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Abstract

We present a family of dialectic proof procedures for the admissibility semantics of assumption-
based argumentation. These proof procedures are defined for any conventional logic formulated as a
collection of inference rules and show how any such logic can be extended to a dialectic argumenta-
tion system.

The proof procedures find a set of assumptions, to defend a given belief, by starting from an
initial set of assumptions that supports an argument for the belief and adding defending assumptions
incrementally to counter-attack all attacks.

The proof procedures share the same notion of winning strategy for a dispute and differ only in
the search strategy they use for finding it. The novelty of our approach lies mainly in its use of back-
ward reasoning to construct arguments and potential arguments, and the fact that the proponent and
opponent can attack one another before an argument is completed. The definition of winning strategy
can be implemented directly as a non-deterministic program, whose search strategy implements the
search for defences.
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1. Introduction

In conventional logic, beliefs are derived from axioms, which are held to be beyond
dispute. In everyday argumentation, however, beliefs are based on assumptions, which can
be questioned and disputed.

Starting perhaps with Toulmin’s landmark book, The Uses of Argument [37], this con-
trast between conventional logic and argumentation has led many researchers, including
Perelman [30] and Walton [39], to regard ordinary, human argumentation as being be-
yond the reach of formal logic. However, in recent years a number of other researchers,
including Pollock [32], Nute [29], Gordon [18], Loui [26] and Prakken and Sartor [34],
have shown how argumentation can be understood in formal, logical terms. This work on
logical models of argumentation is surveyed by Chesnevar, Maguitman and Loui [6].

In our logical model of argumentation, we use conventional logic to construct an argu-
ment, but we focus on the assumptions that support the argument. An opponent can dispute
a proponent’s argument by attacking one of the argument’s supporting assumptions. The
proponent can defend the argument by counter-attacking the opponent’s attack with other
arguments, possibly with the aid of other defending assumptions.

In [3] we introduced an assumption-based, argumentation-theoretic framework and
showed how it can be used for the semantics of default reasoning. We showed that the
stable semantics of many logics for default reasoning can be understood as sanctioning a
belief if the belief is the conclusion of an argument whose set of supporting assumptions
can be extended to a set of assumptions that both attacks every other assumption not in the
set, and does not attack itself.

We also argued that the same logics can be given an alternative semantics that has
a more natural argumentation-theoretic interpretation. This semantics, the admissibility
semantics, sanctions a belief if it is the conclusion of an argument whose set of supporting
assumptions can be extended to a set of defending assumptions, which both counter-attacks
every attack, and does not attack itself. In [25] we explored the application of this semantics
to argumentation in legal reasoning.

The admissibility semantics is a semantics in the sense that it non-constructively speci-
fies when a belief is admissible. In [11] we showed how to derive from the specification the
top-most level of constructive proof procedures, using logic program transformation tech-
niques [31]. This top-most level generates defences incrementally, without showing how to
construct them by means of a dialogue between a proponent and an opponent. In this paper
we derive our (full) proof procedures in a more informal, intuitive fashion, which clarifies
their dialectic character.

The basic proof procedure is illustrated by the following simplified example.

Example 1.1. Assume that two parties to a dispute agree on a common background set of
beliefs1:

p ← q, r (1)

1 Here “←” should be read as “if” and “,” as “and”. We will explain this notation in Section 3.
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¬q ← s, v (2)

¬q ← t, u (3)

s ← t (4)

r (5)

v (6)

u ← w (7)

w. (8)

Suppose that the proponent wants to defend the belief p. He/she can do so by putting
forward the argument:

a1: q (by assumption)
r (by 5)
p (by 1)

with conclusion p and assumption q . The opponent can attack the argument, by attacking
the assumption q with the argument:

a2: t (by assumption)
s (by 4)
v (by 6)

¬q (by 2)

with conclusion ¬q and assumption t .
The proponent can counter-attack this attack with the trivial argument:

a3: ¬t (by assumption)

based on the assumption ¬t . If the opponent attempts to attack a3 with the argument:

a4: t (by assumption)

based on the assumption t , then the proponent simply repeats the counter-argument a3.
However, the opponent can also attack a1 with the alternative argument:

a′
2: t (by assumption)

s (by 4)
w (by 8)
u (by 7)

¬q (by 3)

also based on the assumption t . But then the proponent simply repeats the counter-
argument a3.

The proponent’s belief p is admissible because it is the conclusion of an argument a1
that is supported by a set of assumptions {q} that can be extended to a defending set of
assumptions {q,¬t} that can counter-attack every attack (and does not attack itself).

Notice that, by the same line of reasoning, the opponent can similarly defend a belief
in the contrary conclusion ¬p, based on the defending set of assumptions {¬p, t}. It is
for this reason—because different agents can admissibly hold contrary beliefs—that the
admissibility semantics is said to be credulous, rather than sceptical.
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The assumption-based approach to argumentation of [3] builds upon Dung’s [9,10],
which showed that many logics for default reasoning can be viewed as instances of an
abstract argumentation framework in which arguments and the attack relation between ar-
guments are defined entirely abstractly, ignoring their internal structure. In [3], we showed
that the attack relation between arguments in default reasoning depends only on the as-
sumptions on which those arguments are based. Different logics for default reasoning differ
mainly in their differing notions of assumption and of the contrary of an assumption.

Starting with Vreeswijk and Prakken [38], a number of authors [5,14,19] have devel-
oped dialectic proof procedures for the abstract version of Dung’s admissibility semantics.
Applied to the example above, these proof procedures demonstrate the admissibility of the
proponent’s belief in p in terms of the abstract arguments, a1, a2, a′

2, a3 and a4:

Proponent: a1

Opponent: a2 attacks a1
Proponent: a3 attacks a2
Opponent: a4 attacks a3
Proponent: a3 attacks a4

Opponent: a′
2 attacks a1

Proponent: a3 attacks a′
2

This abstract view of argumentation simplifies the proof procedures, but does not show
how to find arguments and how to exploit the fact that different arguments can share the
same assumptions.

Our proof procedures generate and find arguments by reasoning backwards from con-
clusions to assumptions. They use backward reasoning both to find an initial argument
for a given belief and to find attacking and defending arguments for the contrary of an
assumption.

Each step in a backward argument can be viewed as a partially completed, potential
argument. Any assumption in such a potential argument can be attacked (by finding an
argument for its contrary) before the argument is completed. For example, our proof pro-
cedures can attack and defeat the assumption t in the opponent’s argument a′

2 before it is
completed, by reusing the argument a3.

Our proof procedures are presented at three levels of abstraction. We derive one from the
other by successive refinement, thereby simplifying the proofs and clarifying the relation-
ship between seemingly different proof procedures. Our final refinement can be viewed as
a generalisation of logic programming, which uses backward reasoning to generate proofs
and uses a generalisation of negation as failure to show that an assumption is admissible
(because its contrary can not be shown).

The remainder of this paper has the following structure: Section 2 describes the ab-
stract framework and the admissibility semantics. Section 3 describes the simplified class
of frameworks that we use for our examples. Section 4 shows how tight arguments, which
are used in the remainder of the paper, can be generated by backward reasoning. Sections 5,
6 and 7 present the successive refinements of the proof procedures, in terms of abstract
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dispute trees, concrete dispute trees and dispute derivations, respectively. Section 8 dis-
cusses algorithmic issues, including implementation and complexity. Section 9 discusses
related work and is followed by the conclusions.

2. Admissibility for assumption-based argumentation frameworks

In this section we briefly review the notion of assumption-based framework [3,4,22,25]
and show how it applies to argumentation.

Any logic, viewed as a deductive system, can be extended to an assumption-based ar-
gumentation framework.

Definition 2.1. A deductive system is a pair (L,R) where

• L is a formal language consisting of countably many sentences, and
• R is a countable set of inference rules of the form

α1, . . . , αn

α

α ∈ L is called the conclusion of the inference rule, α1, . . . , αn ∈ L are called the
premises of the inference rule and n � 0.

If n = 0, then the inference rule represents an axiom. We do not distinguish between
domain-independent axioms, which belong to the specification of the logic, and domain-
dependent axioms, which represent a background theory. Similarly, we allow both domain-
independent and domain-specific inference rules. For notational convenience, we write α

instead of
α

throughout the paper.

Definition 2.2. A deduction of a conclusion α based on a set of premises P is a sequence
β1, . . . , βm of sentences in L, where m > 0 and α = βm, such that, for all i = 1, . . . ,m,

• βi ∈ P , or
• there exists α1,...,αn

βi
∈R such that α1, . . . , αn ∈ {β1, . . . , βi−1}.

If there is a deduction of a conclusion α based on a set of premises P , we write P � α. We
also say that the deduction is supported by or based upon P .

Notice that a deduction can contain applications of inference rules (called inference
steps) that are not relevant to the derivation of the conclusion. Similarly, it may contain
premises that are not relevant to the rest of the deduction. In particular, if P � α, then
P ′ � α for any P ⊆ P ′. This property of deductive systems is called monotonicity.

Deductions are the basis for the construction of arguments, but to obtain an argument
from a deduction we restrict the premises of the deduction to ones that are acceptable as
assumptions. In this paper we restrict ourselves to flat frameworks [3], whose assumptions
do not occur as conclusions of inference rules.
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To specify when one argument attacks another, we need to determine when a sentence is
the contrary of an assumption. The notion of contrary is in general non-symmetric (see [3]).

Given a deductive system (L,R), these two notions—the notion of assumption and the
notion of the contrary of an assumption—determine the framework within which argu-
ments and counter-arguments take place.

Definition 2.3. An assumption-based framework is a tuple 〈L,R,A, 〉 where

• (L,R) is a deductive system.
• A ⊆ L, A 	= {}. A is the set of candidate assumptions.
• If α ∈ A, then there is no inference rule of the form α1,...,αn

α
∈ R.

• is a (total) mapping from A into L. α is the contrary of α.

In general, a deduction can fail to be an argument, because some of its premises may be
conclusions of inference rules (the framework is not “flat”) or because some of its premises
may not be acceptable as assumptions (they do not belong to A):

Definition 2.4. An argument is a deduction whose premises are all assumptions.

In our approach to argumentation, the only way to attack an argument is to attack one
of its assumptions.

Definition 2.5.

• An argument a attacks an argument b if and only if a attacks an assumption in the set
of assumptions on which b is based.

• An argument a attacks an assumption α if and only if the conclusion of a is the con-
trary α of α.

The notation A � α encapsulates the essence of an argument, by focusing attention
on its set of assumptions A and its conclusion α. Not only does this notation ignore the
internal structure of the argument, namely the inference rules used to generate it, but it
ignores the fact that there can be several distinct arguments that give rise to the same A � α

relationship. Nonetheless, we will use the notation A � α to stand for an argument, as an
abuse of notation, when we want to draw attention to its assumptions and conclusion, and
ignore its internal structure.

Our focus on the assumptions of arguments motivates the following definition:

Definition 2.6. A set of assumptions A attacks a set of assumptions B if and only if there
exists an argument a based upon a set of assumptions A′ ⊆ A which attacks an assumption
in B .

In our approach, the attack relationship between arguments depends solely on sets of
assumptions. In some other approaches, however, such as that of Pollock [32] and Prakken
and Sartor [34], an argument can attack another argument by contradicting its conclusion.
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We reduce such “rebuttal” attacks to “undermining” attacks, as described in [25] and illus-
trated by the following example.

Example 2.1. Consider the inference rules

q

p
, q, ¬p.

These can be used to justify both the argument q,p and the attacking argument
¬p which rebuts the first argument by deriving a conclusion that contradicts the first
argument’s conclusion.

We obtain a similar effect by using instead the inference rules

q,assuming-p

p
, q, ¬p

where ¬p is the contrary of the assumption assuming-p, and assuming-p is a new sentence
in the language of the underlying deductive system.2 Here the effect of the rebuttal is
obtained by undermining the assumption of the argument

assuming-p, q, p

by means of the counter-argument

¬p.

The attack relationship is the basis of the admissibility semantics for argumentation.
Informally speaking, a belief is admissible if it is the conclusion of an argument based upon
a set of assumptions which can be defended against any attack. This set of assumptions,
which we call the defence set, has two kinds of assumptions: those that are necessary to
support an argument for the belief, and those that are necessary to counter-attack all attacks.
In addition, the defence set must not attack itself.

Definition 2.7.

• A set of assumptions A is admissible if and only if
1. A attacks every set of assumptions that attacks A, and
2. A does not attack itself.

• A belief α is admissible if and only if there exists an argument for α based on a set of
assumptions A0, and A0 is a subset of an admissible set A.

