For every non-terminal node in the tree, there is an
inference rule whose conclusion matches the sentence labelling the node, and the children of the node are labelled
by the premises of the inference rule. Following [8], we define deductions as sequences of frontiers S1, . . . , Sm of the
proof trees. Each frontier is represented by a multi-set, in which the same sentence can have several occurrences, if
it is generated more than once as a premise of different inference steps.2 In order to generate proof trees, a selection
strategy is needed to identify which node to expand next. We formalise this selection strategy by means of a selection
function, as in the formalisation of SLD resolution. A selection function, in this context, takes as input a sequence of
multi-sets Si and returns as output a sentence occurrence in Si . We restrict the selection function so that if a sentence
occurrence is selected in a multi-set in a sequence then it will not be selected again in any later multi-set in that
sequence.

Definition 2.4. Given a selection function f , a (backward) deduction of a conclusion α based on (or supported by) a
set of premises P is a sequence of multi-sets S1, . . . , Sm, where S1 = {α}, Sm = P , and for every 1 � i < m, where σ

is the sentence occurrence in Si selected by f :

1. If σ is not in P then Si+1 = Si − {σ } ∪ S for some inference rule of the form σ ← S ∈R.3

2. If σ is in P then Si+1 = Si .

Each Si is a step in the deduction.

Deductions are the basis for the construction of arguments in assumption-based argumentation frameworks, but to
obtain an argument from a backward deduction we restrict the premises to ones that are acceptable as assumptions.
Moreover, to specify when one argument attacks another, we need to determine when a sentence is the contrary of
an assumption. Given a deductive system (L,R), these two notions—the notion of assumption and the notion of the
contrary of an assumption—determine an assumption-based argumentation framework [8].

Definition 2.5. An assumption-based argumentation framework is a tuple 〈L,R,A,−〉 where

• (L,R) is a deductive system.
• A ⊆ L, A 
= {}. A is the set of candidate assumptions.
• If α ∈A, then there is no inference rule of the form α ← α1, . . . , αn ∈ R.
• − is a (total) mapping from A into L. α is the contrary of α.

Note that, by the third bullet, following [8] we restrict ourselves to flat frameworks [3], whose assumptions do not
occur as conclusions of inference rules.

Definition 2.6. An argument for a conclusion is a deduction of that conclusion whose premises are all assumptions
(in A).

Notation 2.1. In the remainder of this paper, we denote an argument for a conclusion α supported by a set of assump-
tions A simply as A � α.

Given an argument a of the form A � α we say that a is based upon A.

The notation A � α focuses attention on the set of assumptions A supporting an argument and its conclusion α.
Instead, this notation ignores the internal structure of the argument, namely the inference rules used to generate it, as

2 Multi-sets of sentences are equivalent to nodes labelled by sentences. The fact that a sentence can have several occurrences in a multi-set is
equivalent to the fact that several nodes in a proof tree can be labelled by the same sentence.

3 We use the same symbols for multi-set membership, union, intersection and subtraction as we use for ordinary sets.
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well as the fact that there can be several distinct arguments that give rise to the same A � α relationship. However,
in our approach to argumentation, the set of assumptions supporting an argument and the conclusion of the argument
encapsulate the essence of the argument, in that the only way to attack an argument is to attack one of its assumptions
by supporting a conclusion that is the contrary of that assumption.

Definition 2.7.

• An argument A � α attacks an argument B � β if and only if A � α attacks an assumption in B;
• an argument A � α attacks an assumption β if and only if α is the contrary β of β .

Let ABF = 〈L,R,A,−〉 be an assumption-based argumentation framework. Then, AF , the abstract framework
corresponding to ABF, is AF = (Arg,attacks) constructed as follows:

• each argument a ∈ Arg is an argument A � α as in Definition 2.6;
• (a, b) ∈ attacks if and only if a attacks b as in Definition 2.7.

Notation 2.2. In the remainder of this paper, we write AF ≈ ABF whenever AF is the abstract framework correspond-
ing to ABF. Similarly, we write a ≈ A � α whenever a is the argument in AF corresponding to the argument A � α

in ABF. Finally, given a ≈ A � α we will (improperly) refer to A as the set of assumptions supporting a and we will
say that a is supported by A.

In the assumption-based approach to argumentation, the attack relationship between arguments depends solely on
sets of assumptions. In some other approaches, however, such as that of Pollock [18] and Prakken and Sartor [19],
an argument can attack another argument by contradicting its conclusion. [8,16] show how to reduce such “rebuttal”
attacks to the “undermining” attacks of assumption-based argumentation frameworks.

Our focus on the assumptions of arguments motivates the following definition of attack, admissible and ideal se-
mantics for assumption-based argumentation frameworks, where sets of arguments are replaced by sets of assumptions
underlying arguments.

Definition 2.8.

• A set of assumptions A attacks a set of assumptions B if and only if there exists an argument A′ � α such that
A′ ⊆ A and α ∈ B .

• A set of assumptions A is admissible if and only if A does not attack itself and A attacks every set of assumptions
B that attacks A.

• A set of assumptions A is preferred if and only if it is maximally admissible.
• A set of assumptions A is complete if and only if it is admissible and contains all assumptions x such that A

attacks all attacks against {x}.
• A set of assumptions A is grounded if and only if it is minimally complete.
• A set of assumptions A is ideal if and only if A is admissible and it is contained in every preferred set of assump-

tions.

Finally, we introduce the concepts of admissible and ideal belief, which will be useful in Section 4.

Definition 2.9. Let 〈L,R,A,−〉 be an assumption-based argumentation framework and let α ∈ L. Then α is an
admissible/grounded/ideal belief if and only if there exists an argument A � α such that A is a subset of an admissi-
ble/grounded/ideal set of assumptions.

The following theorem links the assumption-based approach to argumentation and the abstract approach, instanti-
ated to assumption-based argumentation.

Theorem 2.2. Let ABF be an assumption-based argumentation framework, and AF ≈ ABF.
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(i) If a set of assumptions A is admissible/grounded/ideal wrt to ABF, then the union of all arguments supported by
any subset of A is admissible/grounded/ideal wrt AF.

(ii) The union of all sets of assumptions supporting the arguments in an admissible/grounded/ideal set of arguments
wrt AF is admissible/grounded/ideal wrt ABF.

Example 2.2. Let ABF be an assumption-based framework 〈L,R,A,−〉 where

– R is the following set of rules:

¬α ← α

¬α ← β

¬β ← α

¬γ ← δ

¬δ ← γ

– A = {α,β, γ, δ} and α = ¬α, β = ¬β , γ = ¬γ , and δ = ¬δ.

Some of the arguments in ABF are the following:

{α} � ¬α {β} � ¬α

{γ } � ¬δ {δ} � ¬γ

It is worth noticing that, for instance, {β,γ } � ¬α is not an argument, due to Definitions 2.4 and 2.6. Indeed, by Defi-
nition 2.4, there is no backward deduction for ¬α supported by {β,γ }, since γ is not in the premises of any inference
rule for α or needed in a backward deduction of any premise of any such inference rule. So, by Definition 2.6, there
exists no argument for ¬α based upon {β,γ }. It is also easy to see that:

• {} is the grounded set of assumptions;
• {β, δ} and {β,γ } are preferred sets of assumptions;
• {β} is the maximal ideal set of assumptions.

3. Computing ideal sets of arguments for abstract argumentation

Ideal sets of arguments can be computed incrementally, in defence of a given, desired argument, by means of
(special kinds of) admissible dispute trees, adapted from the dispute trees defined in [8] for computing admissible sets
of arguments in the specific case of assumption-based argumentation frameworks. Below, we generalise the dispute
trees of [8] to abstract argumentation frameworks, and then show how they can be used to compute admissible sets of
arguments (Section 3.1, which is a direct adaptation of [8]) and to compute ideal sets of arguments (Section 3.2).

In general, dispute trees can be seen as a way of generating a winning strategy for a proponent to win a dispute
against an opponent. The proponent starts by putting forward an initial argument, and then the proponent and the
opponent alternate in attacking each other’s previously presented arguments. The proponent wins if it has a counter-
attack against every attacking argument by the opponent. Nodes in a dispute tree are labelled by arguments and are
assigned the status of proponent node or opponent node, depending upon whether the argument at that node is put
forward by the proponent or by the opponent. The root of the tree, at which the proponent puts forward an initial
argument, is the starting point of the dispute. On every branch of a dispute tree, proponent and opponent alternate,
but, for every proponent node, there is a (possibly empty) set of children, which are opponent nodes labelled by all the
attacks against the proponent node, whereas, for every opponent node, there exists a single child, which is a proponent
node, labelled by a single counter-attack against the opponent node.

Definition 3.1. A dispute tree for an initial argument a is a (possibly infinite) tree T such that

1. Every node of T is labelled by an argument and is assigned the status of proponent node or opponent node, but
not both.
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Fig. 1. A dispute tree labelled by e. Fig. 2. A dispute tree labelled by f .

2. The root is a proponent node labelled by a.
3. For every proponent node N labelled by an argument b, and for every argument c that attacks b, there exists a

child of N , which is an opponent node labelled by c.
4. For every opponent node N labelled by an argument b, there exists exactly one child of N which is a proponent

node labelled by an argument which attacks b.
5. There are no other nodes in T except those given by 1–4 above.

The set of all arguments belonging to the proponent nodes in T is called the defence set of T .

Note that, in 3 above, for every proponent node N labelled by an argument b, if there are no attacks against b, then
N is a terminal node. Note also that a branch in a dispute tree may be finite or infinite. A finite branch represents a
winning dispute that ends with an argument by the proponent that the opponent is unable to attack. An infinite branch
represents a winning dispute in which the proponent counter-attacks every attack of the opponent, ad infinitum.

Example 3.1. Consider the abstract framework (Arg′,attacks′) of Example 2.1. Fig. 1 shows the (infinite) dispute tree
with root labelled by e (a node is represented by X: y where y is the argument labelling the node and X is either P or
O representing the status of the node). The defence set of this tree is {e, c, d}. In Fig. 2 we show an (infinite) dispute
tree with root labelled by f . The defence set of this tree is {f,d}.

Note that we could obtain finite trees from the (possibly infinite) dispute trees we define here by using some
filtering mechanisms so that one does not have to re-defend what has already been defended before in a tree. As the
focus of this paper is on developing computational tools for assumption-based argumentation, we will develop such
mechanisms in Section 4.

3.1. Computing admissible sets of arguments

The definition of dispute tree incorporates the requirement that the proponent must counter-attack every attack, but
it does not incorporate the further requirement that the proponent does not attack itself. This further requirement is
incorporated in the definition of admissible dispute tree:
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Definition 3.2. A dispute tree T is admissible if and only if no argument labels both a proponent and an opponent
node.

Going back to Example 3.1, the dispute tree of Fig. 1 is not admissible, whereas the dispute tree of Fig. 2 is
admissible.