3. Simplified frameworks for assumption-based argumentation

To illustrate our approach, we use simplified assumption-based frameworks of the form
〈L,R,A, 〉 where:

2 The assumption assuming-p is like Mp, read “consistent p”, in default logic [35].
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• All sentences in L are atoms p,q, . . . or negations of atoms ¬p,¬q, . . . (i.e., L is a
set of literals).

• The set of assumptions A is a subset of the set of all literals that do not occur as the
conclusion of any inference rule in R.

• The contrary of any assumption p is ¬p; the contrary of any assumption ¬p is p.

Note that these simplified frameworks can be viewed as a generalisation of extended logic
programs. As we will see later, when we discuss Example 6.1, these frameworks obtain
the effect of negation as failure by means of assumptions whose contrary cannot be shown
[3,15].

For notational convenience, we write inference rules
α1, . . . , αn

α

in the linear notation

α ← α1, . . . , αn.

We also use the same linear notation for inference rule schemata containing meta-variables
that range over all elements of some domain. These schemata are a compact representation
of the set of all inference rules obtained by instantiating the meta-variables. For example,
p(X) ← q(X), with the domain of natural numbers, stands for the infinite set of inference
rules p(0) ← q(0),p(1) ← q(1), etc.

Example 3.1. Let 〈L,R,A, 〉 be the assumption-based framework:

• L= {p,q, r, s, t,¬p,¬q,¬r,¬s,¬t}
• R consists of

p ← q, r

r ← s

¬q ← t.

• A = {q, s, t}
• q = ¬q , s = ¬s, t = ¬t .

One argument for the conclusion p is

s, r, q, p

based upon the set of assumptions {q, s}. Another is

t, ¬q, s, r, q, p

based upon the set of assumptions {q, s, t}. Both the assumption t and the application of
the inference rule ¬q ← t in the second argument are not relevant to the deduction of the
conclusion of the argument.

Note that the same abstract representation {q, s} � p represents several different argu-
ments, e.g. both s, r, q,p and q, s, r,p.
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Also, note that the set of assumptions {q, s}, supporting the argument {q, s} � p, is not
admissible, since there is no counter-attack against the attack {t} � ¬q . However, for the
same reason, both the assumption t and therefore the conclusion ¬q are admissible.

Every assumption-based framework of the simplified form introduced in this section
is equivalent to a framework in which ← is treated as object-level implication and the
comma is treated as object-level conjunction ∧. The equivalent framework has inference
rule schemata for modus ponens and ∧-introduction:

β ← α,α

β

α,β

α ∧ β
.

In addition, wherever the simplified framework has an inference rule

α ← α1, . . . , αn

the equivalent framework has the inference rule

α ← α1 ∧ · · · ∧ αn.

The two frameworks are equivalent in the case where assumptions and conclusions are
restricted to literals, in the sense that they generate the same deductive relationship between
assumptions and conclusions of arguments.

Example 3.2. Consider the framework in Example 3.1. This can be written as an equiva-
lent framework with inference rules

p←q∧r
,

r←s
, ¬q←t

, in addition to modus ponens and
∧-introduction. The argument

q, s, r, p

in Example 3.1 is equivalent to the argument

q, s, r ← s, r, q ∧ r, p ← q ∧ r, p

in this framework. Both arguments have the same abstract form {q, s} � p.

4. Tight arguments

The admissibility semantics is a semantics in the sense that it is a non-constructive
specification of admissibility. A practical proof procedure, however, needs to be both con-
structive and efficient.

A major source of the non-constructivity and inefficiency of the specification is the
monotonicity of deductive systems. Monotonicity has the consequence that for every su-
perset A′ of the set of assumptions A that supports an argument a attacking another
argument b, there exists an argument a′ supported by A′ that also attacks b. Thus, in gen-
eral, there can be infinitely many arguments against another argument b, differing only in
the superset of assumptions A′ on which those arguments are based. Moreover, for each
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such attack, the proponent may need to search among infinitely many candidate counter-
attacks to find one that is successful.

The problem stems from our definition of deduction, which suggests that arguments are
constructed by reasoning forwards from assumptions to conclusions. Forward reasoning
makes it hard to ensure that inference steps and assumptions that are used early in an ar-
gument will be relevant to the final conclusion of the argument. By comparison, backward
reasoning from conclusions to assumptions automatically restricts the search for arguments
to those whose individual inference steps are all relevant to the conclusion.

Perhaps the most natural way to represent the links between the assumptions and the
conclusion of an argument is in the form of a proof tree: the root of the tree is labelled
by the conclusion and the terminal nodes are labelled by the assumptions supporting the
argument. For every non-terminal node in the tree, there is an inference rule whose con-
clusion matches the sentence labelling the node. The children of the node are labelled by
the premises of the inference rule. Each sentence in such a proof tree is relevant to the ar-
gument, either because it is the conclusion itself, or because it is a premise of an inference
rule whose conclusion is relevant.

Backward reasoning can be seen as generating such proof trees top-down, from the root
to the terminal nodes. A backward argument is a sequence of frontiers S1, . . . , Sm of the
proof tree. The individual steps Si in a backward argument can be represented by multi-
sets, in which the same sentence can have several occurrences, if it is generated more than
once as a premise of different inference steps.3 We could replace multi-sets by sets, but
this would implicitly force proof procedures always to check whether a newly introduced
premise is already duplicated in Si . This check can increase efficiency in cases where such
duplications occur frequently, but it can decrease efficiency in cases where duplications
occur only infrequently.

Backward arguments are a generalisation of SLD resolution, which is the basis of proof
procedures for logic programming. As in SLD, if there is a backward argument using one
strategy for selecting occurrences of sentences in Si , then there is a backward argument us-
ing any other selection strategy. Thus, different selection strategies are simply different but
equivalent ways of generating the same implicit proof tree. The selection strategy for back-
ward arguments can be formalised by means of a selection function, as in the formalisation
of SLD.4

Definition 4.1. Given a selection function, a backward argument of a conclusion α based
on (or supported by) a set of assumptions A is a sequence of multi-sets S1, . . . , Sm, where
S1 = {α}, Sm = A, and for every 1 � i < m, where σ is the selected sentence occurrence
in Si :

3 Multi-sets of sentences are equivalent to nodes labelled by sentences. The fact that a sentence can have several
occurrences in a multi-set is equivalent to the fact that several nodes in a proof tree can be labelled by the same
sentence.

4 A selection function, in this context, takes as input a sequence of multi-sets Si and returns as output a sentence
occurrence in Si .
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1. If σ is a non-assumption sentence then Si+1 = Si − {σ } ∪ S for some inference rule of
the form S

σ
∈ R.5

2. If σ is an assumption then Si+1 = Si .6

The multi-sets Si are called steps of the backward argument.

Terminology 4.1. To more clearly distinguish between ordinary arguments, as defined
in Section 2, and backward arguments as defined here, we also call ordinary arguments
forward arguments.

There exists a forward argument for a conclusion α supported by a set of assumptions
A if and only if there exists a backward argument for α from a subset of A:

Theorem 4.1.

1. For every backward argument of a conclusion α supported by a set of assumptions A

there exists a forward argument of α supported by A.
2. For every forward argument for a conclusion α supported by a set of assumptions A

and for every selection function, there exists a backward argument of α supported by
some subset A′ ⊆ A.

The proof of this theorem and of all other results in the paper is given in Appendix A.

Example 4.1. Let 〈L,R,A, 〉 be the assumption-based framework where R consists of

u ← p, s

p ← q, r

r ← s

¬q ← t

and A = {q, s, t}. A backward argument for u supported by {q, s} is (selected sentences
are underlined):

{u}, {p, s}, {q, r, s}, {q, r, s}, {q, s, s}, {q, s, s}, {q, s, s}.
A corresponding forward argument, supported by the same set of assumptions, is

s, r, q, p, u.

Another forward argument for u, supported by the larger set of assumptions {q, s, t}, is

s, r, t, q, p, u.

There is no backward argument supported by {q, s, t}.

5 We use the same symbols for multi-set membership, union, intersection and subtraction as we use for ordinary
sets.

6 Note that we need to restrict the selection function so that if σ is selected in Si then it will not be selected
again in any later Sj , j > i.
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Note that every initial segment of a forward argument is an argument whose conclusion
is the last sentence of the segment. By contrast, an initial segment of a backward argu-
ment is only a potential argument, in that the last step of the segment typically contains
premises that are not assumptions. A potential argument might not lead to a full argu-
ment, if it contains premises that cannot be reduced to assumptions. For example, given
the assumption-based framework with inference rules

p ← q, r

and assumptions {q}, then

{p}, {q, r}
is a potential argument for p, supported by the set of premises {q, r}, which cannot be
extended to a full argument.

Terminology 4.2. Because all steps in a backward argument are relevant to the conclusion
by construction, we also call backward arguments tight arguments.

To show that a set of assumptions A is admissible, it suffices to consider only tight
attacks against A and tight counter-attacks supported by assumptions in A:

Theorem 4.2. A set of assumptions A is admissible if and only if

1. for every tight argument a that attacks A there exists a tight argument supported by
A′ ⊆ A that counter-attacks a, and

2. no A′ ⊆ A supports a tight argument that attacks an assumption in A.

This theorem is the basis of the abstract dialectic proof procedure in the next section.
To exploit the theorem for this purpose, we need to show how admissible sets of assump-
tions can be generated incrementally, in defence of a given, desired conclusion. The proof
procedure, which does this, can be seen as generating a winning strategy for a proponent
to win a dispute against an ideal opponent. The proponent starts by putting forward an
initial, tight argument for the desired conclusion, and then the proponent and the opponent
alternate in attacking each other’s previously presented arguments. The proponent wins if
it has a counter-attack against every attacking argument by the opponent.

Terminology 4.3. In the remainder of the paper, we will limit our attention to tight argu-
ments and refer to them simply as arguments, unless we need to emphasise their tightness.

5. Abstract dispute trees

In this section we represent the incremental construction of an admissible set of assump-
tions in defence of a given, desired conclusion by an abstract dispute tree, whose nodes are



126 P.M. Dung et al. / Artificial Intelligence 170 (2006) 114–159
labelled7 by arguments. Every node is assigned the status of proponent node or opponent
node, depending upon whether the argument at that node is put forward by the proponent
or by the opponent.

Each branch of the tree represents a winning dispute for the proponent. The root of the
tree, at which the proponent puts forward an initial argument, is the starting point of the
dispute. (The argument at) every opponent node in the branch attacks (the argument at)
the immediately preceding proponent node, and similarly every proponent node counter-
attacks the immediately preceding opponent node.

A branch may be finite or infinite. A finite branch represents a winning dispute that
ends with an argument by the proponent that the opponent is unable to attack. An infinite
branch represents a winning dispute in which the proponent counter-attacks every attack
of the opponent, ad infinitum.

A tree as a whole represents a winning argumentation strategy for the proponent. For
every proponent node, there is a set (possibly empty) of children, which are opponent nodes
labelled by all the attacks against the proponent node. For every such attacking, opponent
node, there exists a single child, which is a proponent node, labelled by a single counter-
attack against the opponent node.

Thus, an abstract dispute tree is an incremental construction, starting from an initial
argument in favour of a given, desired conclusion, of a collection of proponent arguments
that together counter-attack every possible attacking argument that might be put forward
by the opponent.

An abstract dispute tree is an abstraction of a winning strategy for a dispute, because
it does not show the construction of arguments and counter-arguments. We will show how
this is done, by applying inference rules backwards, in the next section.

An abstract dispute tree is an abstraction of a winning strategy also because, although it
contains all possible attacks by the opponent, it contains only one successful counter-attack
by the proponent for each such attack. The tree does not show the search for counter-
attacks.

An abstract dispute tree can be viewed as an and-tree (“and” because it includes all
attacks by the opponent against all proponent arguments in the tree). The search space can
be viewed as an and-or-tree (“or” because it includes all the alternative counter-attacks
by the proponent against the opponent’s attacks). Whereas the and-tree contains only one
winning strategy for the proponent, the and-or tree contains all winning strategies, as well
as all failed attempts by the proponent to counter-attack the opponent.

To obtain a proof procedure, we need to specify a strategy for searching the and-or tree
to find an abstract dispute tree. Many such search strategies are possible, ranging from
depth-first to breadth-first, including everything in between.

Definition 5.1. An abstract dispute tree for an initial argument a is a (possibly infinite)
tree T such that

7 We distinguish between nodes and their labels, because the same argument can label different nodes.
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1. Every node of T is labelled by an argument and is assigned the status of proponent
node or opponent node, but not both.