A proof procedure that searches for admissible dispute trees does not always need to incorporate an explicit ad-
missibility check. For example, finite dispute trees are guaranteed to be admissible even without such a check, as
shown by the following theorem which is analogous to Theorem 5.2 of [8]. Indeed, the proof of the next theorem is
an adaptation of the proof in [8].

Theorem 3.1. Any dispute tree that has no infinitely long branches is an admissible dispute tree.

Although unnecessary, the admissibility check of Definition 3.2 can be useful for efficiency reasons, since it can
decrease the size of dispute trees. The next theorem is analogous to Theorem 5.1 of [8].

Theorem 3.2.

(i) If T is an admissible dispute tree for an argument a then the defence set of T is admissible.
(ii) If a is an argument and a ∈ A where A is an admissible set of arguments then there exists an admissible dispute

tree for a with defence set A′ such that A′ ⊆ A and A′ is admissible.

Admissible dispute trees show how to extend an initial argument incrementally to an admissible set of arguments.
However, these trees are non-constructive, because they can be infinite, as shown in Example 3.1.

3.2. Computing ideal sets of arguments

The following theorem provides the backbone for the notion of ideal dispute tree below.

Theorem 3.3. An admissible set of arguments S is ideal iff for each argument a attacking S there exists no admissible
set of arguments containing a.

Thus, in order to support the computation of the ideal semantics for abstract argumentation frameworks, the defi-
nition of admissible dispute tree needs to be extended in order to incorporate the additional requirement indicated by
the earlier theorem.

Definition 3.3. An admissible dispute tree T is ideal if and only if for no opponent node O in T there exists an
admissible tree with root O .

Example 3.2. Consider the abstract framework in Example 2.1. Fig. 3 shows an ideal dispute tree for b. This tree is
ideal since (1) it is admissible, and (2) there exists no admissible tree with root a (since a attacks itself).

Theorem 3.4.

(i) If T is an ideal dispute tree for an argument a then the defence set of T is ideal.
(ii) If a is an argument and a ∈ A where A is an ideal set of arguments then there exists an ideal dispute tree for a

with defence set A′ and A′ ⊆ A.

Ideal dispute trees shorten the distance between the definition of ideal set of arguments and a concrete proof
procedure for computing this set, because they show how to extend an initial argument incrementally to an ideal set
of arguments. However, they are still non-constructive, for the same reasons that admissible dispute trees are non-
constructive in the context of computing admissible sets of arguments. Indeed, in general (admissible and ideal),
dispute trees may be infinite. One could fold them into finite trees by using some filtering mechanisms so that one
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Fig. 3. An ideal dispute tree.

does not have to re-defend what has already been defended earlier on. We will indeed do this in the next section, for
assumption-based frameworks where the notion of argument is not given as primitive. There, we will also show how
to integrate the tasks of computing arguments with the task of defending them, and we will enforce some additional
filtering mechanisms to avoid re-attacking attacks by the opponent, to obtain a more efficient procedure.

4. Computing ideal beliefs for assumption-based argumentation

An (admissible or ideal) dispute tree is an abstraction of a winning strategy for a dispute, because it does not show
the construction of arguments and counter-arguments. The dispute derivations of [8] construct admissible dispute trees
while constructing arguments for assumption-based argumentation frameworks. Our proof procedure for computing
Ideal Beliefs for assumption-based frameworks is defined in terms of IB-dispute derivations, adapted from (a variant
of) the dispute derivations of [8] for computing Admissible Beliefs, that we refer to here as AB-dispute derivations.
Below, we first review AB-dispute derivations (Section 4.1), and then define IB-dispute derivations (Section 4.2).
IB- and AB-dispute derivations are sequences of tuples corresponding to frontiers of dispute trees that are being
constructed top–down, using backward reasoning to generate arguments, interleaving the construction of arguments,
constructing and defeating attacks against these arguments, and checking that the generated tree is admissible (for
AB-dispute derivations) or ideal (for IB-dispute derivations). During the construction of (admissible or ideal) dispute
trees by means of (the appropriate kind of) dispute derivations, arguments do not need to be fully computed before
being defended against attacks (if the arguments are proposed by the proponent) or defeated by counter-attacks (if
the arguments are proposed by the opponent). Indeed, as soon as an assumption is encountered in the construction of
an argument (by either the proponent or opponent), that assumption may be attacked by the adversary in the dispute.
This has the advantage that failure can be detected sooner. However, this implies that arguments being constructed
are only potential arguments, namely deductions S � α whose premises S may or may not be assumptions. Potential
arguments correspond to the backward construction of arguments: each potential argument may result in one, no or
multiple arguments.

Example 4.1. Consider the assumption-based framework where R is

p ← q,α

where α is an assumption. Then, {q,α} � p is a potential argument, that will result (by backward deduction) in no
actual argument. If however R contains also rules

q ← β

q ← γ

with β and γ assumptions, then the potential argument will result in two actual arguments, {α,β} � p and {α,γ } � p.
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By virtue of relying upon potential arguments, dispute derivations thus actually construct concrete dispute trees
[8], that may correspond to one, no or multiple dispute trees.

Note that all our dispute derivations will be of finite length. This is because our ultimate goal is to develop effective
proof procedures that can be used to support practical applications.

4.1. Computing admissible beliefs

The efficient construction of admissible dispute trees for assumption-based argumentation frameworks can be
obtained via AB-dispute derivations, given in Section 4.1.2 below. These are a variant of the dispute derivations
of [8], that improve upon them by being “more complete” (as we will see below). But first, in Section 4.1.1 we
present a preliminary form of AB-dispute derivations, referred to as GB-dispute derivations as they compute Grounded
Beliefs. GB-dispute derivations can be seen as an initial step between dispute trees and the actual, final form of AB-
dispute derivations, in that they are correct, but highly incomplete and inefficient. Dispute derivations rely upon the
re-interpretation of the notion of admissible dispute trees in terms of the following definitions, for assumption-based
argumentation frameworks.

Definition 4.1. Let ABF be an assumption-based argumentation framework, and AF ≈ ABF. Given a dispute tree T
for AF:

• for any opponent node labelled by an argument b with child a proponent node labelled by an argument a if a

attacks some assumption α in the set supporting b then α is said to be the culprit in b;
• the set of all assumptions supporting the arguments in the defence set of T is referred to as the assumption-defence

set of T .

The following theorem trivially holds:

Theorem 4.1. Let ABF be an assumption-based argumentation framework, and AF ≈ ABF. Given a dispute tree T for
AF, T is admissible if and only if no culprit in the argument of an opponent node belongs to the assumption-defence
set of T .

The following is a direct corollary of Theorem 3.2, and its proof is the same as that of Theorem 5.1 in [8].

Corollary 4.1. Given a dispute tree T for an assumption-based argumentation framework:

(i) If T is an admissible dispute tree for an argument a then the assumption-defence set of T is an admissible set of
assumptions.

(ii) If a is an argument supported by a set of assumptions A0 and A is an admissible set of assumptions such that
A0 ⊆ A, then there exists an admissible dispute tree for a with assumption-defence set A′ such that A0 ⊆ A′ ⊆ A

and A′ is admissible.

4.1.1. GB-dispute derivations
GB-dispute derivations are sequences of quadruples: 〈Pi ,Oi ,Ai,Ci〉, where Pi and Oi represent the (proponent

and opponent) nodes in the frontier of the part of the tree generated at step i, together with the set of defence as-
sumptions Ai and culprits Ci generated so far. Oi is a multi-set corresponding directly to the opponent nodes in the
frontier—i.e. its members are multi-sets of sentences representing the state of all of the opponent’s potential argu-
ments against the proponent. The multi-set Pi is a flattened version of the proponent’s potential arguments—i.e. its
members are occurrences of sentences belonging to any of the proponent’s potential arguments.

The first step of a dispute derivation represents the root of the dispute tree. Each step in a dispute derivation
represents the selection of a node in the frontier of the dispute tree and its replacement by its children. Any node in
the frontier can be selected for this purpose. Different selections give rise to different derivations, but do not affect
completeness, because they simply represent different ways of generating the same dispute tree.

In GB-dispute derivations:
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• the set of culprits Ci is used to filter potential defence arguments (step 1(ii)), in that potential defence arguments
whose intersection with the set of culprits Ci is non-empty are disregarded;

• the set of defence assumptions Ai is used to filter potential culprits (step 2(i)(b)), in that a potential culprit is
disregarded if it has already been chosen as a defence assumption,

so that the final assumption-defence set constructed by the derivation does not attack itself (Theorem 4.1).

Definition 4.2. Let 〈L,R,A,−〉 be an assumption based framework. Given a selection function, a GB-dispute deriva-
tion of a defence set A for a sentence α is a finite sequence of quadruples

〈P0,O0,A0,C0〉, . . . , 〈Pi ,Oi ,Ai,Ci〉, . . . , 〈Pn,On,An,Cn〉
where

P0 = {α} A0 = A∩ {α} O0 = C0 = {}
Pn = On = {} A = An

and for every 0 � i < n, only one σ in Pi or one S in Oi is selected, and:

1. If σ ∈ Pi is selected then
(i) if σ is an assumption, then

Pi+1 = Pi − {σ } Ai+1 = Ai Ci+1 = Ci Oi+1 = Oi ∪ {{σ }}
(ii) if σ is not an assumption, then there exists some inference rule σ ← R ∈ R such that Ci ∩ R = {} (filtering

of potential defence arguments by culprits) and

Pi+1 = Pi − {σ } ∪ R Ai+1 = Ai ∪ (A∩ R)

Ci+1 = Ci Oi+1 = Oi

2. If S is selected in Oi and σ is selected in S then
(i) if σ is an assumption, then

(a) either σ is ignored, i.e.

Oi+1 = Oi − {S} ∪ {S − {σ }} Pi+1 = Pi

Ai+1 = Ai Ci+1 = Ci

(b) or σ /∈ Ai (filtering of culprits by defence assumptions) and

Oi+1 = Oi − {S} Pi+1 = Pi ∪ {σ }
Ai+1 = Ai ∪ ({σ } ∩A) Ci+1 = Ci ∪ {σ }

(ii) if σ is not an assumption, then

Pi+1 = Pi Ai+1 = Ai Ci+1 = Ci

Oi+1 = Oi − {S} ∪ {
S − {σ } ∪ R

∣∣ σ ← R ∈R
}

Note that step 2(i)(a) is not needed to guarantee soundness, but is helpful to guarantee success in finding GB-dispute
derivations in many cases, as illustrated in Example 7.2 in [8].

GB-dispute derivations compute support sets of grounded beliefs, as follows:

Theorem 4.2. Given a GB-dispute derivation of a defence set A for a sentence α:

• A is admissible and it is contained in the grounded set of assumptions;
• there exists A′ ⊆ A and an argument A′ � α.

Note that GB-dispute derivations succeed in many cases where other procedures for computing grounded beliefs
fail. However, GB-dispute derivations are “highly incomplete” for admissibility, in that they fail to compute admissible
sets in many cases, corresponding to infinite dispute trees.
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Example 4.2. Let an assumption-based framework have R with

¬α ← β

¬β ← α

A = {α,β} and α = ¬α, β = ¬β . Then, there exists no GB-dispute derivation for ¬α, as shown by the failed search
for one such derivation below:

i Pi Oi Ai Ci

0 {¬α} {} {} {}
1 {β} {} {β} {} by 1.ii
2 {} {{¬β}} {β} {} by 1.i
3 {} {{α}} {β} {} by 2.ii
4 {¬α} {} {β} {α} by 2.i.b
5 . . .

However, there exists an infinite admissible dispute tree for ¬α, whose defence set is {β}.

Moreover, the given notion of GB-derivation can be inefficient, as illustrated by the following example.

Example 4.3. Let an assumption-based framework have R with

p ← α

¬α ← β

¬α ← r

r ← β

¬β

A = {α,β} and α = ¬α, β = ¬β . Then, a GB-dispute derivation for p is shown below:

i Pi Oi Ai Ci

0 {p} {} {} {}
1 {α} {} {α} {} by 1.ii
2 {} {{¬α}} {α} {} by 1.i
3 {} {{β}, {r}} {α} {} by 2.ii
4 {¬β} {{r}} {α} {β} by 2.i.b
5 {} {{r}} {α} {β} by 1.ii
6 {} {{β}} {α} {β} by 2.ii
7 {¬β} {} {α} {β,β} by 2.i.b
8 {} {} {α} {β,β} by 1.ii

Obviously, steps 7–8 are wasteful, as the culprit β has already been defeated.

4.1.2. AB-dispute derivations
These new dispute derivations incorporate a filtering by defence assumptions so that they can (finitely) compute

infinite admissible dispute trees, in examples such as Example 4.2 above. Moreover, AB-dispute derivations incor-
porate a filtering by culprit assumptions so that they can be more efficient, in examples such as Example 4.3 above.
Concretely, the set of defence assumptions Ai is used both to filter proponent assumptions in Pi , so they are not con-
sidered redundantly more than once, and to filter potential culprit assumptions in Oi , so that the final defence set A

constructed by the derivation does not attack itself. The set of culprits Ci is similarly used both to filter potential culprit
assumptions in Oi , so they are not counter-attacked redundantly more than once, and to filter proponent assumptions
in Pi , so that A does not attack itself.
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Definition 4.3. Let 〈L,R,A,−〉 be an assumption based framework. Given a selection function, an AB-dispute deriva-
tion of a defence set A for a sentence α is a finite sequence of quadruples

〈P0,O0,A0,C0〉, . . . , 〈Pi ,Oi ,Ai,Ci〉, . . . , 〈Pn,On,An,Cn〉
where

P0 = {α} A0 = A∩ {α} O0 = C0 = {}
Pn = On = {} A = An

and for every 0 � i < n, only one σ in Pi or one S in Oi is selected, and:

1. If σ ∈ Pi is selected then
(i) if σ is an assumption, then

Pi+1 = Pi − {σ } Ai+1 = Ai Ci+1 = Ci Oi+1 = Oi ∪ {{σ }}
(ii) if σ is not an assumption, then there exists some inference rule σ ← R ∈R such that Ci ∩ R = {} and

Pi+1 = Pi − {σ } ∪ (R − Ai) (filtering of defence assumptions by defences)

Ai+1 = Ai ∪ (A∩ R)

Ci+1 = Ci Oi+1 = Oi

2. If S is selected in Oi and σ is selected in S then
(i) if σ is an assumption, then

(a) either σ is ignored, i.e.

Oi+1 = Oi − {S} ∪ {S − {σ }} Pi+1 = Pi

Ai+1 = Ai Ci+1 = Ci

(b) or σ /∈ Ai and σ ∈ Ci (filtering of culprits by culprits)4 and

Oi+1 = Oi − {S} Pi+1 = Pi Ai+1 = Ai Ci+1 = Ci

(c) or σ /∈ Ai and σ /∈ Ci (filtering of culprits by culprits)5 and
(c.1) if σ is not an assumption, then

Oi+1 = Oi − {S} Pi+1 = Pi ∪ {σ }
Ai+1 = Ai Ci+1 = Ci ∪ {σ }

(c.2) if σ is an assumption, then

Oi+1 = Oi − {S}
Pi+1 = Pi (filtering of defence assumptions by defences)

Ai+1 = Ai ∪ {σ } Ci+1 = Ci ∪ {σ }
(ii) if σ is not an assumption, then

Pi+1 = Pi Ai+1 = Ai Ci+1 = Ci

Oi+1 = Oi − {S} ∪ {
S − {σ } ∪ R

∣∣ σ ← R ∈R, and R ∩ Ci = {}}

(filtering of culprits by culprits)

4 In [8], this case (b) was missing. Our new case here provides an additional filtering of culprits by culprits without affecting the correctness of
the procedure.

5 In [8], the condition σ /∈ Ci in case (c) and case (c.2) were missing. Our new case here provides an additional filtering of culprits by culprits
without affecting the correctness of the procedure. Moreover, case (c.2) takes into account the situation in which the contrary of the chosen culprit
is an assumption in turn. Notice that case (c.2) assumes that if the contrary of α is β then the contrary of β is α, as in all the frameworks we use in
this paper. If this is not the case, case (c.2) can be simply disregarded.
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Example 4.4. Consider the assumption-based framework in Example 4.2. An AB-dispute derivation for ¬α is

i Pi Oi Ai Ci

0 {¬α} {} {} {}
1 {β} {} {β} {} by 1.ii
2 {} {{¬β}} {β} {} by 1.i
3 {} {{α}} {β} {} by 2.ii
4 {¬α} {} {β} {α} by 2.i.c.1
5 {} {} {β} {α} by 1.ii

Indeed, ¬α is an admissible belief, and {β} � ¬α is an admissible argument.

AB-derivations are guaranteed to compute admissible beliefs, as follows:

Theorem 4.3. For every AB-dispute derivation of a defence set A for a sentence α, the defence set A is admissible,
and there exists some A′ ⊆ A that supports an argument for α.

As discussed in [8], AB-dispute derivations are not complete in general. In this paper, we give a sufficient condition
for their completeness, thus providing a sufficient condition for the soundness of IB-dispute derivations defined later
on. For simplicity, we will prove this result for the simplified assumption-based frameworks used throughout the paper
for the examples. These frameworks fulfil the following requirements:

• All sentences in L are atoms p,q, . . . , α,β, . . . or negations of atoms ¬p,¬q, . . . ,¬α,¬β, . . . (i.e. L is a set of
literals).

• The set of assumptions A is a subset of the set of all literals that do not occur as the conclusion of any inference
rule in R.

• The contrary of any assumption α is ¬α; the contrary of any assumption ¬α is α.

Notation 4.1. Let ABF be an assumption-based framework 〈L,R,A,−〉. By ABF+, we will denote the framework
obtained by deleting all assumptions appearing in the premises of the inference rules of R.

Below, given ABF, we use the notion of dependency graph of ABF+, defined in a way similar to the atom depen-
dency graph for logic programming (see, e.g., the review in [2]). The dependency graph of ABF+ is a directed graph
where:

• the nodes are the atoms occurring in ABF+;
• a (directed) arc from a node p to a node q is in the graph if and only if there exists a rule p ← B in ABF+ such

that q occurs in B .

Definition 4.4. An assumption-based framework ABF is positively acyclic (or p-acyclic for short) if the dependency
graph of ABF+ is acyclic.

It is easy to see that the following lemma holds:

Lemma 4.1. Given an assumption based framework, let an infinite partial deduction be an infinite sequence of steps
defined as in Definition 2.4.

Given a p-acyclic framework, there exists no infinite partial deduction.

Note that non-p-acyclic frameworks are rarely encountered in practice, and all assumption-based frameworks we
have used in this paper for illustration purposes are p-acyclic. Note that p-acyclic frameworks are not guaranteed
to be coherent [7]. For example, the assumption-based framework with R = {¬α ← α}, A = {α} and α = ¬α is
p-acyclic but not coherent. Moreover, coherent frameworks are not guaranteed to be p-acyclic. For example, the
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assumption-based framework with R = {p ← p} and A = {α} is coherent (it admits a single preferred and stable set
of assumptions {α}) but not p-acyclic.

In the case of p-acyclic frameworks with a finite underlying language L the dispute derivations of Definition 4.3
are complete, in the following sense:

Theorem 4.4. Let 〈L,R,A,−〉 be a p-acyclic assumption-based framework such that L is finite. Then, for each literal
α, if α is an admissible belief then

• there exists a dispute derivation for α;
• for each admissible set of assumptions Δ, if Δ supports an argument for α then there is a dispute derivation of

defence set A for α such that A ⊆ Δ and a subset of A supports an argument for α.

4.2. Computing ideal beliefs

In this section we define IB-dispute derivations, adapted from AB-dispute derivations. Like AB-dispute derivations,
IB-dispute derivations are sequences of tuples, but these tuples are of the form 〈Pi ,Oi ,Ai,Ci,Fi〉. Fi is a novel com-
ponent intuitively holding all potential attacks against the proponent: by virtue of Theorem 3.3 IB-dispute derivations
need to make sure that no admissible set of assumptions containing any attack in Fi exists. This check is ultimately
performed by a new kind of (subsidiary) dispute derivations, that we call Fail-dispute derivations. In Section 4.2.1
below, we give IB-dispute derivations, relying upon a high-level notion of Fail instead of Fail-dispute derivations. In
Section 4.2.2 we define Fail-dispute derivations computing Fail.

Before we define these new kinds of dispute derivation let us introduce few notations. The notion of dispute
derivation in Definition 4.3 can be extended to a set of sentences S instead of just a single sentence α, by setting P0

to S. Then:

Notation 4.2.

• Given a set of assumptions S, we write S � α if there exists an argument A � α such that A ⊆ S. Moreover, given
a set of sentences P , we write S � P meaning S � α, for each α ∈ P .

• Let P be a set of sentences in L. By Fail(P ) we mean that there exists no admissible set E of assumptions such
that E � P .

IB-dispute derivations are sequences of tuples of the form 〈Pi ,Oi ,Ai,Ci,Fi〉, where

• the new component Fi holds all multisets S for which we want to prove that Fail(S) (these are the potential
attacks S dealt with in step 2. of AB-dispute derivation).

• Pi ,Oi ,Ai,Ci are as in AB-dispute derivations, except that sentences occurring in the multisets in Oi may be
marked.

Notation 4.3. Given a multiset of sentences S:

• Su is the multiset of unmarked sentences in S;
• m(σ,S) is the multiset S where σ ∈ S becomes marked;
• u(S) is S where the marked sentences are unmarked.