2. The root is a proponent node labelled by a.
3. For every proponent node N labelled by an argument b, and for every argument c that

attacks b, there exists a child of N , which is an opponent node labelled by c.
4. For every opponent node N labelled by an argument b, there exists exactly one child of

N which is a proponent node labelled by an argument which attacks some assumption
α in the set supporting b. α is said to be the culprit in b.

5. There are no other nodes in T except those given by 1–4 above.

The set of all assumptions belonging to the proponent nodes in T is called the defence set
of T .

In the remainder of this section, we will refer to abstract dispute trees simply as “dispute
trees”. However, in the next section, where we introduce the notion of “concrete dispute
tree”, we will use the qualifications “abstract” and “concrete” when we need to distinguish
between them.

Note that, in 3 above, for every proponent node N labelled by an argument b, if there
are no attacks against b, then N is a terminal node. In particular, N is a terminal node if
the set of assumptions supporting b is empty.

Example 5.1. Consider the assumption-based framework 〈L,R,A, 〉 with R consisting
of:

¬s ← q

¬q ← r, s

¬q ← u, v

¬r

¬u

where A = {q, r, s, u}, L= A∪ {¬s,¬q,¬r,¬u}, α = ¬α for all α ∈A.
Suppose the problem is to show that ¬s is an admissible belief in the framework. To do

so, we construct a dispute tree (given in Fig. 1) whose root is a proponent node labelled by
the argument {q} � ¬s. The root has a single child, which is an opponent node, labelled
by the argument {r, s} � ¬q . This opponent node also has a single child, which is a pro-
ponent node, labelled by the argument {} � ¬r , which attacks the culprit r in {r, s} � ¬q .
This proponent node is also a terminal node, because there is no attack against an empty
(support) set.

Note that the and-or tree search space for the problem contains, in addition to the finite
branch of Fig. 1, an infinite branch representing an alternative winning strategy for the
proponent. On this infinite branch, the proponent attacks the alternative culprit s in {r, s}
with the argument {q} � ¬s. The infinite branch represents a winning strategy in which the
proponent uses the same counter-attack {q} � ¬s against each of the opponent’s repeated
attacks {r, s} � ¬q . In this example, the search space contains no failed attempts by the
proponent to win the dispute.
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Fig. 1. Abstract dispute tree for {q} � ¬s in Example 5.1.

The definition of dispute tree incorporates the requirement that the proponent must
counter-attack every attack, but it does not incorporate the further requirement that the
proponent does not attack itself. This further requirement is incorporated in the definition
of admissible dispute tree:

Definition 5.2. An abstract dispute tree T is admissible if and only if no culprit in the
argument of an opponent node belongs to the defence set of T .

Note that the tree in Fig. 1 is admissible. Note also that the definition of admissibility
does not require that proponent nodes and opponent nodes have no assumptions in com-
mon. This is because the opponent can use the proponent’s own assumptions against the
proponent. The opponent can also use assumptions that are neutral, in the sense that they
are neither in the defence set of the proponent nor in the culprit set of the opponent.

If the opponent can attack the proponent using only the proponent’s own assumptions,
then the proponent loses the dispute, because then the proponent attacks itself. However,
to win the dispute, the proponent needs to identify and counter-attack in every attack of the
opponent some culprit that does not belong to the proponent’s own defence.

The admissibility requirement does not necessarily imply that a proof procedure that
searches for admissible dispute trees needs to incorporate an explicit admissibility check.
As we will see in Theorem 5.2, finite dispute trees are guaranteed to be admissible even
without such a check.

The first part of the following theorem is a soundness result, which guarantees that the
defence set of an admissible dispute tree is admissible. The second part is a strong form
of completeness, which guarantees that, for any initial argument a whose support set is
contained in an admissible set A of assumptions, there exists a dispute tree for a whose
defence set A′ is contained in A. Whereas the admissible set A may contain assumptions
that are irrelevant to the defence of a, A′ contains only relevant assumptions, associated
with tight arguments.

Theorem 5.1.

(i) If T is an admissible abstract dispute tree for an argument a and if A is the defence
set of T , then A is an admissible set of assumptions.

(ii) If a is an argument supported by a set of assumptions A0 and A is an admissible set of
assumptions such that A0 ⊆ A, then there exists an admissible dispute tree for a with
defence set A′ and A0 ⊆ A′ ⊆ A and A′ is admissible.
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Admissible dispute trees bring us closer to a proof procedure, because they show how
to extend an initial set of assumptions incrementally to an admissible set of assumptions.
However, they are still non-constructive, because they can be both infinite in breadth and
infinite in depth: They can be infinite in breadth, because there can be infinitely many tight
attacks against a single assumption. They can be infinite in depth, because there can be
infinitely long branches of alternating attack and counter-attacks. The following examples
illustrate these two possibilities.

Example 5.2. Consider the assumption-based framework with inference rules consisting
of all instances over the infinite domain

Dom = {
succi (0) | i � 0

} = {
0, succ(0), succ

(
succ(0)

)
. . .

}
of the inference rule schemata

p ← q

¬q ← r(X), s(X)

r
(
succ(X)

) ← r(X)

r(0)

¬s(X)

with set of assumptions {q} ∪ {s(X) | X ∈ Dom}. There are infinitely many (finite) attacks
against the argument {q} � p, i.e.{

s(0)
} � ¬q{

s
(
succ(0)

)} � ¬q{
s
(
succ

(
succ(0)

))} � ¬q

etc.

Therefore, every dispute tree for {q} � p is infinite in width. Note that every argu-
ment of the form {s(succi (0))} � ¬q is counter-attacked by an argument of the form
{} � ¬s(succi (0)) and thus there exists an admissible dispute tree for {q} � p with de-
fence set {q}. Therefore, by Theorem 5.1, part (i), {q} is admissible, and as a consequence
the belief p is admissible.

Example 5.3. Consider the assumption-based framework with inference rules consisting
of all instances over the infinite domain Dom in Example 5.2 of the inference rule schemata

¬p(X) ← q
(
succ(X)

)
¬q(X) ← p

(
succ(X)

)
and set of assumptions {q(X) | X ∈ Dom} ∪ {p(X) | X ∈ Dom}. Consider the argument
{q(succ(0))} � ¬p(0). There exists an admissible dispute tree for this argument, which
consists of a single infinite branch of alternating proponent and opponent nodes. For every
proponent node labelled by an argument of the form {q(succ2i+1(0))} � ¬p(succ2i (0)),
there is a single child node, which is an opponent node labelled by {p(succ2i+2(0))} �
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¬q(succ2i+1(0)), Similarly, for every opponent node labelled by {p(succ2i+2(0))} �
¬q(succ2i+1(0)), there is a single child node, which is a proponent node labelled by
{q(succ2i+3(0))} � ¬p(succ2i+2(0)). The defence set{

q
(
succ2i+1(0)

) | i � 0
}

is admissible.

In the special case of dispute trees that are finite in depth, the admissibility check of
Definition 5.2 is unnecessary8:

Theorem 5.2. Any dispute tree that has no infinitely long branches is an admissible dispute
tree.

For a large class of frameworks, generalising the class of stratified logic programs [1],
all branches of all abstract dispute trees are finite in depth.

Definition 5.3. A framework is stratified if and only if there exists no infinite sequence of
arguments a1, . . . , an, . . . , where for every n � 1, an+1 attacks an.

The assumption-based framework of Example 5.1 is stratified (and the dispute tree in
Fig. 1 is indeed finite). However, the framework of Example 5.3 is not stratified. An even
simpler example of a non-stratified assumption-based framework is:

Example 5.4. The assumption-based framework with inference rules

¬p ← q

¬q ← p

and set of assumptions {p,q} is not stratified, because there exists an infinite sequence of
arguments of the form:

{q} � ¬p, {p} � ¬q, {q} � ¬p, . . . .

There exists an admissible dispute tree for ¬p, but this is infinite in depth.

6. Concrete dispute trees

In this section, we expand abstract dispute trees, to incorporate the incremental con-
struction of (tight) arguments. We call such expanded dispute trees concrete dispute trees.
To minimise the use of new terminology, when there is no possibility of confusion, we use
the same terminology, dispute tree, for both abstract and concrete dispute trees.

8 However, as we will see later in Section 7, although an explicit admissibility check is unnecessary for finite
trees, it can nevertheless decrease the size of dispute trees and therefore increase the efficiency of proof procedures
that search for them.
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Whereas in abstract dispute trees individual nodes are labelled by complete arguments,
in concrete dispute trees they are labelled by steps of potential arguments. However, as
in abstract dispute trees, every branch of a concrete dispute tree represents a sequence
of alternating attacks by the opponent and counter-attacks by the proponent. However,
these attacks and counter-attacks are against assumptions in potential, rather than full,
arguments. A concrete dispute tree represents a winning strategy, in which the proponent
counter-attacks with a full attack every potential attack by the opponent.

In concrete dispute trees, there is an important difference between the potential argu-
ments of the proponent and of the opponent. For the proponent, all potential arguments
must eventually be completed. However, for the opponent, potential arguments can be
presented only partially, up to the point where they fail. As we will see later in this
section, there are two ways such a potential argument can fail—either because some
non-assumption sentence is selected and can not be proved (namely there is no complete
argument extending the potential argument); or because some assumption is selected as
culprit of the incomplete, potential argument and is defeated by a counter-argument of the
proponent (in which case it doesn’t matter whether there is a complete argument extending
the potential argument).

The partial presentation and counter-attacking of the opponent’s potential arguments
has both a good point and a bad point. The good point, already illustrated in Section 1, is
that, when a potential argument is successfully counter-attacked, all ways of completing the
potential argument are also counter-attacked. So one counter-attack by the proponent can
successfully defeat many complete attacks by the opponent, without the need to generate
the complete attacks in full. The bad point, illustrated in Example 6.1 below, is that some
potential arguments cannot be extended into complete arguments. Counter-attacking such
unextendable potential arguments is a waste of time.

There is also an important difference in the role of the selection function for proponent
and opponent. For both of them, when the selection function chooses a non-assumption
sentence, it does so to expand the potential argument constructed so far into a more com-
plete argument. The order in which such sentences are selected does not matter.

Similarly, when the selection function selects a proponent’s assumption, it does so to de-
termine an order in which attacks against the proponent’s argument are considered. Since
all such attacks must be counter-attacked, it does not matter in which order they are se-
lected.

However, when the selection function selects an opponent’s assumption, the assumption
becomes a potential culprit for counter-attack by the proponent. Since the dispute tree
represents a single winning strategy, which contains only one counter-attack against every
attack, either the selected assumption is ignored (if it is not the actual culprit in the attack)
or else it is counter-attacked. In the definition of dispute tree, these two possibilities are
represented by a non-deterministic choice.

Thus the selection of the opponent’s assumptions is linked to the search strategy for
finding counter-attacks. The dispute tree itself displays only one successful counter-attack
against every attack, and “ignores” all of the other winning or failing alternatives, which
are present in the search space.
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Definition 6.1. Given a selection function, a concrete dispute tree for a sentence α is a
(possibly infinite) tree T such that

1. Every node of T is labelled by a multi-set of sentences (representing a potential argu-
ment) and is assigned the status of proponent node or opponent node, but not both.

2. The root of T is a proponent node labelled by {α}.
3. Let N be a proponent node labelled by P . If P is empty, then N is a terminal node.

Otherwise, P is not empty, and there exists some selected occurrence of a sentence δ

in P .
(i) If δ is an assumption, then there exists one child of N , which is an opponent

node labelled by {δ} and a second child of N that is a proponent node labelled by
P − {δ} (to consider all attacks against P).

(ii) If δ is not an assumption, then there exists some inference rule S
δ

∈ R and there
exists exactly one child of N , which is a proponent node labelled by P − {δ} ∪ S.

4. Let N be an opponent node labelled by O. Then O is not empty, and there exists some
selected occurrence of a sentence σ in O.
(i) If σ is an assumption, then

(a) either σ is ignored and there exists exactly one child of N , which is an oppo-
nent node labelled by O − {σ },

(b) or σ is a culprit, and there exists exactly one child of N , which is a proponent
node labelled by {σ }.

(ii) If σ is not an assumption and there exists no inference rule S
σ

∈ R, then N is a
terminal node (and the potential attack O fails of its own accord). Otherwise, for
every S

σ
∈R, there exists a child of N , which is an opponent node labelled by the

multi-set of sentences O − {σ } ∪ S.
5. There is no infinite sequence of consecutive nodes all of which are proponent nodes.
6. There are no other nodes in T except those given by 1–4 above.

The set of all assumptions belonging to the proponent nodes in T is called the defence set
of T .

Notice that the label O of an opponent node is never empty. Empty multi-sets O, how-
ever, can occur in failed parts of the search space, either because in step 4(i) all assumptions
in O are ignored, or because in step 4(ii) O = {σ } and there exists an inference rule S

σ
∈ R

with S = {}, giving an attack for which no counter-attack is possible.

Definition 6.2. A concrete dispute tree T for a sentence α is admissible if and only if no
culprit at an opponent node belongs to the defence set of T .

Example 6.1. Consider the assumption-based framework of Example 5.1, with inference
rules:

¬s ← q

¬q ← r, s

¬q ← u, v
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Fig. 2. Concrete dispute tree for ¬s in Example 6.1.

¬r

¬u

and set of assumptions {q, r, s, u}. Again, the problem is to show that ¬s is admissible.
A concrete dispute tree for ¬s is given in Fig. 2. Notice that the concrete dispute tree
contains a branch that does not correspond to any branch in the abstract dispute tree of
Fig. 1. This is because the branch unnecessarily contains a defence against the potential
attack {u,v}, which cannot be developed into a complete attack.

The example can be used to illustrate how our proof procedures generalise negation as
failure in logic programming: Rename the literals ¬s, ¬q, ¬r, ¬u by atoms s′, q ′, r ′, u′
and the assumptions s, q, r, u by the negation as failure literals not s′,not q ′,not r ′,not u′,
respectively. Then showing that all attacks against the assumption q can successfully be
counter-attacked is similar to showing that not q ′ holds because q ′ fails to hold. Our proof
procedures are more general than negation as failure, not only because literals can be posi-
tive and negative as in extended logic programming, but more importantly because negation
as failure completely explores the proof of a negation as failure literal in isolation of other
sentences in an argument. Our argumentation proof procedures, on the other hand, allow
the counterattacking of all attacks against an assumption to be interleaved with the other
parts of the search for a dispute tree.

The correspondence between abstract and concrete dispute trees is most obvious in
the special case of selection functions that always choose non-assumption sentences in
preference to assumptions. We call such selection functions patient, because they wait
until a complete argument has been constructed before beginning to attack it.

For every admissible concrete dispute tree constructed by means of a patient selec-
tion function, there exists a corresponding admissible abstract dispute tree with the same
defence set. Conversely, for every admissible abstract dispute tree and for every patient
selection function, there exists a corresponding admissible concrete dispute tree with the
same defence set. However, in addition to nodes that simply add concrete inference steps,
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Fig. 3. Concrete dispute tree for ¬p for the assumption-based framework with p ← p.

a concrete dispute tree may contain extra branches that represent potential arguments by
the opponent that fail, not because they are counter-attacked by the proponent, but because
they contain some non-assumption sentence that cannot be proved (as we have seen in
Example 6.1).

For example, given the assumption-based framework with the single inference rule
p ← p and set of assumptions {¬p}, there exists an admissible infinite concrete dispute
tree for the sentence ¬p, as shown in Fig. 3. The corresponding abstract dispute tree con-
tains only the root node {} � ¬p.

However, whether the selection function is patient or not, a concrete dispute tree must
expand all of the proponent’s potential arguments into complete arguments. It is for this
reason that a concrete dispute tree may not contain any infinite sequences of consecutive
inference steps by the proponent (case 5).

For example, given the assumption-based framework with the single inference rule
p ← p and set of assumptions {¬p}, there exists no dispute tree for the sentence p.

As in the case of abstract dispute trees, to obtain a proof procedure, we need to specify
a strategy for searching the implicit and-or tree associated with the definition of concrete
dispute tree. One part of this strategy is to find a culprit in every attack. The other part is to
find a way of counter-attacking the culprit.

Finding a culprit is dealt with in case 4(i) of Definition 6.1, by choosing whether to
ignore or to counter-attack the selected assumption in an opponent node. Finding a way of
attacking the culprit is dealt with by the search strategy.

Our definition leaves the search strategy undetermined. As a consequence, the definition
can be implemented, directly as it stands, in a non-deterministic programming language,
such as Prolog. The use of Prolog, of course, means that the search is depth-first, but
controlled by the Prolog compiler or interpreter, rather than by the Prolog implementation
of the definition.

The following theorem expresses the relationship between abstract and concrete dispute
trees.
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Theorem 6.1.

(i) For every admissible abstract dispute tree T for a conclusion α, and for every selection
function, there exists an admissible concrete dispute tree T ′ for α such that the defence
set of T ′ is a subset of the defence set of T .

(ii) For every admissible concrete dispute tree T ′ for a sentence α, there exists an admis-
sible abstract dispute tree T for a tight argument a of the conclusion α such that the
defence set of T is a subset of the defence set of T ′.

The following corollary is a direct consequence of this theorem and Theorem 5.1 for
abstract dispute trees:

Corollary 6.1.

(i) If T is an admissible concrete dispute tree and A is the defence set of T , then A is an
admissible set of assumptions.

(ii) If there is an argument for a conclusion α supported by a set of assumptions A0 and A

is an admissible set of assumptions such that A0 ⊆ A, then for every selection function
there exists an admissible concrete dispute tree for α with defence set A′ and A0 ⊆
A′ ⊆ A and A′ is admissible.

As is the case with abstract dispute trees, an explicit admissibility check is unnecessary
for concrete dispute trees that are finite in depth:

Theorem 6.2. Any concrete dispute tree that has no infinitely long branches is an admissi-
ble concrete dispute tree.

For a large class of frameworks, generalising the class of acyclic logic programs [2], all
branches of all concrete dispute trees are finite.

Definition 6.3. A framework is acyclic if there is a well-ordering of all sentences in the
language of the framework such that, whenever a sentence belongs to the premise of an in-
ference rule, then the sentence is lower in the ordering than the conclusion of the inference
rule.

The assumption-based framework of Example 5.1 is acyclic (and the tree in Fig. 1 is
indeed finite). On the other hand, any assumption-based framework with the inference rule
p ← p is an example of a non-acyclic framework.

7. Dispute derivations

Dispute derivations are to dispute trees what backward arguments are to proof trees. In
both cases, the top-down generation of a tree is represented by a sequence of frontiers of



136 P.M. Dung et al. / Artificial Intelligence 170 (2006) 114–159
the tree. Dispute derivations generalise the abductive derivations for logic programming
of [15].

The frontier of a dispute tree is a set of proponent and opponent nodes labelled by
multi-sets of sentences, representing steps of potential arguments. A dispute derivation
represents the current state of this frontier, together with the set of defence assumptions Ai

and culprits Ci generated so far, as a quadruple: 〈Pi ,Oi ,Ai,Ci, 〉. The sets Ai and Ci are
used to filter arguments, as we will explain later.

Oi is a multi-set corresponding directly to the set of opponent nodes in the frontier—
i.e., its members are multi-sets of sentences representing the state of all of the opponent’s
potential arguments against the proponent.

The multi-set Pi is a flattened version of the proponent’s potential arguments—i.e.,
its members are occurrences of sentences belonging to any of the proponent’s potential
arguments.

The first step of a dispute derivation represents the root of the dispute tree. Each transi-
tion in the dispute derivation represents the selection of a node in the frontier of the dispute
tree and its replacement by its children. Any node in the frontier can be selected for this
purpose. Different selections give rise to different derivations, but do not affect complete-
ness, because they simply represent different ways of generating the same dispute tree.

The selection of nodes in the dispute tree is different from the search for counter-attacks
against attacks. The search for counter-attacks requires a search strategy, which turns the
definition of derivation into a proof procedure for finding derivations.9

Because our ultimate goal is to develop effective proof procedures, we restrict the def-
inition of derivation to derivations of finite length. However, as we will see later, because
of filtering by defences, the corresponding dispute trees can sometimes be infinite.

The set of defence assumptions Ai is used both to filter proponent assumptions in Pi , so
they are not considered redundantly, more than once, and to filter potential culprit assump-
tions in Oi , so that the final defence set A constructed by the derivation does not attack
itself. The set of culprits Ci is similarly used both to filter potential culprit assumptions in
Oi , so they are not counter-attacked redundantly more than once, and to filter proponent
assumptions in Pi , so that A does not attack itself.

Definition 7.1. Given a selection function, a dispute derivation of a defence set A for a
sentence α is a finite sequence of quadruples

〈P0,O0,A0,C0〉, . . . , 〈Pi ,Oi ,Ai,Ci〉, . . . , 〈Pn,On,An,Cn〉
where

P0 = {α},
A0 = A∩ {α},
O0 = C0 = {},

9 Here the selection function is an extension of the selection function for concrete dispute trees. In addition to
selecting sentence occurrences in potential arguments, here the selection function also decides whether to focus
attention on proponent assumptions in Pi or on potential opponent arguments in Oi .
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Pn = On = {},
A = An,

and for every 0 � i < n, only one σ in Pi or one S in Oi is selected, and:

1. If σ ∈Pi is selected then
(i) if σ is an assumption, then

Pi+1 = Pi − {σ },
Ai+1 = Ai,

Ci+1 = Ci,

Oi+1 = Oi ∪ {{σ }};
(ii) if σ is not an assumption, then there exists some inference rule R

σ
∈R and

Ci ∩ R = {} (filtering of defence assumptions by culprits),

Pi+1 = Pi − {σ } ∪ (R − Ai) (filtering of defence assumptions

by defences),

Ai+1 = Ai ∪ (A∩ R),

Ci+1 = Ci,

Oi+1 = Oi .

2. If S is selected in Oi and σ is selected in S then
(i) if σ is an assumption, then

(a) either σ is ignored, i.e.

Oi+1 = Oi − {S} ∪ {
S − {σ }},

Pi+1 = Pi ,

Ai+1 = Ai,

Ci+1 = Ci;
(b) or σ /∈ Ai (filtering of culprits by defences) and

Oi+1 = Oi − {S},
Pi+1 = Pi ∪ {σ },
Ai+1 = Ai,

Ci+1 = Ci ∪ {σ };
(ii) if σ is not an assumption, then

Oi+1 = Oi − {S} ∪
{
S − {σ } ∪ R

∣∣∣ R

σ
∈R, and R ∩ Ci = {}

}

(filtering of culprits by culprits),

Pi+1 = Pi ,
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Ai+1 = Ai,

Ci+1 = Ci.

Note that, in case 2(ii), if there is no inference rule whose conclusion matches the se-
lected sentence σ then the potential attack S cannot be extended to a complete attack.
In such a case, the set {S − {σ } ∪ R | R

σ
∈ R, and R ∩ Ci = {}} is empty and therefore

Oi+1 = Oi − {S}. In other words, the potential attack fails of its own accord and is re-
moved from the set of potential attacks that need to be counter-attacked.

Example 7.1. Consider the assumption-based framework of Examples 5.1 and 6.1, with
inference rules:

¬s ← q

¬q ← r, s

¬q ← u, v

¬r

¬u

and set of assumptions {q, r, s, u}. There exists a derivation for the sentence ¬s of the
defence set {q}, as follows (with the output of the selection function underlined):

〈{¬s}, {}, {}, {}〉,〈{q}, {}, {}, {}〉,〈{},{{¬q}}, {q}, {}〉,〈{},{{r, s}, {u,v}}, {q}, {}〉,〈{¬r},{{u,v}}, {q}, {r}〉,〈{},{{u,v}}, {q}, {r}〉,〈{¬u}, {}, {q}, {r, u}〉,〈{}, {}, {q}, {r, u}〉.
The following example illustrates the need for ignoring assumptions selected in

case 2(i)(a) of the definition of dispute derivation.

Example 7.2. Consider the assumption-based framework with inference rules:

¬s ← q

¬q ← r, t

¬t

and set of assumptions {q, r, t}. There exists a derivation for the sentence ¬s of defence
set {q} in which one of the outputs of the selection function is ignored:
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〈{¬s}, {}, {}, {}〉,〈{q}, {}, {}, {}〉,〈{},{{¬q}}, {q}, {}〉,〈{},{{r, t}}, {q}, {}〉,〈{},{{t}}, {q}, {}〉 (r is ignored),〈{¬t}, {}, {q}, {t}〉,〈{}, {}, {q}, {t}〉.
The filtering of defence assumptions by defences can turn an infinite dispute tree into a

finite derivation, as illustrated by the following example.

Example 7.3. Consider the assumption-based framework of Example 5.4 with inference
rules

¬p ← q

¬q ← p

and set of assumptions {p,q}. Consider the sentence p.
There exists a five-step derivation for p of the defence set {p}:〈{p}, {}, {p}, {}〉,〈{},{{¬p}}, {p}, {}〉,〈{},{{q}}, {p}, {}〉,〈{¬q

}
, {}, {p}, {q}〉,〈{}, {}, {p}, {q}〉 (filtering of defence assumptions by defence assumption p).