Intuitively, IB-dispute derivations compute an admissible support for the given sentence α while trying to check
that no admissible set attacks it. As soon as a (potential) attack is found, this is stored in the F component of the tuple
to check that this fails to be/become admissible. Whenever a potential culprit is ignored in a potential attack, this is
marked so that it will not be selected again. Selected elements in the potential attacks in the O component are chosen
amongst the unmarked elements. Thus, we will impose that, given a multiset S in Oi , the selection function will only
select unmarked sentences in Su.
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4.2.1. IB-dispute derivations
Definition 4.5. Let 〈L,R,A,−〉 be an assumption based framework. Given a selection function, an IB-dispute deriva-
tion of an ideal support A for a sentence α is a finite sequence of tuples

〈P0,O0,A0,C0,F0〉, . . . , 〈Pi ,Oi ,Ai,Ci,Fi〉, . . . , 〈Pn,On,An,Cn,Fn〉
where

P0 = {α} A0 = A∩P0 O0 = C0 = F0 = {}
Pn = On = Fn = {} A = An

and for every 0 � i < n, only one σ in Pi or one S in Oi or one S in Fi is selected, and:

1. If σ ∈ Pi is selected then
(i) if σ is an assumption, then

Pi+1 = Pi − {σ } Ai+1 = Ai Ci+1 = Ci

Oi+1 = Oi ∪ {{σ }} Fi+1 = Fi

(ii) if σ is not an assumption, then there exists some inference rule σ ← R ∈R such that Ci ∩ R = {} and

Pi+1 = Pi − {σ } ∪ (R − Ai) Ai+1 = Ai ∪ (A∩ R) Ci+1 = Ci

Oi+1 = Oi Fi+1 = Fi

2. If S is selected in Oi then σ is selected in Su and
(i) if σ is an assumption, then

(a) either σ is ignored, i.e.

Oi+1 = Oi − {S} ∪ {m(σ,S)} Pi+1 = Pi Ai+1 = Ai

Ci+1 = Ci Fi+1 = Fi

(b) or σ /∈ Ai and σ ∈ Ci and

Oi+1 = Oi − {S} Pi+1 = Pi Ai+1 = Ai

Ci+1 = Ci Fi+1 = Fi ∪ {u(S)}
(c) or σ /∈ Ai and σ /∈ Ci and

(c.1) if σ is not an assumption, then

Oi+1 = Oi − {S} Pi+1 = Pi ∪ {σ } Ai+1 = Ai

Ci+1 = Ci ∪ {σ } Fi+1 = Fi ∪ {u(S)}
(c.2) if σ is an assumption, then

Oi+1 = Oi − {S} Pi+1 = Pi Ai+1 = Ai ∪ {σ }
Ci+1 = Ci ∪ {σ } Fi+1 = Fi ∪ {u(S)}

(ii) if σ is not an assumption, then

Pi+1 = Pi Ai+1 = Ai Ci+1 = Ci

Fi+1 = Fi ∪ {S − {σ } ∪ R | σ ← R ∈ R and R ∩ Ci 
= {}}
Oi+1 = Oi − {S} ∪ {S − {σ } ∪ R | σ ← R ∈ R and R ∩ Ci = {}}

3. If S is selected in Fi then Fail(S) and

Oi+1 = Oi Pi+1 = Pi Ai+1 = Ai

Ci+1 = Ci Fi+1 = Fi − {S}
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Example 4.5. Consider the assumption-based framework in Example 2.2. An IB-dispute derivation for ¬α is
〈P0,O0,A0,C0,F0〉, . . . , 〈P6,O6,A6,C6,F6〉 where

i Pi Oi Ai Ci Fi

0 {¬α} {} {} {} {}
1 {β} {} {β} {} {} by 1.ii
2 {} {{¬β}} {β} {} {} by 1.i
3 {} {{α}} {β} {} {} by 2.ii
4 {¬α} {} {β} {α} {{α}} by 2.i.c.1
5 {} {} {β} {α} {{α}} by 1.ii
6 {} {} {β} {α} {} by 3, since Fail({α}) holds

Hence, ¬α is an ideal belief and {β} is the computed ideal support for ¬α.

IB-dispute derivations are sound and, for p-acyclic frameworks with an underlying finite language, complete, as
proven by the following theorems.

Theorem 4.5. If there exists an IB-dispute derivation for α, then α is an ideal belief.

Theorem 4.6. Given a p-acyclic framework with an underlying finite language, if α is an ideal belief then there exists
an IB-dispute derivation for α.

4.2.2. Fail-dispute derivations
Fail(S) at step 3 of IB-dispute derivations can be computed by means of a new kind of dispute derivations, that we

refer to as Fail-dispute derivations, obtained again by adapting the dispute derivations of [8].

Definition 4.6. Let 〈L,R,A,−〉 be an assumption based framework. Given a selection function, a Fail-dispute deriva-
tion of a multiset of sentences S is a sequence D0, . . . ,Dn such that each Di is a set of quadruples of the form
〈P,O,A,C〉 where

D0 = {〈S, {},A∩ S, {}〉} Dn = {}

and, for every 0 � i < n, if a quadruple Q = 〈P,O,A,C〉 is selected in Di then either P 
= {} or O 
= {}, and

1. If an element O from O is selected, then
(a) if O = {} then Di+1 = Di − {Q};
(b) if O 
= {} then let σ ∈ O be the selected sentence in O:

i. if σ is not an assumption then Di+1 = Di − {Q} ∪ {Q′} where Q′ is obtained from Q as in step (2.ii) of
Definition 4.3;

ii. if σ is an assumption then there are two cases:
Case 1: σ /∈ A. Then Di+1 = Di − {Q} ∪ {Q0,Q1} where Q0 is obtained from Q as in step (2.i.a) and

Q1 is obtained from Q as in steps (2.i.b) or (2.i.c) (as applicable) of Definition 4.3;
Case 2: σ ∈ A. Then Di+1 = Di − {Q} ∪ {Q0} where Q0 is obtained from Q as in step (2.i.a) of Defini-

tion 4.3;
2. If a σ ∈P is selected, then

(a) if σ is an assumption then Di+1 = Di − {Q} ∪ {Q′} where Q′ is obtained from Q as in step (1.i) of Defini-
tion 4.3;

(b) if σ is not an assumption then Di+1 = Di − {Q} ∪ {Q′} where there is a rule σ ← R such that Q′ is obtained
from Q as in step (1.ii) of Definition 4.3.
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Example 4.6. Consider the assumption-based framework in Example 2.2. We show here a Fail-dispute derivation
of {α}.

D0 = {〈{α}, {}, {α}, {}〉} applying step 2, we have:
D1 = {〈{}, {{¬α}}, {α}, {}〉} applying step (1.b), we have:
D2 = {〈{}, {{α}, {β}}, {α}, {}〉} applying step (1.b) by selecting

O = {α} in {{α}, {β}} we have:
D3 = {〈{}, {{}, {β}}, {α}, {}〉} applying step (1.a) by selecting

O = {}, we have:
D4 = {}

Theorem 4.7. If there exists a Fail-dispute derivation for a multiset of sentences S then Fail(S) holds.

IB-dispute derivations in which Fail-dispute derivations are used to check whether Fail(S) holds, for any S, are
sound, as follows:

Corollary 4.2. If there exists an IB-dispute derivation for α in which Fail-dispute derivations are used to check
whether Fail holds, then α is an ideal belief.

Fail-dispute derivations are complete if AB-dispute derivation are complete for the admissibility semantics. Thus:

Theorem 4.8. For p-acyclic frameworks with a finite underlying language, if there exists no admissible argument
supporting S then there is a Fail-dispute derivation for S.

From the above theorem, it follows immediately that

Corollary 4.3. For p-acyclic frameworks with a finite underlying language, IB-dispute derivations in which Fail-
dispute derivations are used to check Fail are complete.

5. Related work

We are not aware of any proof procedure for ideal abstract argumentation. However, there are a number of existing
tools for computing sceptical argumentation, notably the TPI procedure [21] and the procedure of [5], for computing
the sceptical preferred semantics, and the tools of [14] and [22], for computing the grounded semantics.

The sceptical TPI procedure [21] is defined in terms of the credulous TPI dispute procedure, as follows: an argu-
ment is in all preferred extensions if it can be defended in every credulous TPI dispute and none of the attacks against
it can be defended in every credulous TPI dispute. This procedure is proven to be sound and complete for coherent
frameworks [10,21], i.e. frameworks for which the preferred and stable semantics always coincide [7]. Instead, for the
ideal semantics, our dispute trees are always sound and complete and our dispute derivations are

• sound for all (coherent and non-coherent) frameworks and
• complete for (coherent and non-coherent) frameworks, as soon as they are p-acyclic (and with a finite underlying

language).

Indeed, the completeness results in Section 4.2 only require the p-acyclicity and finiteness of the underlying lan-
guage conditions, and (as discussed in Section 4.1.2) p-acyclic frameworks are not coherent in general. Note that the
restriction to p-acyclic frameworks is rather natural and, in our experience, most assumption-based frameworks are
naturally p-acyclic. Indeed, p-acyclicity amounts to the absence of recursive loops in deductions in assumption-based
argumentation, e.g. given by rules of the form p ← p.

The algorithm of [5] computes the sceptical preferred semantics for abstract argumentation as follows. Given an
argument a, the algorithm proceeds in two separate steps: it first checks that a is not attacked by any admissible set;
then, it shows that there exists no preferred extension not containing a. Our IB-dispute derivations are leaner in the
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sense that they do not require the second step: they just need to compute an admissible set containing a and show
that no preferred extension attacks it. Further, these two steps are integrated within IB-dispute derivations. Finally,
differently from the algorithm of [5], our IB-dispute derivations are fully defined as disputes between a proponent and
an opponent.

Kakas and Toni [14,20] developed argumentation-theoretic proof procedures for the grounded semantics. This is
explicitly defined only for logic programs, but, as the authors remark, it can be generalised to any flat assumption-
based framework. Compared with their procedure for the grounded semantics, our GB-dispute derivations perform
more filtering and are thus more efficient. Moreover, their procedure is defined in terms of argumentation trees whose
dialectic nature is less clear than that of GB-dispute derivations.

Vreeswijk [22] presents an algorithm for computing simultaneously (the relevant part of) the grounded extension
and all (relevant parts of) the admissible extensions supporting a given belief. The algorithm works by enforcing a
labelling (in, out, undecided) on each argument encountered during the computation. It performs filtering in order
to terminate as early as possible. Although this algorithm computes all possible admissible sets supporting a given
argument, it does not provide an answer whether the argument in question is sceptically supported or not unless it
belongs to the grounded extension.