Without such filtering of and by defence assumptions, it would be necessary to generate an
infinite sequence of alternating proponent arguments {p} � ¬q and opponent arguments
{q} � ¬p, and the derivation would never terminate. Thus, filtering defence assumptions
allows finite derivations to be constructed in some cases where the corresponding dispute
tree is infinite. Example 5.3, however, is a case of an infinite dispute tree that does not have
a corresponding finite dispute derivation.

Because filtering of defence assumptions can turn an infinite dispute tree into a finite
derivation, filtering of culprits is necessary for admissibility:

Example 7.4. Consider the assumption-based framework with inference rules

r ← p, q

¬p ← q

¬q ← p

and set of assumptions {p,q}. Consider now the sentence r .
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With filtering of defence assumptions, but without filtering of culprits by defences, there
would exist a derivation:

〈{r}, {}, {}, {}〉,〈{p,q}, {}, {p,q}, {}〉,〈{q},{{¬p}}, {p,q}, {}〉,〈{q},{{q}}, {p,q}, {}〉,〈{q,¬q}, {}, {p,q}, {q}〉 (no filtering of culprit q),〈{q}, {}, {p,q}, {q}〉 (filtering of defence assumption p),〈{},{{¬q}}, {p,q}, {q}〉,〈{},{{p}}, {p,q}, {q}〉 (no filtering of culprit p),〈{¬p}, {}, {p,q}, {q,p}〉,〈{}, {}, {p,q}, {q,p}〉 (filtering of defence assumption q).

This derivation corresponds to an infinite dispute tree that is not admissible.

Filtering of culprits by defences can also improve efficiency by turning an infinitely
failed attempt to generate a derivation into a finite failure.

Example 7.5. Consider the assumption-based framework with only one inference rule
p ← ¬p and only one assumption ¬p. Consider the sentence ¬p.

The only partial derivation that can be generated by any proof procedure terminates in
failure after only two steps:

〈{¬p}, {}, {¬p}, {}〉,〈{}, {{p}}, {¬p}, {}〉,〈{}, {{¬p}}, {¬p}, {}〉 (filtering of potential culprit ¬p by defence assumption ¬p).

Without filtering of culprits by defences, a proof procedure would attempt to generate an
infinite sequence of alternating defending arguments {¬p} � p and attacking arguments
{¬p} � p and would never terminate.

The defence set derived by a dispute derivation is admissible, because there is a corre-
sponding admissible dispute tree with the same defence set:

Theorem 7.1. For every dispute derivation of a defence set A for a sentence α, there exists
a (possibly infinite) admissible dispute tree for α with defence set A.

It follows immediately that:
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Corollary 7.1. For every dispute derivation of a defence set A for a sentence α, the defence
set A is admissible, and there exists some A′ ⊆ A that supports an argument for α.

Completeness holds for finite derivations, in the sense that for every finite dispute tree
there exists a corresponding finite dispute derivation. However, because of filtering, a dis-
pute derivation can contain only one way of defending a defence assumption and only one
way of counter-attacking a culprit assumption. But a dispute tree, without filtering, can
have different defences for different occurrences of a defence assumption and different
counter-attacks against different occurrences of the same culprit. It is for this reason that
the defence set of a dispute derivation can be strictly contained in the defence set of the
corresponding dispute tree:

Theorem 7.2. For every finite dispute tree for a sentence α with defence set A, there exists
a dispute derivation for α of a defence set A′ ⊆ A.

8. Algorithmic issues

The definition of dispute derivation specifies the structure of a winning argumentation
strategy. However, it does not determine the search strategy for finding winning strategies.
In this respect, it resembles a non-deterministic, rather than a deterministic program. In
fact, the definition can be rewritten directly as a non-deterministic program.

The non-deterministic program below is expressed in procedural form, but could also be
expressed declaratively as a Prolog program, in which case it would be virtually identical
to its definition. In fact, we have implemented the definition as a Prolog program, to test
it on a variety of simple examples. The implementation inherits Prolog’s depth-first search
strategy for finding defences. It also inherits Prolog’s unification for matching sentences
with the conclusions of inference rule schemata.

In the procedural version of the program below, we represent destructive assignment
by :=.

Algorithm 8.1. To find a defence set A for a sentence α, let

P := {α},
O := {},
A := A∩ {α},
C := {}.

While P 	= {} and O 	= {}, select σ ∈P or S ∈O.

1. If σ ∈P is selected, then
(i) if σ is an assumption, then

P := P − {σ },
O := O ∪ {{σ }};
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(ii) if σ is not an assumption,
then find some inference rule R

σ
∈R such that C ∩ R = {}.

P := P − {σ } ∪ (R − A),

A := A ∪ (A∩ R).

2. If S ∈ O is selected and σ ∈ S is selected in S, then
(i) if σ is an assumption,

then choose one of the following two alternative options:
(a) either σ is ignored, i.e.

O := O − {S} ∪ {
S − {σ }};

(b) or σ /∈ A and

O := O − {S},
P := P ∪ {σ },
C := C ∪ {σ };

(ii) if σ is not an assumption, then

O := O − {S} ∪
{
S − {σ } ∪ R

∣∣∣ R

σ
∈ R and R ∩ Ci = {}

}
.

Return A.

Because our Prolog implementation inherits Prolog’s unification, it can represent infer-
ence rule schemata finitely. As a result, it is possible to represent infinitely many potential
attacks by a single schematic potential attack, as illustrated by the following example.

Example 8.1. Consider the sentence ¬p and the assumption-based framework with infer-
ence rules:

p ← q(X), ¬r
(
succ(X)

)
q(0)

r
(
succ(0)

)
r
(
succ(X)

) ← r(X)

and A = {¬p} ∪ {¬r(X) | X ∈ {succi (0) | i � 0}}.
The only way to attack the sentence is by using instances of the inference rule schema

p ← q(X), ¬r(succ(X)). Without unification, a proof procedure would have to con-
sider separately the infinitely many potential attacks {q(succi (0)),¬r(succi+1(0))}, where
i � 0, associated with the infinitely many instances of the inference rule schema.

However, by using unification instead of instantiation, it is possible to consider instead
only the single schematic potential attack {q(X),¬r(succ(X))}. Then, if the selection
rule chooses q(X) in this schematic potential attack, with unification, only the attack
{¬r(succ(0))} needs to be considered. This is trivially counter-attacked by the empty set
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of assumptions, thus leading to a successful defence for the admissible belief ¬p. The
following trace shows the state of the variables during the execution of Algorithm 8.1.

P O A C

{¬p} {} {¬p} {}
{} {{p}} {¬p} {}
{} {{q(X),¬r(succ(X))}} {¬p} {}
{} {{¬r(succ(0))}} {¬p} {}
{r(succ(0))} {} {¬p} {¬r(succ(0))}
{} {} {¬p} {¬r(succ(0))}

The algorithm terminates, returning defence set {¬p}.

Because of unification, the algorithm can also represent infinitely counter-attacks
against infinitely many attacks, as illustrated by the following example.

Example 8.2. Consider again sentence p and the assumption-based framework in Exam-
ple 5.2:

p ← q

¬q ← r(X), s(X)

r
(
succ(X)

) ← r(X)

r(0)

¬s(X)

with set of assumptions {q} ∪ {s(X) | X ∈ {succi (0) | i � 0}}.
The following trace shows the state of the variables during the execution of Algo-

rithm 8.1.

P O A C

{p} {} {} {}
{q} {} {q} {}
{} {{¬q}} {q} {}
{} {{r(X), s(X)}} {q} {}
{¬s(X)} {} {q} {s(X)}
{} {} {q} {s(X)}

The algorithm terminates, returning defence set {q}.

The computational complexity of determining whether a set of assumptions is admis-
sible has been studied by Dimopoulos, Nebel and Toni [7]. They investigate the con-
crete instance of the assumption-based framework for logic programming [10,15], default
logic [35], autoepistemic logic [28], Theorist [33] and Circumscription [27]. Because we
have restricted ourselves to flat assumption-based frameworks, only their results for logic
programming and default logic are relevant to this paper.
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In [7], the problem of determining whether a set of assumptions is admissible has been
shown to be NP-complete for logic programming, and �

p

2 -complete for default logic.
These complexity bounds are identical to the ones for the analogous problem under the
more conventional stability semantics for logic programming [17] and default logic [35].
However, as [7] notes, these worse-case results do not take into account the fact that rea-
soning under the admissibility semantics can be much simpler than reasoning under the
stability semantics, due to the “locality” of the former and the “globality” of the latter.

9. Related work

The proof procedures presented in this paper are based upon the admissibility semantics
for default reasoning and argumentation developed in [9] and extended in [3]. An earlier
version of the top-most level of these proof procedures was presented in [11].

The proof procedures of [11] are expressed in the form of metalogic programs and are
derived from specifications in logic, using logic program transformation techniques [31].
In applying these techniques, we discovered that their formal character seemed to obscure
the intuitive, dialectic nature of the proof procedures. As a consequence, we decided to
develop the less formal, but more intuitive dispute tree approach in this paper.

Kakas and Toni [22,36] also developed argumentation-theoretic proof procedures for
the admissibility semantics and (by suitably varying parameters) for the well-founded se-
mantics [16], the weak stability semantics [23] and the acceptability semantics [24]. Their
proof procedures are explicitly defined only for logic programs, but, as the authors remark
and as this paper shows, they can be generalised to any flat assumption-based framework.

Although the proof procedures of Kakas and Toni [22,36] employ a form of argumen-
tation tree, they are, in fact, based on a form of dispute derivation, rather than on dispute
trees as we have defined them. Therefore, although their proof procedures are related to
our dispute derivations, they are not based on dispute trees in our sense. Moreover, their
use of tree terminology arguably obscures the dialectic nature of their proof procedures.

The proof procedures of [11,22,36], like those of this paper, generalise the abductive
proof procedure for logic programming of [15]. The abductive proof procedure uses re-
cursion to implement a Prolog-like depth-first selection strategy for finding dispute deriva-
tions. It interleaves two types of computation. The first type, called the abductive phase,
corresponds to arguments by the proponent. The second type, called the consistency phase,
corresponds to arguments by the opponent. The argumentation-theoretic nature of the ab-
ductive proof procedure was pointed out in [20,21] and developed also by Dung in [10].

Whereas the proof procedures of this paper and of the earlier papers [11,22,36] are
based on the assumption-based framework of [3], the two-party immediate response dis-
putes (or TPI-disputes) of Vreeswijk and Prakken [38] are based on the abstract framework
of [9]. These TPI disputes are formalised and their efficiency is analysed by Dunne and
Bench-Capon in [14]. TPI-disputes are similar to our dispute derivations, but differ in their
incorporation of a specific, depth-first search strategy for finding defences.

For this reason, our proof procedures are closer to the argument games of Cayrol, Doutre
and Mengin [5], which similarly focus on the definition of winning argumentation strategy,
leaving open the search strategy for finding them. The argument games of [5] are based on
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the dialectic framework of Jakobovits and Vermeir [19], which in turn is also based on the
abstract framework of [9].

Like us, [5] also present their proof procedures both in the form of trees and in the
form of derivations. In particular, their φ1-proofs are similar to our dispute derivations
(restricted to abstract arguments); and their φ2-winning strategies (extended to the case
involving possibly infinitely many arguments) are similar to our abstract dispute trees.

The definition of φ1-proof imposes two intuitively appealing restrictions. One is that the
opponent should not put forward an argument if it can be attacked by an argument already
deployed by the proponent. The other is that the proponent should not reuse an already
deployed argument. While these restrictions may be useful in a setting where arguments
are considered only abstractly, they would be very expensive to implement in a framework,
like ours, which requires that concrete arguments be constructed explicitly.

In our concrete approach, we approximate the restrictions on φ1-proofs, by filtering with
defence and culprit assumptions. In this way, although we can not prevent the proponent
from redeploying some already deployed argument, filtering using defence assumptions
ensures that the proponent does not have to defend the same defence assumption more
than once. Filtering using culprit assumptions similarly ensures that an opponent argument
that has already been counter-attacked by some proponent argument will not be selected
for counter-attack again.

In addition to this difference between our approach and that of [5], our assumption-
based approach has the following features, which distinguish it from all the abstract ap-
proaches, as we have already remarked earlier in the paper:

• tight arguments are generated by reasoning backwards from conclusions to assump-
tions,

• partially constructed, potential arguments can be attacked before they are completed,
• the same counter-argument can be used to attack different arguments sharing the same

assumption.

Our proof procedures implement the credulous, admissibility semantics. Dung, Mancar-
ella and Toni in [12] have shown that any proof procedure for the credulous admissibility
semantics can be used to compute the sceptical admissibility semantics. Thus, following
the approach of [12], the proof procedures in this paper could be used for the sceptical
semantics. On the other hand, [5,14,38] present somewhat simpler proof procedures for
the sceptical admissibility semantics. The resulting sceptical procedures are weaker than
the ones in [12], in the sense that they are proven to be sound and complete only for
coherent frameworks [9], i.e., frameworks for which the preferred and stable semantics
coincide. Instead, the construction of [12] is sound for any framework, and complete for
any framework in which the procedures for the credulous semantics are complete. How-
ever, due to the results of [7,13], it seems likely that the proof procedures for sceptical
argumentation of both [5,14,38] and [12] are too inefficient to be used for general frame-
works in practise. In particular, [13] shows that sceptical reasoning is �

p

2 -complete for
generic, non-coherent argument systems, and [7] shows that it is �

p

2 -complete for logic
programming and �

p

3 -complete for default logic, both of which are flat instances of the
assumption-based frameworks considered in this paper.
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Dung [8] showed that the SLDNF proof procedure for logic programming can be viewed
as an argument game. It can be shown that this argument game is an instance of our finite
concrete dispute trees applied to this sceptical semantics.

10. Conclusions

We have presented three, successive refinements of dialectic proof procedures for the
admissibility semantics of assumption-based frameworks. The proof procedures search for
a winning strategy for a proponent, who argues to establish the admissibility of a belief,
against an opponent, who attacks in every possible way the initial and defending arguments
of the proponent.

The proof procedures are abstract in the sense that they can be defined for any conven-
tional logic formulated as a collection of inference rules. They show, therefore, how any
logic can be extended to a dialectic argumentation system.

The first refinement of the proof procedures is the most abstract, in that it focuses
only on the assumptions and conclusions of arguments and ignores their internal structure.
The second refinement incorporates the internal structure of tight arguments, by reasoning
backwards from conclusions to assumptions.

The first two refinements both represent the proponent’s winning strategy in the form
of a dispute tree. The third refinement represents winning strategies in the form of dis-
pute derivations, which construct concrete dispute trees by successively expanding their
frontiers. It also incorporates filtering of and by defence and culprit assumptions.

Our proof procedures generalise the abductive proof procedure for logic programming
of [15], which in turn is an extension of Prolog and of the SLDNF proof procedure. On the
one hand, they contribute to the special case of logic programming, because they allow a
more general and more flexible way of executing negation as failure. On the other hand,
they also show how any logic can be turned into a logic programming style language with
the potential efficiency of logic programming style proof procedures.

Among the desirable features of our proof procedure are the generality and flexibility
provided by separating out both the search strategy for finding defences and the selection
strategy for deciding what part of a dispute tree to investigate next. This flexibility can be
exploited by such heuristics as focusing on subgoals with fewer possible solutions before
subgoals with a greater number of possible solutions.

Our dispute derivations expand the frontiers of concrete dispute trees one step at a time.
It might be useful to investigate other refinements of concrete dispute trees that expand
frontiers several nodes at a time, in parallel.

Our proof procedures can be used for default reasoning, either by using the credulous,
admissibility semantics directly, or by using it as a basis for computing other sceptical
semantics and even certain cases of the stable semantics, as shown for example in [12].

It would be useful to investigate further the applications of our proof procedures in such
areas as legal reasoning and negotiation. The assumption-based nature of our approach
to argumentation might be especially useful for these application because it shows how
a difference of opinion can be reduced to a difference of assumptions. In particular, the
defence and culprit sets generated by our proof procedures can be understood as identifying
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the critical differences of opinion on which conflicting beliefs are based. Moreover, by
separating the search space from the search strategy, our approach might help to identify
different ways in which a proponent might be able to win an argument, while minimising
the conflict (culprit set) with the opponent.
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Appendix A. Proofs

A.1. Proof of Theorem 4.1

A.1.1. Preliminaries
Given a backward deduction S1, . . . , Sm, based on a set of assumptions A, we write

Si

S
σ−→ Si+1

if Si+1 is obtained from Si by the application of an inference rule S
σ

, and we write

Si
σ−→ Si+1

where σ is an assumption (and Si+1 = Si ).

A.1.2. Proof
1. Let S1, . . . , Sm be a backward argument of α supported by a set of assumptions A.

It is not difficult to see that the sequence σm−1, . . . , σ1, where σ1 = α and, for each

2 � i � m − 1, either Si

S
σi−→ Si+1 or Si

σi−→ Si+1 holds, is a forward deduction of α.
2. Let σ1, . . . , σn be a forward deduction of α (i.e., α = σn). For each σi , let rank(i) =

minj=1,...,n{j |σj = σi}. Hence σrank(i) = σi and for each 1 � j < rank(i), σj 	= σi . If
σi is not an assumption, let R be the rule that is used to derive σrank(i), i.e., R is of the
form S

σrank(i)
such that S ⊆ {σrank(i)−1, . . . , σ1}. Define Pre(σi) = S. It is clear that for

each σ ∈ Pre(σi): rank(σ ) < rank(σi).
Let sl be a selection rule. Define inductively a sequence S1, . . . , Sm as follows:
S1 = {α}.
Suppose Si has been constructed. Let σ be the sentence selected by sl from Si .10 If σ is
an assumption then Si+1 = Si . If σ is not an assumption then Si+1 = Si −{σ }∪Pre(σ ).

10 Note that no assumption should be selected twice by sl.
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It remains to show that the above construction is finite.
For each set S ⊆ {σ1, . . . , σn}, define rank(S) = max{rank(α) | α ∈ S}. Further, for
each i, define S|i = {α ∈ S | rank(α) = i}.
Define an order between sets of sentences from σ1, . . . , σn as follows: S � R iff
rank(S) � rank(R) and there exists k � rank(S) such that the following conditions
hold:
• for each k < i � rank(S): S|i = R|i ,
• S|k ⊃ R|k .
It is clear that there is no infinite decreasing sequence wrt �. It is also easy to see
that Si � Si+1. It follows immediately that the constructed sequence is a backward
deduction.

A.2. Proof of Theorem 4.2

Obvious.

A.3. Proof of Theorem 5.1

A.3.1. Preliminaries
For each node N in a abstract dispute tree, let arg(N) denote the argument labelling N

while supp(N) denotes the set of assumptions on which arg(N) is based. If N is an oppo-
nent node and assumption σ is the selected culprit in N , then σ is denoted by culprit(N).
For each argument a, supp(a) denotes the set of assumptions on which a is based.

A.3.2. Proof
i) We prove that 1) A attacks every tight attack against it and 2) A does not attack itself.

1) Assume that a is a tight argument attacking some assumption δ ∈ A. From the
definition of A, there is a proponent node N such that δ ∈ supp(N). Therefore there
is a child M of N which is an opponent node labelled by a. Let K be the proponent
node that is the only child of M . It is clear that supp(K) ⊆ A. This implies that A

attacks a.
2) From the definition of admissible dispute tree, it follows that for each opponent

node N in T , culprit(N) /∈ A.
Assume that A attacks itself. Let δ ∈ A such that A attacks δ. Because A is the
union of the support of arguments at proponent nodes, there is a proponent node N

such that δ ∈ supp(N). Since A attacks δ, A attacks supp(N). Therefore, there is
a tight argument t that attacks δ and supp(t) ⊆ A (Theorem 4.1). Hence there is a
child M of N that is labelled by t . Since culprit(M) ∈ supp(t) and supp(t) ⊆ A, it
follows that culprit(M) ∈ A: contradiction to the admissibility of T .

ii) Construct a dispute tree as follows:
(a) The root is labelled by a. This node is of rank 0.
(b) Suppose we have constructed all the nodes of rank � i where i = 2k, k � 0. Note

that nodes of rank i are proponent nodes whose supports consist of assumptions
from A.
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• For each node N of rank i, for each tight attack t against arg(N) there is exactly
one child of N that is an opponent node and labelled with t . The rank of these
new nodes is i + 1.

• As each node M of rank i + 1 represents an attack against A, there is an as-
sumption δ ∈ supp(M) such that A attacks δ. Thus, there is a tight argument tM
whose support consist of assumptions from A that attacks δ. Expand the tree as
follows:
For each node M of rank i +1, create exactly one child that is a proponent node,
and label it with tM . The new nodes created in this step are of rank i + 2.
It is clear that the supports of the new nodes of rank i + 2 consist only of as-
sumptions from A.

• If the set of nodes of rank i + 2 is empty then stop. We have successfully con-
structed a finite abstract dispute tree. Otherwise, set i to i + 2 and goto (b).

If the above algorithm does not terminate, we have constructed an infinite abstract
dispute tree. It is obvious that the constructed tree is an admissible dispute tree whose
defence set A′ is a subset of A and a superset of A0 = supp(a). Finally, by part (i) of
the theorem, A is admissible.

A.4. Proof of Theorem 5.2

A.4.1. Preliminaries
A pair of nodes (P,O) is said to be conflicting if P is a proponent node and O is an

opponent node such that the culprit of O belongs to the support of P . Define (P,O) �
(P ′,O ′) if (P,O) and (P ′,O ′) are conflicting pairs of nodes, P ′ is a child of O , and O ′
is a child of P .

It is clear that the existence of an infinite sequence (P0,O0) � (P1,O1) � · · · implies
that the dispute tree is infinite.

A.4.2. Proof
To prove the theorem, we prove that any non-admissible abstract dispute tree is infinite.

This follows directly from the following claim:

Claim. Let (P,O) be a conflicting pair of nodes. There is another conflicting pair (P ′,O ′)
such that (P,O) � (P ′,O ′).

Proof of claim. Let α be the culprit at O . Let P ′ be the only child of O and t be the
argument labelling P ′. It is clear that P ′ is a proponent node and t attacks α.

Because α belongs to supp(P ) (defined in the proof of Theorem 5.1) there is a child
O ′ of P that is labelled by t . Because O ′ is an opponent node, supp(O ′) 	= {}. Hence it is
clear that the culprit at O ′ belongs to supp(t) whereas supp(t) = supp(P ′). This implies
that (P ′,O ′) is a conflicting pair of nodes and (P,O) � (P ′,O ′). �
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A.5. Proof of Theorem 6.1

A.5.1. Preliminaries
A representative set of supports for a sentence α is defined as a set of assumptions B

such that B ∩ A 	= {} for any support A of α.
It should be clear that R is a representative set of supports for an assumption α iff α ∈ R.

Further if α has no support then every set of assumptions is a representative set of supports
of α. If α has an empty support then there exist no representative set of support of α.

Lemma A.1. Let α be a non-assumption sentence.

1. Let B be a representative set of support of α. Then for each rule of the form S
α

, there
is at least one β ∈ S such that B is also a representative set of supports of β .

2. For each rule r of the form S
α

, let Br be a representative set of supports of at least one
β ∈ S. Then

B =
⋃{

Br | r is a rule of the form
S

α

}

is a representative set of supports of α.

Proof of Lemma A.1.

1. Let B be a representative set of supports of α. Let r be a rule of the form S
α

. We want to
show that B is also a representative set of support for some β ∈ S. Assume the contrary.
Therefore, for each β ∈ S there is a set of assumptions Rβ such that Rβ supports β

and B ∩ Rβ = {}. Therefore, R = ⋃{Rβ | β ∈ S} is a set of assumptions that supports
α and R ∩B = {}. This is contrary to the fact that B is a representative set of supports
of α. Therefore, there is β ∈ S such that B is a representative set of supports for β .

2. Let R be a set of assumption that supports α. Therefore, there is a rule r of the form
S
α

such that R supports S. Therefore, R also supports every element of S. Therefore,
from the definition of Br , it follows immediately that R ∩ Br 	= {}. Hence B ∩ R 	= {}.
Thus, we have proved that B is a representative set of supports of α. �

We now introduce two kinds of partial trees which together constitute the concrete dis-
pute tree.

A.5.2. Support tree
A support tree of a sentence α (wrt a selection function sl) is defined as follows:

1. The root is a proponent node labelled by {α}.
2. Let N be a proponent node labelled P . If P is empty, then N is a terminal node. If P is

not empty and the selected sentence (wrt sl) in P is an assumption σ , then there exist
exactly two children of N : one is an opponent node that is a terminal node labelled by
{σ } and the other is a proponent node labelled by P − {σ }. If σ is not an assumption,
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then there exists some inference rule S
σ

∈ R and there exists exactly one child of N

labelled by P − {σ } ∪ S.

It is easy to see that finite support trees of α correspond to backward deductions of α.