6. Conclusions

We have proposed new proof procedures for computing the ideal semantics, adapted from [1], for argumentation in
both abstract and assumption-based frameworks. We have argued that this is a good semantics for performing sceptical
argumentation, as it is easily computed and is not overly sceptical.

The proof procedure for abstract argumentation is defined in terms of ideal dispute trees, adapted from the trees of
[8] for computing admissible arguments for assumption-based argumentation. The proof procedure for assumption-
based argumentation is defined in terms of IB-dispute derivations and Fail-dispute derivations, both adapted from
(extensions of) the dispute derivations of [8]. All these derivations extend and generalise standard SLD-based deriva-
tions in logic programming, as discussed in [8].

We have proven that the new dispute trees are sound and complete (with respect to the ideal semantics) for any
abstract argumentation frameworks, and the new dispute derivations are (with respect to the ideal semantics) sound
for any assumption-based frameworks and complete for any p-acyclic assumption-based frameworks with a finite
underlying language. In order to prove this completeness result, we have proven a novel completeness result (with
respect to the admissible semantics), in the case of p-acyclic frameworks with a finite underlying language, for (a
variant of) the procedure proposed in [8]. We have also developed a form of dispute derivations for computing the
sceptical grounded semantics for assumption-based argumentation frameworks.

We have exported the ideal semantics of [1] to both abstract and assumption-based argumentation, and studied to
some extent its relationship with other, existing semantics. It would be interesting to study further these relationships,
for example to see whether in any specific kinds of frameworks the ideal set of arguments always coincides with the
intersection of all preferred sets of arguments.

Our procedures build upon the procedures for computing credulous admissible argumentation proposed in [8].
Other procedures exist for computing admissible sets of arguments for abstract argumentation, for instance [5,10,21].
It would be interesting to study whether these procedures could also be extended to compute ideal sets of arguments.

A preliminary implementation of our procedures has been given in the CaSAPI system [11], that has been used
to support conflict-resolution amongst mental attitudes in rational agents [12] and decision making [17]. The im-
plementation allows to compute grounded/admissible/ideal supports for given beliefs and visualise, in a rudimental
manner, the corresponding dispute derivations. A full evaluation of the implementation and further experimentation
are ongoing work.

Finally, it would be interesting to complement the procedures for the ideal semantics in this paper by means of an
analysis of the complexity of the ideal semantics for abstract and assumption-based argumentation. Intuitively, this se-
mantics is more complex than the admissible semantics (as its computation requires computing an admissible set first
and then performing a check on it). Moreover, its computation is at most that of computing all preferred extensions.
Following the results for the admissible and preferred semantics of [6] for (several instances of) assumption-based
frameworks, this means that the problem of computing the ideal set of arguments is, for example, at least NP-complete
and at most �

p-complete for the logic programming instance of assumption-based argumentation (with an underlying
2
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P -complete deductive system), and at least 	
p

2 -complete and at most �
p

3 -complete for the default logic instance of
assumption-based argumentation (with an underlying NP-complete deductive system). A full analysis of the compu-
tational complexity of the ideal semantics is beyond the scope of this paper and is left for future work.
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Appendix A. Proofs

Proof of Lemma 2.1. We observe that given two admissible sets, their union is still admissible, if it does not attack
itself. Let now X and Y be two ideal sets, and hence admissible and contained in each preferred set. Since X ∪ Y is
still contained in each preferred set, it does not attack itself and, by the previous observation, it is still admissible, and
hence ideal. �
Proof of Theorem 2.1. (i) follows immediately from Lemma 2.1. Let now I be the maximal ideal set and x be an
argument such that I attacks every attack against x. Obviously, I ∪ {x} is still admissible and it is contained in every
preferred set. Hence x ∈ I by maximality of I . This proofs (ii).

(iii) follows immediately from (ii) and from Definition 2.2. Finally, (iv) is a direct consequence of Defini-
tion 2.2. �
Proof of Theorem 2.2. Let A be an admissible set of assumptions wrt to ABF, and let XA be the set of arguments
in AF containing all arguments supported by any subset of A. Assume that XA attacks itself. Hence, there exists
arguments a, b ∈ XA such that a attacks b. Let a ≈ A1 � α and b ≈ A2 � β , with A1 ⊆ A and A2 ⊆ A. Hence, by
Definition 2.7, α = γ for some γ ∈ A2, contradicting the fact that A, being admissible, does not attack itself. Hence
XA does not attack itself.

Assume now there exists two arguments x, y such that x ∈ XA, y attacks x but XA does not attack y. Again, let
x ≈ X � ϑ and y ≈ Y � ϕ. Since y attacks x, ϕ = δ for some δ ∈ X. But since (X � ϑ) ∈ A and A is admissible,
A attacks {Y � ϕ}, i.e. there exists η ∈ Y such that ϑ = η. Hence, by construction, x attacks y. Contradiction. This
concludes the proof of (i) as far as admissibility is concerned. The proof for grounded/ideal sets is similar and thus
omitted.

Consider now (ii) and an admissible set X of arguments in Arg. For each argument x ∈ Arg, let assumptions(x)

denote the set of assumptions supporting x (i.e. the set A if x ≈ A � α). Let now

X =
⋃

x∈X

assumptions(x)

Assume that X is not admissible. Then, either X attacks itself or X does not attack itself but there is a set of assump-
tions B such that B attacks X and X does not attack B .

Assume X attacks itself. Then there exists an argument B � β such that B ⊆ X and β = α for some α ∈ X . Let
b ≈ B � β . It is clear that {b} attacks X and, by admissibility of X, there exists some a ∈ X such that a attacks b. Let
a ≈ A′ � α′. Then, α′ = β ′ for some β ′ ∈ B . Since B ⊆ X , β ′ ∈X and hence a attacks any argument x′ ∈ X such that
β ′ ∈ assumptions(x′). Thus, X attacks itself, contradicting the admissibility of X.

Assume now there exists a set of assumptions B such that B attacks X and X does not attack B . Hence, there
exists an argument B � β such that β = α for some α ∈ X . Let b ≈ B � β . It is clear that {b} attacks X and, by
admissibility of X, there exists some a ∈ X such that a attacks b. Let a ≈ A′ � α′. Then, α′ = β ′ for some β ′ ∈ B .
Since, by construction, A′ ⊆ X , by Definition 2.8 X attacks B . Contradiction! This concludes the proof of (ii) as far
as admissible sets are concerned. The proof for grounded/ideal sets is similar and thus omitted. �
Proof of Theorem 3.1. Let P,O be two nodes of a dispute tree such that P is a proponent node and O is an
opponent node, and P and O are labelled by the same argument. Then the pair (P,O) is called a conflicting pair.
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Given two conflicting pairs (P,O) and (P ′,O ′), we define (P,O) � (P ′,O ′) if P ′ is a child of O and O ′ is a child
of P . Clearly, the existence of an infinite chain (P0,O0) � (P1,O1) � · · · in a dispute tree implies that the tree is
infinite.

We show that any non-admissible dispute tree is infinite. Let T ′ be a non-admissible tree. Hence there exists a
conflicting pair (P,O) in T ′, such that P and O are labelled by the same argument, say p. Let P ′ be the unique child
of O , and assume P ′ is labelled by p′. By definition of dispute tree, p′ attacks p. Hence, there exists a child of P ,
say O ′, which is an opponent node and is labelled by p′. Hence, (P ′,O ′) is a conflicting pair such that (P,O) �
(P ′,O ′). �
Proof of Theorem 3.2. (i) Let D be the defence set of T . Assume D attacks itself. Then there exist arguments
a, b ∈ D such that a attacks b. Hence, a proponent node P labelled by b has, among others, a child O which is an
opponent node and is labelled by a. Hence, a is a label of both a proponent and an opponent node in T , contradicting
the admissibility of T . Assume now that there exists an argument b such that b attacks D but D does not attack b.
Hence, for some argument a ∈ D and for some proponent node P labelled by a, there exists an opponent node O

labelled by b which is a child of P . By definition of dispute tree, O has a unique child P ′ which is labelled by some
argument a′ such that a′ attacks b. Since a′ ∈ D, D attacks b, which is a contradiction. This concludes the proof of (i).

(ii) We inductively construct a dispute tree where nodes have a ranked assigned such that the proponent nodes have
an even rank and the opponent nodes have an odd rank. Moreover, by construction, each proponent node is labelled
by an argument in A, and each opponent node is labelled by an argument b /∈ A.

(1) The root is labelled by a, and is the unique node of rank 0.
(2) Assume that we have constructed all nodes with rank less than or equal than i = 2k, k � 0. Let P be a proponent

node of rank i, labelled by an argument a ∈ A. Then, for each argument b attacking a, P has one child O which
is an opponent node, is labelled by b and has rank i + 1. Notice that each such b /∈ A, by admissibility of A. Since
a ∈ A, by admissibility of A there exists a′ ∈ A such that a′ attacks b. Hence, we construct the unique child P ′ of
O which is a proponent node, is labelled by a′ and has rank i + 2.

Notice that the above construction may end up at some finite rank i. In this case, the dispute tree we have con-
structed is finite (hence admissible) and the defence set A′ of the tree is a subset of A by construction. Otherwise, if
the dispute tree is infinite, we have by construction an infinite admissible dispute tree. The admissibility of its defence
set follows from part (i) of the theorem. �
Proof of Theorem 3.3. Assume S is an ideal set and assume there exists an argument a and an admissible set of
arguments A such that a attacks S and a ∈ A. Since A is admissible, there exists a preferred set of arguments P such
that A ⊆ P . By definition, S ⊆ P , hence P attacks itself, contradicting its admissibility.

Assume now that for each argument a attacking S there is no admissible set of arguments containing a, and assume
S is admissible. Suppose that there exists a preferred set P such that S 
⊆ P . We show that P ∪ S is still admissible,
contradicting the fact that P is maximally admissible. By hypothesis, no argument a ∈ P attacks S, since otherwise
there would exist an attack against S contained in an admissible set, contradicting the hypothesis. Hence P cannot
attack S. But S cannot attack P either, since otherwise, by admissibility of P , P would attack S. Hence S and P are
two admissible sets which do not attack each other, and this implies that S ∪ P is still admissible. Contradiction. �
Proof of Theorem 3.4. (i) Let T be an ideal dispute tree for an argument a and let D be the defence set of T . Assume
D is not ideal. Then, by Theorem 3.3, there exists an argument b such that b attacks D and b is contained in some
admissible set B . Hence, by Theorem 3.2(ii), there exists an admissible dispute tree for b. Since b must be the label
of some opponent node in T , we have a contradiction with the assumption that T is an ideal tree.