A.5.3. Representative tree
A representative tree (wrt selection function sl) of a sentence α is defined as follows:

1. The root is an opponent node labelled by {α}.
2. Let N be an opponent node labelled by O . Then O 	= {}. Let σ be the sentence selected

(wrt sl) in O .
If σ is an assumption, then N has exactly one child that is either a terminal and propo-
nent node labelled by {σ } (σ is a culprit) or an opponent node labelled by O − {σ } (σ
is ignored).
If σ is not an assumption and there exists no inference rule S

σ
∈ R, then N is a termi-

nal node. Otherwise, the children of N are a set of opponent nodes labelled by the sets
of sentences O − {σ } ∪ S, where S

σ
∈ R. (There being one such child for each such

inference rule.)

Let α be a sentence and sl be a selection function, and T be a representative tree of α

wrt sl. Further, let B = S0, . . . , Sm be a backward deduction of α wrt sl. We say that a
path N0, . . . ,Nk from the root N0 of T to Ni corresponds to a prefix of B iff (1) for each
0 � i � k, label(Ni) = Si − Ai where Ai is the set of assumptions selected on the path
from N0 to Ni , and (2) the same sentence is selected at Ni and Si . It is easy to see (by
induction) that the following property holds:

Lemma A.2. There is a terminal node N in T that is also a proponent node such that the
path from the root to the parent node of N corresponds to a prefix of B .

Furthermore:

Lemma A.3.

1. Let B be the set of assumptions selected in a representative tree T of α wrt sl. Then B
is a representative set of supports of α.

2. Let B be a representative set of supports of α. Then, there is a representative tree T of
α wrt sl such that the set of culprit assumptions selected in the tree is a subset of B.

Proof of Lemma A.3.

1. Let A be a set of assumptions supporting α. We want to show that A ∩ B 	= {}. From
Theorem 4.1, there is a backward deduction D = S0, . . . , Sm of α wrt sl such that
Sm ⊆ A and S0 = {α}. From Lemma A.2, there exists a terminal node N in T such
that the path from the root to the parent node of N corresponds to a prefix of D and N
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is a proponent node. It follows that the sentence selected at the parent of N belongs to
Sm. That means A ∩B 	= {}.

2. T is defined as follows:
(a) The root is an opponent node labelled by {α}.
(b) Let N be an opponent node labelled by B .

If B 	= {}, select a sentence σ ∈ B following sl.
If σ is an assumption not belonging to B, then N has exactly one child that is an
opponent node labelled by B − {σ }.
If σ is an assumption belonging to B, then N has exactly one child that is a pro-
ponent node labelled by {σ }.
If σ is not an assumption and there exists no inference rule S

σ
∈ R, then N is a

terminal node. Otherwise, the children of N are a set of opponent nodes labelled
by the sets of sentences B − {σ } ∪ S, where S

σ
∈ R. (There being one such child

for each such inference rule.)
It remains to show that T is a representative tree of α. Suppose the contrary. Hence
there is an opponent node N in T that is labelled by an empty set. It follows that the
branch from the root to N represents a backward deduction of α supported by a set of
assumptions disjoint to B: contradiction to the assumption that B is a representative
set of supports of α. �

A.5.4. Proof
We prove Theorem 6.1 by transforming concrete dispute trees into abstract dispute trees

and vice versa.

A.5.5. Transformation from concrete dispute trees into abstract dispute trees
Let T be a concrete dispute tree (wrt selection function sl) and N be a node in T . Define

T (N) as follows:

• Let T1 be the subtree of T rooted at N .
• Delete every node M in T1 such that the type of the parent of M is different to the type

of N . The resulting tree is T (N).11

It is easy to see that if N is an opponent node labelled by {α} then T (N) is a representative
tree of α. Further if N is a proponent node labelled by {α} then T (N) is a support tree of
α. In the latter case, let arg(N) denote the tight argument corresponding to T (N).

In the following, we construct inductively a sequence of trees (T0, f0), . . . , (Tn, fn), . . .

where:

• Nodes in Ti are either proponent or opponent nodes labelled with tight arguments. For
an opponent node, an assumption from the set of assumptions supporting the argument
labelling it is also given as the culprit at this node.

• The frontier of Ti consists only of proponent nodes.

11 The type of a node determines whether it is an proponent or opponent node. Note also that if a node is deleted
then all of its successors are deleted as well.
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• fi are functions mapping the proponent nodes in the frontier of Ti into the proponent
nodes of T such that each node N in the frontier of Ti is labelled with arg(T (fi(N))).

1. T0 consists of exactly one node that is a proponent node labelled by arg(N0) where N0
is the root of T . f0 maps the root of T0 into N0.

2. For each proponent node N in the frontier of Ti with fi(N) = M where M is a propo-
nent node in T and a is the argument labelling N , expand Ti as follows:
For each tight argument b attacking a, add a child Nb of N to Ti that is an opponent
node labelled by b.
Let σ be the assumption in a such that b is a tight argument of σ . From the assumption
hypothesis, a = arg(T (M)). It is clear that σ is selected at some node M ′ in T (M).
From Theorem 4.1, there is a tight argument c wrt the selection function sl whose sup-
port is a subset of supp(b).
Let H be the child of M ′ in T that is labelled with {σ }. H is hence an opponent node.
Therefore, there is a branch in T (H) corresponding to c (Lemma A.2). Let δ be the
assumption selected on this branch and let K be the terminal proponent node labelled
by {δ} in T (H). It is clear that δ belongs to the set of assumptions of b. Select δ as the
culprit at Nb and add to Nb in Ti exactly one child N ′ that is a proponent node labelled
by arg(T (K).
Define fi+1(N

′) = K .
3. The obtained tree is Ti+1.
4. Define reduct(T ) to be the limit of T0, T1, . . . , Ti, . . . .

It follows immediately that reduct(T ) is an abstract dispute tree of α such that the defence
set of reduct(T ) is a subset of the defence set of T .
Due to the fact the culprits in reduct(T ) are also the culprits in T , it follows that, if T is
admissible, then reduct(T ) is also admissible.

A.5.6. Transformations from abstract dispute trees into concrete dispute trees
Let T be an abstract dispute tree for a sentence α. Let D, C be the defence set and the

set of culprits of T , respectively.
For each σ ∈ C, let arg(σ ) be an argument with conclusion σ labelling some node in T .
For each σ ∈ D, let Bσ be the set of culprits in the arguments attacking σ in T . It is

clear that Bσ is a representative set of supports for σ .
In the following, we construct inductively a sequence of trees T0, . . . , Tn, . . . as follows:

1. T0 is a support tree of α corresponding to the argument labelling the root of T .
2. Let i = 2k such that the non-terminal nodes in the frontier of Ti are opponent nodes

labelled by set of sentences of the form {σ }, where σ ∈ D.
Expand each such node by a representative tree (wrt sl) of σ wrt Bσ (the existence of
such tree is guaranteed by Lemma A.3). The obtained tree is Ti+1.

3. Let i = 2k + 1 such that the non-terminal nodes in the frontier of Ti are proponent
nodes labelled by sets of sentences of the form {σ }, where σ ∈ C.
Expand each such node by a support tree of σ (wrt sl) corresponding to arg(σ ). The
obtained tree is Ti+1.
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4. Define expand(T ) to be the limit of Ti .

It follows immediately that expand(T ) is a concrete dispute tree of α such that the defence
set of expand(T ) is a subset of the defence set of T .

Due to the fact the culprits in expand(T ) are also the culprits in T , it follows that, if T
is admissible, then expand(T ) is also admissible.

A.6. Proof of Corollary 6.1

i) Let sl be the selection function of T . We prove that 1) A attacks every attack against
it, and 2) A does not attack itself.
1) Assume that a is a tight argument attacking some assumption σ ∈ A. From The-

orem 4.1, there exists a tight argument b wrt sl such that supp(b) ⊆ supp(a) and
both a and b support the same conclusion. (See the proof of Theorem 5.1 for the
definition of supp.)
From the definition of A, there is an opponent node N labelled by {σ }. Therefore
there is a branch in the representative tree T (N) corresponding to b (Lemma A.2).
Hence, the culprit selected on this branch is attacked by A. Therefore A attacks b,
and hence it also attacks a.

2) Assume A attacks itself. Then, there exists an argument a attacking some assump-
tion σ ∈ A and such that the support of a is a subset of A.
From the definition of A, there is an opponent node N labelled by {σ }. Therefore
there is a branch in the representative tree T (N) corresponding to b (Lemma A.2).
Hence, the culprit selected on this branch belongs to A. This is impossible due to
the admissibility of T .

ii) From Theorem 5.1, part (ii), there exists an admissible abstract dispute tree T for a

such that the defence set D of T is a subset of A. From Theorem 6.1, there exists an
admissible concrete dispute tree T ′ of α such that the defence set A′ of T ′ is a subset
of D. Hence, A′ is a subset of A and a superset of A0 = supp(a). Finally, by part (i) of
the corollary, A is admissible.

A.7. Proof of Theorem 6.2

A.7.1. Preliminaries
A pair of nodes (P,O) are said to be conflicting if P is a proponent node and O is

an opponent node such that both of them are labelled by the same set {α} where α is
an assumption. Define (P,O) � (P ′,O ′) if (P,O) and (P ′,O ′) are conflicting pairs of
nodes, P ′ is a successor of O , and O ′ is a successor of P .

It is clear that the existence of an infinite sequence (P0,O0) � (P1,O1) � · · · implies
that the concrete dispute tree is infinite.

A.7.2. Proof
To prove the theorem, we prove that any non-admissible concrete dispute tree is infinite.

Let T be a non-admissible concrete dispute tree. It is obvious that there exists a conflicting
pair in T . The theorem follows directly from the following:
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Claim. Let (P,O) be a conflicting pair of nodes in a concrete dispute tree T There is
another conflicting pair (P ′,O ′) in T such that (P,O) � (P ′,O ′).

Proof of claim. Let α be an assumption such that {α} labels both P and O . Let D be the
backward deduction represented by the support tree T (P ). From Lemma A.2, there is a
path from the root O to a terminal node P ′ in the tree T (O) that corresponds to D. Let β

be the assumption such that {β} labels P ′. It follows that there is also a terminal node O ′
in T (P ) also labelled by {β}. It is clear that P ′ is a proponent node and O ′ is an opponent
node and (P,O) � (P ′,O ′). �
A.8. Proof of Theorem 7.1

A.8.1. Preliminaries
A partial (concrete) dispute tree is a tree obtained from a concrete dispute tree by delet-

ing some nodes together with all of their successors and siblings and the successors of the
siblings.

A terminal node in a partial dispute tree is a terminal node N such that (1) N is a
proponent labelled by the empty set, or (2) N is an opponent node and there is no rule
whose conclusion coincides with the selected sentence at N .

A.8.2. Proof
Let D = 〈P0,O0,A0,C0〉, . . . , 〈Pi ,Oi ,Ai,Ci〉, . . . , 〈Pn,On,An,Cn〉 be a dispute

derivation of a sentence α.
In the following, we construct inductively a sequence T0, . . . , Tn of partial (concrete)

dispute trees satisfying the following properties:

1. The union of all sentences belonging to the labels of proponents nodes in Ti is equal
to P0 ∪ · · · ∪Pi .

2. The multiset of all non-assumption sentences appearing in the frontier proponent nodes
in Ti is equal to the multiset of non-assumption sentences in Pi .

3. The set of assumptions in Pi is a subset of the set of assumptions appearing at the
frontier proponent nodes.

4. There is one-to-one mapping mpi from Oi into the set of frontier non-terminal oppo-
nent nodes such that for each S ∈ Oi , S labels mpi (S). Moreover, if a non-terminal
frontier opponent node N in Ti does not belong to the range of mpi , then N satisfies
two properties:
(a) N is labelled by {α} for some assumption α ∈ Ai .
(b) The parent of N is a proponent node.

• T0 is a tree consisting of exactly one proponent node labelled {α}.
• Suppose Ti has been constructed. Ti is expanded into Ti+1 as follows:

– If σ ∈ Pi is selected at step i in the derivation then proceed as follows: Let N be a
frontier proponent node in Ti such that σ appears at N .
∗ If σ is a non-assumption then expand Ti into T ′

i by adding a child to N that
is a proponent node P0 labelled by S − {σ } ∪ R where S labels N and R is
σ
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the rule selected to proceed from 〈Pi ,Oi ,Ai,Ci〉 to 〈Pi+1,Oi+1,Ai+1,Ci+1〉.
Let R ∩ Ai = {α1, . . . , αk}. Construct a sequence of trees Ti,0, Ti,1, . . . , Ti,k as
follows:
· Ti,0 = T ′

i .
· Suppose Ti,j has been constructed. Expand Ti,j into Ti,j+1 by adding two chil-

dren to node Pj : one is a proponent node Pj+1 labelled by S − {αj }, where S

is the multiset labelling Pj , the other is an opponent node labelled by {αj }.
· Ti+1 = Ti,k .