(ii) Let a be an argument belonging to an ideal set A and consider the admissible dispute tree T for a constructed
as in the proof of Theorem 3.3(ii). We show that such a tree is ideal. Assume the contrary, i.e. for some opponent node
O labelled by some argument b, there exists an admissible dispute tree T ′ for b. Let B be the defence set of T ′. By
Theorem 3.2(i) B is admissible. Let D be the defence set of T . By construction of T , we have that D ⊆ A, b attacks
D and b is contained in the admissible set B . This is a contradiction by Theorem 3.3. �
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Proof of Theorem 4.1. Trivial, by definition of culprit and of admissibility check. �
Proof of Theorem 4.2. We need first to introduce some new concepts.

Definition A.1. A partial support tree of a sentence α (wrt a selection function sl) is defined as follows:

1. The root is a node labelled by α.
2. Let N be a node labelled σ . If σ is an assumption, then N is a terminal node. If σ is not an assumption and N is

not terminal then there exists some inference rule S
σ

∈ R and there exists exactly one child of N labelled by δ′ for
each δ′ ∈ S. If S is empty, N has exactly one child labelled by “true”.

A (full) support tree of α is a partial support tree of α such that a node labelled by a non-assumption σ is terminal iff
σ is “true”.

It is easy to see that support trees of α are tree representations of backward deductions of α while partial support
trees are tree representations of partial backward deductions.

Definition A.2. A partial GB-dispute derivation is defined as a GB-dispute derivation, dropping the requirement that
the components P,O of the last tuple are empty.

We introduce a notion of partial tree-based GB-dispute derivations for illustrating the tree structure of partial GB-
dispute derivations where proponent and opponent elements in the GB-dispute derivation are represented by frontier
nodes of trees. Intuitively, a partial tree-based GB-dispute derivations is a sequence of dispute trees where partial GB-
dispute trees are trees whose nodes are either proponent or opponent nodes. Proponent nodes are labelled by single
sentences while opponent nodes are labelled by multisets of sentences where some of these sentences may be marked.
Nodes that have no children and are not labelled by true or false are called frontier nodes.

Definition A.3. Given a selection function, a partial tree-based GB-dispute derivation for a sentence α is a finite
sequence of triples

〈T0,A0,C0〉, . . . , 〈Ti,Ai,Ci〉, . . . , 〈Tn,An,Cn〉
where

– A0 = A∩ {α},
– C0 = {},
– each Ti is a partial dispute tree,
– the only node in T0 is its root that is a proponent node labelled by α, and

for every 0 � i, exactly one frontier node in Ti is selected, and:

1. If the selected node N is a proponent node labelled by σ then
– If σ is a non-assumption then there exists some inference rule R

σ
and

Ci ∩ R = {}
Ai+1 = Ai ∪ (A∩ R)

Ci+1 = Ci

and Ti is expanded into Ti+1 by adding, for each literal L in R, a child to N that is a proponent node labelled
by L. If R is empty then N has exactly one child, a proponent node labelled by true.

– If σ is an assumption then

Ai+1 = Ai

Ci+1 = Ci
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and Ti is expanded into Ti+1 by adding a child to N that is an opponent node labelled by {σ }. Note that σ is
unmarked.

2. If the selected node N is an opponent node labelled by S and an unmarked σ is selected in S then
(i) if σ is an assumption, then

expand Ti into Ti+1 by adding exactly one child to N which is either
– an opponent node labelled by S with σ becoming marked and

Ai+1 = Ai

Ci+1 = Ci

– or an proponent node labelled by σ , and σ /∈ Ai and

Ai+1 = Ai

Ci+1 = Ci ∪ {σ }
(ii) If σ is a non-assumption then

Ai+1 = Ai

Ci+1 = Ci

and Ti is expanded into Ti+1 by adding for each rule R
σ

a child M to N that is an opponent node labelled by
S − {σ } ∪ R. If no such rule exists, then N has exactly one child, an opponent node labelled by false. Note
that the sentences in R are unmarked.

Each partial tree-based GB-dispute derivation

T = 〈T0,A0,C0〉, . . . , 〈Ti,Ai,Ci〉, . . . , 〈Tn,An,Cn〉
can be uniquely transformed into a partial GB-dispute derivation

fl(T ) = 〈P0,O0,A0,C0〉, . . . , 〈Pi ,Oi ,Ai,Ci〉, . . . , 〈Pn,On,An,Cn〉
by defining for each i,

Pi = set of sentences labelling frontier proponent nodes in Ti ;
Oi = set of multisets of sentences labelling frontier opponent nodes in Ti (minus the marked sentences in them).

Definition A.4. Given a selection function, a (full) tree-based GB-dispute derivation of a defence set A for a sentence
α is a finite partial tree-based GB-dispute derivation

〈T0,A0,C0〉, . . . , 〈Ti,Ai,Ci〉, . . . , 〈Tn,An,Cn〉
such that A = An, and there are no frontier nodes in Tn.

It is not difficult to see that T is a tree-based GB-dispute derivation iff fl(T ) is a GB-dispute derivation.
Trees appearing in partial tree-based GB-dispute derivations are also called partial GB-dispute trees. Trees appear-

ing in the last tuple of a tree-based GB-dispute derivation are also called (full) GB-dispute trees. A path in a partial
dispute tree is called a proponent (resp. opponent) path if all the nodes on it are proponent (resp. opponent) nodes.

Let T be a partial GB-dispute tree. The relative root of a proponent (resp. opponent) node N in T is a proponent
(resp. opponent) node M in T such that there is a proponent (resp. opponent) path from M to N and if M is not the
root of T then the parent of M is an opponent (resp. proponent) node in T . We often also simply call N a relative root
if N is the relative root of itself.

Definition A.5. Let T be a partial GB-dispute tree and N a proponent node in T . The context tree of N , denoted by
ct (N), is a subtree of T defined as follows:

– The root of ct(N) is the relative root of N ;
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– A node N ′ in T belongs to ct(N) iff it is a proponent node and there is a proponent path from the relative root of
N to N ′.

It is easy to see that if N is a proponent node in a partial (resp. full) GB-dispute tree then ct(N) is a partial (resp.
full) support tree of α where α is the sentence labelling the relative root of N .

A context path in a partial GB-dispute tree is an opponent path from a relative root.
Let p = N0, . . . ,Nk be a context path and S0, . . . , Sk be the sets labelling the nodes in p. Then S0 = {σ } for some

assumption σ and S0, . . . , Sk is a partial backward deduction of σ .

Proof of Theorem 4.2. Let

〈P0,O0,A0,C0〉, . . . , 〈Pi ,Oi ,Ai,Ci〉, . . . , 〈Pn,On,An,Cn〉
be a GB-dispute derivation and

〈T0,A0,C0〉, . . . , 〈Ti,Ai,Ci〉, . . . , 〈Tn,An,Cn〉
be the corresponding tree-based GB-dispute derivation.

By induction on 0 � i � n, we can easily show that Ci ∩ Ai = ∅.
It is not difficult to see that the following lemmas hold:

Lemma A.1. Let σ ∈ An and S be a set of assumptions such that S � σ . Then there is a context path p from some
opponent node N in Tn such that N is labelled by {σ } and p is labelled by a sequence S0, . . . , Sk such that an
assumption is selected at Sk and S0, . . . , Sk can be extended into a full backward deduction S0, . . . , Sk, . . . , Sm such
that Sm = S.

Lemma A.2. Let σ ∈ Cn and N be a proponent node labelled by σ . Then the context tree ct(N) is a full support tree
such that the set of assumptions labelling the terminal nodes in ct(N) is a subset of An.

The proof that An is an admissible subset of the grounded extension is based on the easy fact that if S is an
admissible subset of the grounded extension and E is a set of assumptions acceptable wrt S (i.e. each argument
attacking E is attacked by S), then S ∪ E is also an admissible subset of the grounded extension.

Let p be a path in a GB-dispute tree. A type change in p is a pair (N,M) of nodes in p such that the types of N,M

are different and M is a child of N . The type-height (or simply t-height) of p is the number of type changes in p. The
t-height of a dispute tree is the maximum of the t-heights of the paths in it.

The proof is done by induction on the t-height of the GB-dispute tree Tn.
Base case: The t-height is 0. Hence An is empty. The theorem holds obviously.
Inductive case: Suppose the theorem holds for cases of t-height less than or equal k. Suppose that the t-height of Tn

is k + 1. Let N be the set of all proponent relative roots. Let B denote the set of assumptions labelling the proponent
successors of nodes in N . From the induction hypothesis, B is an admissible subset of the grounded extension. Let C

be the set of assumptions labelling the terminal nodes of ct(M) where M is the root of the GB-dispute tree. It is clear
that C ⊆ An. Let S be an argument attacking an assumption σ ∈ C. From Lemma A.1, t here is a context path p from
some opponent node N in Tn such that N is labelled by {σ } and p is labelled by a sequence S0, . . . , Sk such that an
assumption δ is selected at Sk and S0, . . . , Sk can be extended into a full backward deduction S0, . . . , Sk, . . . , Sm such
that Sm = S.

Therefore there is a proponent node N ∈N such that N is labelled by δ. Therefore B attacks δ. Hence B attacks S.
This means C is acceptable wrt B . Hence An = B ∪ C is an admissible subset of the grounded extension. �
Proof of Theorem 4.3. We introduce a notion of partial tree-based AB-dispute derivation as an equivalent of AB-
dispute derivation. The differences between the new notion and the original one lies in the introduction of dispute
trees with marked frontier nodes for representing new filtering mechanisms.

Definition A.6. Given a selection function, a partial tree-based AB-dispute derivation for a sentence α is a finite
sequence of triples

〈T0,A0,C0〉, . . . , 〈Ti,Ai,Ci〉, . . . , 〈Tn,An,Cn〉
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where

A0 = A∩ {α}
C0 = {} and

the only node in T0 is its root that is an unmarked proponent node labelled by α, and for every 0 � i, exactly one
unmarked frontier node in Ti is selected, and:

1. If the selected node N is a proponent node labelled by σ then
– If σ is a non-assumption then there exists some inference rule R

σ
and Ci ∩ R = {} (filtering of defence assump-

tions by culprits),

Ai+1 = Ai ∪ (A∩ R)

Ci+1 = Ci

and Ti is expanded into Ti+1 by adding, for each literal L in R, a child to N that is a proponent node labelled
by L, and mark those labelled by assumptions in R ∩ Ai (filtering of defence assumptions by defences). All the
other new nodes are unmarked. If R is empty then N has exactly one child, a proponent node labelled by true.

– If σ is an assumption then

Ai+1 = Ai

Ci+1 = Ci

and Ti is expanded into Ti+1 by adding a child to N that is an opponent node labelled by {σ }. The new node is
unmarked and σ is also unmarked.

2. If the selected node N is an opponent node labelled by S and an unmarked σ is selected in S then
(a) if σ is an assumption, then

i. either expand Ti into Ti+1 by adding exactly one child to N which is an unmarked opponent node labelled
by S with a marked σ in S and

Ai+1 = Ai

Ci+1 = Ci

ii. or σ /∈ Ai and σ ∈ Ci (filtering culprits by culprits), and mark N and

Ai+1 = Ai

Ci+1 = Ci

iii. or σ /∈ Ai and σ /∈ Ci , and
A. if σ is not an assumption then expand Ti into Ti+1 by adding exactly one child to N which is an

unmarked proponent node labelled by σ , and

Ai+1 = Ai

Ci+1 = Ci ∪ {σ }
B. if σ is an assumption then mark N and

Ai+1 = Ai ∪ {σ }
Ci+1 = Ci ∪ {σ }

(b) If σ is a non-assumption then

Ai+1 = Ai

Ci+1 = Ci

and Ti is expanded into Ti+1 by adding for each rule R
σ

such that R ∩ Ci = {}, a child M to N that is an
unmarked opponent node labelled by S − {σ } ∪ R. The sentences in R are unmarked in S − {σ } ∪ R. If no
such rule exists, then N has exactly one child, an opponent node labelled by false.
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Each partial tree-based AB-dispute derivation

T = 〈T0,A0,C0〉, . . . , 〈Ti,Ai,Ci〉, . . . , 〈Tn,An,Cn〉
can be uniquely transformed into a partial AB-dispute derivation

fl(T ) = 〈P0,O0,A0,C0〉, . . . , 〈Pi ,Oi ,Ai,Ci〉, . . . , 〈Pn,On,An,Cn〉
by defining, for each i,

Pi = set of sentences labelling the unmarked frontier proponent nodes in Ti ;
Oi = set of multisets of sentences labelling the unmarked frontier opponent nodes in Ti (minus the marked
sentences in them).

Given a selection function, a ( full) tree-based AB-dispute derivation of a defence set A for a sentence α is a finite
partial tree-based AB-dispute derivation

〈T0,A0,C0〉, . . . , 〈Ti,Ai,Ci〉, . . . , 〈Tn,An,Cn〉
such that A = An, and all frontier nodes in Tn are marked nodes.

It is not difficult to see that T is a tree-based AB-dispute derivation iff fl(T ) is a (full) AB-dispute derivation.
Trees appearing in partial tree-based AB-dispute derivation are also called partial AB-dispute trees. Trees appear-

ing in the last tuple of a tree-based AB-dispute derivation are also called (full) AB-dispute trees. A path in a partial
dispute tree is called a proponent (resp. opponent) path if all the nodes on it are proponent (resp. opponent) nodes.

The notions of relative root, context tree and context path are defined for partial AB-dispute trees similarly to those
defined for partial GB-dispute trees.

Similarly, it holds also that if N is a proponent node in a partial (resp. full) AB-dispute tree then ct(N) is a partial
(resp. full) support tree of α where α is the sentence labelling the root of ct(N).

It also holds that if p = N0, . . . ,Nk is the context path of Nk and S0, . . . , Sk are the sets labelling the nodes in p,
then S0 = {σ } for some assumption σ and S0, . . . , Sk is a partial backward deduction of σ .

Let

〈P0,O0,A0,C0〉, . . . , 〈Pi ,Oi ,Ai,Ci〉, . . . , 〈Pn,On,An,Cn〉
be an AB-dispute derivation and

〈T0,A0,C0〉, . . . , 〈Ti,Ai,Ci〉, . . . , 〈Tn,An,Cn〉
be the corresponding tree-based AB-dispute derivation. By induction on 0 � i � n, we can easily show that
Ci ∩ Ai = ∅.

It is not difficult to see that the following lemmas hold.

Lemma A.3. Let σ ∈ An and S be a set of assumptions such that S0, . . . , Sk, . . . , Sm is a full backward deduction of
σ and S = Sm. Then there is an opponent node N in Tn labelled by {σ } such that there is a opponent path in Tn from
N to some node M labelled by the sequence S0, . . . , Sk in Tn, and

1. either the rule R
σ

used at step Sk in the deduction satisfies Ci ∩ R 
= {},
2. or an assumption is selected at Sk .

Lemma A.4. Let σ ∈ Cn. Then there is a proponent node N labelled by σ and for each such nodes N , the context tree
ct(N) is a full support tree whose set of assumptions labelling the terminal nodes is a subset of An.

Proof of Theorem 4.3. Let S be an argument attacking σ ∈ An. From Lemma A.3, there is a full backward deduction
of σ : S0, . . . , Sk, . . . , Sm, S = Sm. Then there is an opponent node N in Tn labelled by {σ } such that there is a opponent
path in Tn from N labelled by the sequence S0, . . . , Sk in Tn, and

1. either the rule R
σ

used at step Sk in the deduction satisfies Ck ∩ R 
= {},
2. or an assumption is selected at Sk .
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In the first case, it is clear that Ck ∩ R ⊆ A∩ R ⊆ S. Hence there is an assumption δ ∈ Cn ∩ S.
In the second case, let δ be the assumption selected at Sk . Therefore δ ∈ Cn. Since δ ∈ S, we get δ ∈ Cn ∩ S.
Let M be a proponent node labelled by δ. From Lemma A.4, ct(M) is a full support tree such that all the assump-

tions labelling its terminal nodes belong to An. Hence An � δ. Hence An attacks S.
Suppose that An is not conflict free. Hence there is σ ∈ An such that S � σ for some S ⊆ An. From our above

elaboration, there is δ ∈ Cn ∩ S. Contradiction to the fact that Cn,An are disjoint. �
Proof of Theorem 4.4. From the correspondence between tree-based AB-dispute derivations and AB-dispute deriva-
tions, we will work on the tree-based version. Let S be an admissible set of assumptions and α be a sentence such that
S � α.

An opponent node in a AB-dispute tree is called locally terminal if either it is marked or its only child is a proponent
node.

We show now that there is no infinite partial AB-dispute derivation in p-acyclic, finite assumption-based frame-
work.

Viewing an infinite partial AB-dispute derivation as an infinite partial tree-based AB-dispute derivation

〈T0,A0,C0〉, . . . , 〈Ti,Ai,Ci〉, . . .
we can conclude that there is an infinite path p in the tree T that is the limit of trees Ti ’s.

Due to the p-acyclicity, there are infinitely many locally terminal opponent nodes in p.
Due to the finiteness of the language, there exists n such that for all m � n, Am = An and Cm = Cn.
Let N be a locally terminal node on p and N belongs to Tm, m � n. Therefore the assumption that is selected at N

must belong to Cn. Hence there is no children of N in Tm+1 and hence in T . Contradiction to the assumption of the
infinite length of p. Hence there is no infinite path in T . Hence there is no infinite partial AB-dispute derivation.

Let

〈T0,A0,C0〉, . . . , 〈Ti,Ai,Ci〉, . . . , 〈Tn,An,Cn〉
be a partial tree-based AB-dispute derivation for α, S � α satisfying:

• whenever a proponent node N labelled by γ with S � γ , is selected then a rule R
γ

is selected for expansion such
that S � R, and

• when an opponent node labelled by O is selected together with an assumption δ from O then δ is ignored iff
S 
� δ.

It is easy to prove the following lemma inductively for 0 � i � n:

Lemma A.5.

1. Let N be a proponent node labelled by a non-assumption γ in Ti . Then S � γ .
2. Let N be a proponent node labelled by an assumption σ . Then σ ∈ S.
3. Ai ⊆ S.
4. For each δ ∈ Ci , S attacks δ.
5. Suppose that M is an opponent node labelled by O in Ti such that all sentences in O are assumptions. Further

let N be the relative root of M . Then N is labelled by {σ } for some σ ∈ S, and the context path from N to M in
Ti is a full backward deduction of σ .

6. If a sentence δ in a multiset labelling an opponent node is marked, it is an assumption such that S 
� δ.

We have proved that there is no infinite partial tree-based AB-dispute derivation. Let us suppose now that there
exists a partial tree-based AB-dispute derivation that can not be expanded further. If this derivation is a full filtered
tree-based dispute derivation then we are done. Suppose now the contrary.

Looking at the definition of AB-dispute derivation, there are two cases:

Case 1: The selected node is an unmarked proponent node labelled by a non-assumption, or
Case 2: The selected node is an unmarked opponent node labelled by a multiset S0. We analyse the two cases in turn.
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Case 1: Let the non-assumption selected be γ . From the Lemma A.5, it follows that S � γ . Hence there is a rule R
γ

such that S � R. Therefore, R ∩ A ⊆ S. Since S is admissible, and S attacks every assumption in Cn, it follows that
R ∩A∩ Cn is empty. Hence it is possible to expand the derivation at this step. Contradiction, therefore this case does
not occur.

Case 2: There are again two cases here:

Case 2.1: All sentences in S0 are marked. From Lemma A.5, assertion (5), it follows that S0 is an argument against
an assumption in S. From Lemma A.5, assertion (6), it follows that S 
� δ for each δ ∈ S0. This is a contradiction
to the admissibility of S. Hence this case is not possible.
Case 2.2: There is at least on unmarked sentence in S0. Therefore the sentence selected is an assumption δ since
the derivation cannot be expanded further. As step (2.i.a) could always be applicable if S 
� δ, it follows S � δ.
It is clear that one of the steps (2.i.b) or (2.i.c) in the definition of AB-dispute derivation is possible. Hence the
derivation could be expanded. hence this case is also not possible.

We have thus proved that there exists a full tree-based AB-dispute derivation for α whose defence assumptions is
a subset of S. �
Proof of Theorem 4.5. Similarly to the proofs of the previous theorems, we introduce a notion of partial tree-based
IB-dispute derivation as an equivalent of partial IB-dispute derivation. The differences between the new notion and
the tree-based AB-dispute derivation lies in the introduction of checked locally terminal opponent nodes referring to
the elements in Fi where an opponent node in a AB-dispute tree is called locally terminal if either it is marked or its
only child is a proponent node.

Definition A.7. The definition of a partial tree-based IB-dispute derivation is similar to the definition of partial tree-
based AB-dispute derivation with the following modifications:

– In step (2.b) where an opponent node labelled by S and a non-assumption σ is selected, Ti is expanded into Ti+1

by adding for each rule R
σ

a child M to N that is an opponent node labelled by S − {σ } ∪ R. The new node is
unmarked if R ∩ Ci = {}. Otherwise it is marked. The sentences in R are unmarked in S − {σ } ∪ R. If no such
rule exists, then N has exactly one child, an opponent node labelled by false,

Ai+1 = Ai

Ci+1 = Ci

– A new step 3 is added, where a locally terminal and unchecked opponent node N labelled by S is selected and
Fail(u(S)) holds and N becomes checked.