∗ If σ is an assumption then expand Ti into Ti+1 by adding two children to N : one
is a proponent node labelled by S − {σ }, where S is the multiset labelling N , the
other is an opponent node labelled by {σ }.

– If S ∈ Oi and σ ∈ S are selected at step i in the derivation then proceed as follows:
Let N = mpi (S). N is hence a frontier opponent node in Ti such that S labels N and
σ appears in S.
∗ If σ is a non-assumption then expand Ti into Ti+1 by: 1) adding for each rule

R
σ

a child M to N that is an opponent node labelled by S − {σ } ∪ R. Note that
if no such child exists, then N is a terminal node in Ti+1; 2) if R contains an
assumption σ from Ci then σ is the culprit at N and add exactly one child to M

that is a proponent node labelled by {σ }.
∗ If σ is an assumption then expand Ti into Ti+1 by adding exactly one child to N

which is
· an opponent node labelled by S − {σ } if σ is ignored in the derivation, or
· a proponent node labelled by {σ }, otherwise.

It is not difficult to show by induction that all trees Ti satisfy the properties 1–4 listed
above. Since D is a dispute derivation, the following lemma holds obviously:

Lemma A.4.

1. The frontier opponent (resp. proponent) nodes of Tn are either terminal nodes or la-
belled with a set of the form {σ } where σ is an assumption such that there is a unique
non-frontier opponent (resp. proponent) node Nσ in Tn that is also labelled by {σ }.

2. The set of assumptions appearing at the proponent nodes in Tn is equal to An.
3. The set of assumptions α such that {α} labels a proponent node is equal to Cn.

For each assumption σ appearing at a proponent node in Tn, let Tσ be the subtree of Tn

whose root is Nσ .
Construct a new sequence of trees T ′

0, T
′
1, . . . as follows:

• T ′
0 = Tn.

• Suppose T ′
i has been constructed. Expand T ′

i into T ′
i+1 by adding simultaneously to all

non-terminal frontier nodes in T ′
i that are labelled by {σ }, where σ is an assumption,

the tree Tσ .
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Let T be the limit of T ′
0, T

′
1, . . . . It is not difficult to see that T is a concrete dispute

tree whose defence set coincides with the defence set of Tn and whose culprit set coincides
with the culprit set of Tn. From Lemma A.4, it follows immediately that T is an admissible
concrete dispute tree whose defence set coincides with An.

A.9. Proof of Theorem 7.2

Let T be a finite admissible concrete dispute tree of α. Let N0, . . . ,Nn be a listing of
nodes in T according to the leftmost depth-first order.

A node N in T is said to be an attack node if N is labelled by {σ } where σ is an
assumption and the parent of N is a node of the opposite type.12 Because T is admissible,
attack nodes with the same label are of the same type.

Let Nk be the first attack node in N0, . . . ,Nn such that there exists another attack node
Ni , i > k, with the same label.

The tree simpl(T ) is obtained by deleting all nodes except Nk that are attack nodes with
the same label as Nk , together with their successors.

Because T is finite, there exists i such that simpli (T ) = simpli+1(T ). Let T ′ =
simpli (T ).

It is clear that the listing of the nodes in T ′ according to the leftmost depth-first search
is a subsequence of the list N0, . . . ,Nn.

It is obvious that following property holds for T ′:

Property. Let σ be an assumption.
If σ appears in some proponent nodes of T ′, then there is exactly one attack opponent

node in T ′ that is labelled by {σ }.
If σ is the culprit in some opponent nodes of T ′ then there is exactly one attack propo-

nent node in T ′ that is labelled by {σ }.

Let N be a proponent node (labelled by S) in T ′ such that the selected sentence at N is
an assumption σ and N has exactly one child M in T ′ that is a proponent node (labelled by
S −{σ }). Simplify T ′ as follows: Collapse N , M together and remove σ from the labels of
the all proponent nodes that are ancestors of N such that there is no opponent nodes on the
path from them to N . Repeat this step until it can not carried out anymore. Let the obtained
tree be T ′′.

Let K0, . . . ,Km be a listing of the nodes in T ′′ according to the leftmost depth-first
order. An opponent node Ki is said to be redundant in T ′′ if the label of Ki contains
assumption σ and there is a proponent node Kj , j < i, that is labelled by {σ }.

Continue to simplify T ′′ by removing all redundant nodes in T ′′ together with their
successors. Let the obtained tree be T . It is easy to see that the listing M0, . . . ,Mk of
the nodes in T according to the leftmost depth-first search is a subsequence of the list
N0, . . . ,Nn.

12 Note that a opponent (resp. proponent) node is said to be of opposite type of a proponent (resp. opponent)
node.
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Let Ti be the tree obtained from T be deleting all nodes Mj , j > i, except those that
are siblings of the nodes M0, . . . ,Mi .

For each 0 � i � k, define

• Pi is the multiset of sentences appearing in the frontier proponent nodes of Ti ,
• Oi is the multiset of the labels of the non-terminal frontier opponent nodes in Ti ,
• Ai is the set of assumptions appearing in the proponent nodes in Ti ,
• Ci is the set of assumptions σ such that {σ } labels some proponent node in Ti whose

parent is an opponent node.

From the definition of Ti , it is not difficult to see that

D = 〈P0,O0,A0,C0〉, . . . , 〈Pi ,Oi ,Ai,Ci〉, . . . , 〈Pn,On,An,Cn〉
is a dispute derivation.

References

[1] K.R. Apt, H. Blair, A. Walker, Towards a theory of declarative knowledge, in: J. Minker (Ed.), Foundations
of Deductive Databases and Logic Programming, Morgan Kaufmann, San Mateo, CA, 1988.

[2] K.R. Apt, R. Bol, Logic programming and negation: A survey, J. Logic Programming 19–20 (1994) 9–71.
[3] A. Bondarenko, P.M. Dung, R.A. Kowalski, F. Toni, An abstract, argumentation-theoretic framework for

default reasoning, Artificial Intelligence 93 (1–2) (1997) 63–101.
[4] A. Bondarenko, F. Toni, R.A. Kowalski, An assumption-based framework for non-monotonic reasoning, in:

A. Nerode, L. Pereira, et al. (Eds.), Proc. 2nd International Workshop on Logic Programming and Non-
monotonic Reasoning, MIT Press, Cambridge, MA, 1993, pp. 171–189.

[5] C. Cayrol, S. Doutre, J. Mengin, On decision problems related to preferred semantics a of argumentation
frameworks, J. Logic Comput. 13 (3) (2003) 377–403.

[6] C. Chesnevar, A. Maguitman, R. Loui, Logical models of argument, ACM Comput. Surv. 32 (4) (2000)
337–383.

[7] Y. Dimopoulos, B. Nebel, F. Toni, On the computational complexity of assumption-based argumentation for
default reasoning, Artificial Intelligence 141 (2002) 57–78.

[8] P.M. Dung, Logic programming as dialog-game, Technical report, AIT, 1993.
[9] P.M. Dung, The acceptability of arguments and its fundamental role in non-monotonic reasoning and logic

programming and n-person game, Artificial Intelligence 77 (1995) 321–357.
[10] P.M. Dung, An argumentation theoretic foundation of logic programming, J. Logic Programming 22 (1995)

151–177.
[11] P.M. Dung, R.A. Kowalski, F. Toni, Synthesis of proof procedures for default reasoning, in: J. Gallagher

(Ed.), Proc. LOPSTR, in: Lecture Notes Comput. Sci., vol. 1207, Springer-Verlag, Berlin, 1996, pp. 313–
324.

[12] P.M. Dung, P. Mancarella, F. Toni, Argumentation-based proof procedures for credulous and sceptical
non-monotonic reasoning, in: A.C. Kakas, F. Sadri (Eds.), Computational Logic: Logic Programming and
Beyond—Essays in Honour of Robert A. Kowalski, in: Lecture Notes Artif. Intell., vol. 2408, Springer-
Verlag, Berlin, 2002, pp. 289–310.

[13] P. Dunne, T. Bench-Capon, Coherence in finite argument systems, Artificial Intelligence 141 (2002) 187–
203.

[14] P.E. Dunne, T.J.M. Bench-Capon, Two party immediate response disputes: Properties and efficiency, Artifi-
cial Intelligence 149 (2003) 221–250.

[15] K. Eshghi, R.A. Kowalski, Abduction compared with negation as failure, in: Proc. ICLP, MIT Press, Cam-
bridge, MA, 1989.



P.M. Dung et al. / Artificial Intelligence 170 (2006) 114–159 159
[16] A. Van Gelder, K.A. Ross, J.S. Schlipf, The well-founded semantics for general logic programs,
J. ACM 38 (3) (1991) 620–650.

[17] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: R. Kowalski, K.A. Bowen
(Eds.), Proceedings of the 5th International Conf. on Logic Programming, MIT Press, 1988, pp. 1070–1080.

[18] T.F. Gordon, The Pleadings Game. An Artificial Intelligence Model of Procedural Justice, Kluwer, Dor-
drecht, 1995.

[19] H. Jakobovits, D. Vermeir, Dialectic semantics for argumentation frameworks, in: Proc. ICAIL, ACM Press,
New York, 1999, pp. 53–62.

[20] A.C. Kakas, R.A. Kowalski, F. Toni, Abductive logic programming, J. Logic Comput. 2 (6) (1993) 719–770.
[21] A.C. Kakas, R.A. Kowalski, F. Toni, The role of abduction in logic programming, in: D.M. Gabbay,

C.J. Hogger, J.A. Robinson (Eds.), Handbook of Logic in Artificial Intelligence and Logic Programming,
vol. 5, Oxford University Press, Oxford, 1998, pp. 235–324.

[22] A.C. Kakas, F. Toni, Computing argumentation in logic programming, J. Logic Comput. 9 (1999) 515–562.
[23] A.C. Kakas, P. Mancarella, Stable theories for logic programs, in: Proc. ISLP, MIT Press, Cambridge, MA,

1991.
[24] A.C. Kakas, P. Mancarella, P.M. Dung, The acceptability semantics for logic programs, in: P. Van Henten-

ryck, et al. (Eds.), Proc. ICLP, MIT Press, Cambridge, MA, 1994, pp. 504–519.
[25] R.A. Kowalski, F. Toni, Abstract argumentation, J. Artificial Intelligence and Law 4 (3–4) (1996) 275–296,

special issue on Logical Models of Argumentation.
[26] R.P. Loui, J. Norman, Rationales and argument moves, Artificial Intelligence and Law 3 (1995) 158–189.
[27] J. McCarthy, Circumscription—a form of non-monotonic reasoning, Artificial Intelligence 13 (1980) 27–39.
[28] R. Moore, Semantical considerations on non-monotonic logic, Artificial Intelligence 25 (1985).
[29] D. Nute, Defeasible reasoning, in: J.H. Fetzer (Ed.), Aspects of Artificial Intelligence, Kluwer Academic

Publishers, Dordrecht, 1987, pp. 251–288.
[30] C. Perelman, Justice, Law and Argument, Reidel, Dordrecht, 1980.
[31] A. Pettorossi, M. Proietti, Transformation of logic programs: Foundations and techniques, J. Logic Program-

ming 19–20 (1994) 261–320.
[32] J. Pollock, Defeasible reasoning, Cognitive Science 11 (4) (1987) 481–518.
[33] D. Poole, A logical framework for default reasoning, Artificial Intelligence 36 (1) (1988) 27–47.
[34] H. Prakken, G. Sartor, The role of logic in computational models of legal argument: A critical survey, in:

A.C. Kakas, F. Sadri (Eds.), Computational Logic: Logic Programming and Beyond—Essays in Honour of
Robert A. Kowalski, in: Lecture Notes Artif. Intell., vol. 2408, Springer-Verlag, Berlin, 2002, pp. 342–381.

[35] R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1980).
[36] F. Toni, A.C. Kakas, Computing the acceptability semantics, in: V.W. Marek, A. Nerode, M. Truszczynski

(Eds.), Proc. 3rd International Workshop on Logic Programming and Non-monotonic Reasoning, in: Lecture
Notes Artif. Intell., vol. 928, Springer-Verlag, Berlin, 1995, pp. 401–415.

[37] S.E. Toulmin, The Uses of Arguments, Cambridge University Press, Cambridge, 1958.
[38] G. Vreeswijk, H. Prakken, Credulous and sceptical argument games for preferred semantics, in: Proc. JELIA,

in: Lecture Notes Comput. Sci., vol. 1919, Springer-Verlag, Berlin, 2000, pp. 224–238.
[39] D.N. Walton, What is reasoning? What is an argument?, J. Philosophy 87 (8) (1990) 399–419.