Each partial tree-based IB-dispute derivation

T = 〈T0,A0,C0〉, . . . , 〈Ti,Ai,Ci〉, . . . , 〈Tn,An,Cn〉
can be uniquely transformed into a partial IB-dispute derivation

fl(T ) = 〈P0,O0,A0,C0,F0〉, . . . , 〈Pi ,Oi ,Ai,Ci,Fi〉, . . . , 〈Pn,On,An,Cn,Fn〉
by defining for each i,

Pi = set of sentences labelling the unmarked frontier proponent nodes in Ti ,
Oi = set of multisets of sentences labelling the unmarked frontier opponent nodes in Ti (minus the marked
sentences in them),
Fi = set of multisets of sentences labelling the unchecked locally minimal opponent nodes in Ti (where all marked
sentences in these multisets are unmarked).
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Given a selection function, a (full) tree-based IB-dispute derivation of a defence set A for a sentence α is a fi-
nite partial tree-based IB-dispute derivation 〈T0,A0,C0〉, . . . , 〈Ti,Ai,Ci〉, . . . , 〈Tn,An,Cn〉 such that A = An, and all
frontier nodes in Tn are marked, and all locally minimal opponent nodes are checked.

It is not difficult to see that T is a tree-based IB-dispute derivation iff fl(T ) is a (full) IB-dispute derivation.
Trees appearing in partial tree-based IB-dispute derivation are also called partial IB-dispute trees. Trees appearing

in the last tuple of a tree-based IB-dispute derivation are also called (full) IB-dispute trees. A path in a partial dispute
tree is called a proponent (resp. opponent) path if all the nodes on it are proponent (resp. opponent) nodes.

The notions of relative root, context tree and context path are defined for partial IB-dispute trees similarly to those
defined for partial AB-dispute trees.

Similarly, it holds also that if N is a proponent node in a partial (resp. full) IB-dispute tree then ct(N) is a partial
(resp. full) support tree of α where α is the sentence labelling the root of ct(N).

It also holds that if p = N0, . . . ,Nk is the context path of Nk and S0, . . . , Sk be the sets labelling the nodes in p.
Then S0 = {σ } for some assumption σ and S0, . . . , Sk is a partial backward deduction of σ .

Let

〈P0,O0,A0,C0,F0〉, . . . , 〈Pi ,Oi ,Ai,Ci,Fi〉, . . . , 〈Pn,On,An,Cn,Fn〉
be an IB-dispute derivation and

〈T0,A0,C0〉, . . . , 〈Ti,Ai,Ci〉, . . . , 〈Tn,An,Cn〉
be the corresponding tree-based IB-dispute derivation.

By induction on 0 � i � n, we can easily show that Ci ∩ Ai = ∅.
It is not difficult to see that the following lemmas hold.

Lemma A.6. Let σ ∈ An and S be a set of assumptions such that S0, . . . , Sk, . . . , Sm be a full backward deduction of
σ and S = Sm. Then there is a relative root N in Tn labelled by {σ } such that there is a context path labelled by the
sequence S0, . . . , Sk , in Tn from N to a locally terminal opponent node labelled by Sk .

Lemma A.7. Let σ ∈ Cn. then there is a proponent node N labelled by σ and for each such node N , the context tree
ct(N) is a full support tree whose set of assumptions labelling the terminal nodes is a subset of An.

It is clear that An is admissible. It remains to show that An is ideal. Suppose that there exists an admissible set S

such that there exists an argument S0 ⊆ S against an assumption σ ∈ An. From Lemma A.6, there is a relative root N in
Tn labelled by {σ } such that there is a context path labelled by a sequence S0, . . . , Sk , in Tn from N to a locally terminal
opponent node M labelled by Sk and S0, . . . , Sk can be extended into a full backward deduction S0, . . . , Sk, . . . , Sm of
σ and S0 = Sm. Hence S0 � Sk . Because Tn is a full IB-dispute tree, all locally terminal opponent nodes are checked.
Hence Fail(u(Sk)) holds, i.e. there is no admissible set E of assumptions such that E � Sk , contradiction to the fact
that S0 � Sk and S0 ⊆ S.

Proof of Theorem 4.6. From the construction in the proof of Theorem 4.4, there exists a tree-based AB-dispute
derivation

〈T0,A0,C0〉, . . . , 〈Ti,Ai,Ci〉, . . . , 〈Tn,An,Cn〉
for α. Let N = {N1, . . . ,Nk} be the set of locally terminal nodes in Tn.

Extend this derivation into a tree-based AB-dispute derivation

〈T0,A0,C0〉, . . . , 〈Ti,Ai,Ci〉, . . . , 〈Tn,An,Cn〉,
〈Tn+1,An+1,Cn+1〉, . . . , 〈Tn+k,An+k,Cn+k〉

as follows:

– In step (2.b) where an opponent node labelled by S and a non-assumption σ is selected, Ti is expanded into Ti+1
by adding for each rule R a child M to N that is an opponent node labelled by S − {σ } ∪ R. The new node is
σ
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unmarked if R ∩ Ci = {}. Otherwise it is marked. The sentences in R are unmarked in S − {σ } ∪ R. If no such
rule exists, then N has exactly one child, an opponent node labelled by false,

Ai+1 = Ai

Ci+1 = Ci

– At each step i from n + 1 to n + k, Fail(u(Si)) is checked where Si is the set labelling Ni .

It is obvious that the obtained derivation is a tree-based IB-dispute derivation for α. �
Proof of Theorem 4.7. To simplify the proofs, we introduce, as in other proofs, a notion of tree-based Fail-dispute
derivation.

Given a selection function, a tree-based Fail-dispute derivation of a multiset of sentences S is a sequence T0, . . . ,Tn

such that each Ti is a tree whose nodes are labelled by quadruples of the form 〈P,O,A,C〉 where

T0 contains exactly one node labelled by 〈S, {},A∩ S, {}〉, and
all terminal nodes in Tn are labelled by false, and
for every 0 � i < n, if a node N labelled by a quadruple Q = 〈P,O,A,C〉 is selected in Ti then either P 
= {} or
O 
= {}, and

1. If an element O from O is selected, then
(a) If O = {} then Ti+1 is obtained from Ti by adding an unique child to N labelled by false;
(b) If O 
= {} then let σ ∈ O be the selected sentence in O:

i. if σ is not an assumption then Ti+1 is obtained from Ti by adding an unique child to N labelled by Q′
where Q′ is obtained from Q as in step (2.ii) of Definition 4.3;

ii. if σ is an assumption then there are two cases:
Case 1: Ti+1 is obtained from Ti by adding two children to N labelled by Q0,Q1 where Q0 is
obtained from Q as in step (2.i.a) and Q1 is obtained from Q as in steps (2.i.b) or (2.i.c) (as
applicable) of Definition 4.3;
Case 2: σ ∈ A. Then Di+1 = Di − {Q} ∪ {Q0} where Q0 is obtained from Q as in step (2.i.a) of
Definition 4.3;

2. If a σ ∈ P is selected, then
(a) if σ is an assumption then Ti+1 is obtained from Ti by adding an unique child to N labelled by Q′ where Q′

is obtained from Q as in step (1.i) of Definition 4.3;
(b) if σ is not an assumption then Ti+1 is obtained from Ti by adding for each Q′ in the set {Q′ | there is a rule

σ ← R such that Q′ is obtained from Q as in step (1.ii) of Definition 4.3}, a child of N labelled by Q′.

The correspondence between tree-based Fail-dispute derivations and Fail-dispute derivations are obvious. It is
immediately to see that there exists a Fail-dispute derivation for S if and only if there exists a tree-based Fail-dispute
derivation for S.

Let T0, . . . ,Tm be a tree-based Fail-dispute derivation for S. Suppose that Fail(S) does not hold, i.e. there is a
admissible set E such that E � S. We prove by induction on 0 � i � m that:

Lemma A.8. There is a path from the root to a frontier node in Ti such that for each quadruple Q = 〈P,O,A,C〉
occurring on this path, A ⊆ E and E � P .

It is clear that the claim holds for i = 0.
Suppose the claim holds for i. Let N be a frontier node in Ti such that the quadruple Q = 〈P,O,A,C〉 labelling

N satisfying A ⊆ E and E � P . If node N is not selected, then the claim obviously holds for Ti+1.
Suppose now that N is selected. We prove that N has a child M labelled by Q′ = 〈P ′,O′,A′,C′〉 satisfying A′ ⊆ E

and E � P ′. There are several cases:

Case 1: A sentence α ∈P is selected.
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Case 1.1: α is an assumption. Then N has exactly one child in Ti+1 and it is obvious that the claim holds
for Ti+1 as the child of N satisfies the required property.
Case 1.2: α is a non-assumption. Then there is a rule R

α
such that E � R since E � α. Hence there is

a child M of N in Ti+1 where the quadruple labelling M is obtained from Q using the rule R
α

. It is
obvious that M satisfies the required property in Ti+1.

Case 2: A set O ∈ O is selected together with an sentence α ∈ O .
Case 2.1: α is a non-assumption. Then N has an unique child in Ti+1 and it is obvious that this child
satisfies the required property.
Case 2.2: α is an assumption. If α ∈ A then N has exactly one child whose label satisfies the required
property.

Let α /∈ A. If E attacks α, then the child of N obtained according to the step (2.i.b) or (2.i.c) in the AB-dispute
derivation is the frontier node in Ti+1 satisfies the required property. If E does not attack α, then the child of N

obtained according to the step (2.i.a) in the AB-dispute derivation is the frontier node in Ti+1 satisfying the required
properties.

From Lemma A.8, there is a frontier node in Tn labelled by Q = 〈P,O,A,C〉 such that A ⊆ E and E � P .
Contradiction to the definition of tree-based Fail-dispute derivation where all the frontier nodes in Tn are labelled by
false. �
Proof of Theorem 4.8. Let Fail(S) hold. Suppose that there is no Fail-dispute derivation for S. From the definition
of Fail-dispute derivation for S, it is clear that for each choice of a quadruple at step i, it is always possible to proceed
to step i + 1. Hence, it follows immediately that there exists an infinite partial Fail-dispute derivation D0, . . . ,Dn, . . .

such that Dn 
= ∅ for all n. Viewing an infinite partial Fail-dispute derivation as an infinite partial tree-based Fail-
dispute derivation, it follows immediately that there is an infinite partial AB-derivation

〈P0,O0,A0,C0〉, . . . , 〈Pi ,Oi ,Ai,Ci〉, . . .
Viewing an infinite partial AB-derivation as an infinite partial tree-based AB-derivation

〈T0,A0,C0〉, . . . , 〈Ti,Ai,Ci〉, . . .
we can conclude that there is an infinite path p in the tree T that is the limit of trees Ti ’s.

Due to the p-acyclicity, there are infinitely many locally terminal opponent nodes in p.
Due to the finiteness of the language, there exists n such that for all m � n, Am = An and Cm = Cn.
Let N be a locally terminal node on p and N belongs to Tm, m � n. Therefore the assumption that is selected at

N must belong to Cn. Hence there is no children of N in Tm+1 and hence in T . Contradiction to the assumption of
the infinite length of p. Hence there is no infinite path in T . Hence T is finite. Therefore there exists a Fail-dispute
derivation for S. �
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