
Artificial Intelligence 133 (2001) 35–85

An argument-based approach
to reasoning with specificity

Phan Minh Dung a, Tran Cao Son b,∗
a Department of Computer Science and Information Management, School of Advanced Technology,

Asian Institute of Technology, PO Box 2754, Bangkok 10501, Thailand
b Department of Computer Science, New Mexico State University, PO Box 30001, MSC CS,

Las Cruces, NM 88003, USA

Received 17 December 1999; received in revised form 6 March 2001

Abstract

We present a new priority-based approach to reasoning with specificity which subsumes
inheritance reasoning. The new approach differs from other priority-based approaches in the
literature in the way priority between defaults is handled. Here, it is conditional rather than
unconditional as in other approaches. We show that any unconditional handling of priorities between
defaults as advocated in the literature until now is not sufficient to capture general defeasible
inheritance reasoning. We propose a simple and novel argumentation semantics for reasoning
with specificity taking the conditionality of the priorities between defaults into account. Since the
proposed argumentation semantics is a form of stable semantics of nonmonotonic reasoning, it
inherits a common problem of the latter where it is not always defined for every default theory.
We propose a class of stratified default theories for which the argumentation semantics is always
defined. We also show that acyclic and consistent inheritance networks are stratified. We prove that
the argumentation semantics satisfies the basic properties of a nonmonotonic consequence relation
such as deduction, reduction, conditioning, and cumulativity for well-defined and stratified default
theories. We give a modular and polynomial transformation of default theories with specificity into
semantically equivalent Reiter default theories. 2001 Elsevier Science B.V. All rights reserved.

Keywords: Default reasoning; Specificity; Argumentation; Reasoning with specificity

* Corresponding author.
E-mail addresses: dung@cs.ait.ac.th (P.M. Dung), tson@cs.nmsu.edu (T.C. Son).

0004-3702/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(01)0 01 34 -5

36 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

1. Introduction

Default reasoning is a form of reasoning which is often employed by humans to make
conclusions using commonsense knowledge even if some conclusions will turn out to be
incorrect when new information is available. For instance, if all we know about Tweety is
that it is a bird, we will conclude that Tweety flies because birds normally fly. If we later
learn that Tweety is a penguin, we will withdraw that conclusion and infer that Tweety does
not fly because (i) normally, penguins do not fly and (ii) normally, conclusions supported
by more specific information prevail over those supported by less specific ones. While (i)
represents a part of our common knowledge about penguins, (ii) does not. It is one of the
generally accepted principles, often referred to as the specificity principle, used in default
reasoning to resolve the conflict between contradictory conclusions. Default reasoning with
specificity refers to default reasoning approaches which use the specificity principle as one
of their conflict resolution strategies.

General approaches to nonmonotonic reasoning such as Reiter’s default logic [42],
McCarthy’s circumscription [32], Moore’s autoepistemic logic [36], or McDermott and
Doyle’s nonmonotonic logic [34] do not take specificity into consideration, i.e., the
reasoning process in these approaches does not admit the specificity principle. For
example, a naive representation of the above information about Tweety by the following
default theory in Reiter’s default logic notation({

penguin(Tweety),penguin(X)⊃ bird(X)
}
,

{
bird(X) : fly(X)

fly(X)
,

penguin(X) : ¬fly(X)

¬fly(X)

})
(∗)

would not yield the intuitive conclusion that Tweety does not fly, i.e., ¬fly(Tweety) cannot
be concluded since the theory has two extensions and ¬fly(Tweety) holds in one extension
and does not hold in the other. The reason for this is the interaction between the two defaults
in (∗), first noticed by Reiter and Criscuolo [43]. They discussed various situations, in
which the interaction between defaults of a normal default theory can be compiled into the
original theory to create a new default theory whose semantics yields the intuitive results.
In the case of Tweety, their method yields the following default theory({

penguin(Tweety),penguin(X)⊃ bird(X)
}
,

{
bird(X) : ¬penguin(X)∧ fly(X)

fly(X)
,

penguin(X) : ¬fly(X)

¬fly(X)

})

which entails ¬fly(Tweety) because it has only one extension that contains ¬fly(Tweety).
It has been recognized relatively early that priorities between defaults can help in

dealing with specificity. Priorities can be used to remove unintuitive models. In prioritized
circumscription, first defined by McCarthy [33], a priority order between predicates
is added into each circumscription theory. Lifschitz [29] later proved that prioritized
circumscription is a special case of parallel circumscription. A similar approach has been
taken by Konolige [27] in using autoepistemic logic to reason with specificity. He defined

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 37

hierarchical autoepistemic theories in which a preference order between sub-theories and
a syntactical condition on the sub-theories ensure that higher priority conclusions will
be concluded. Brewka [6]—in defining prioritized default logic—also adds a preference
order between defaults into a Reiter’s default theory and modifies the semantics of default
logic in such a way that guarantees that default of higher priority is preferred. Baader
and Hollunder [2] develops prioritized default logic to handle specificity in terminological
systems. All of the approaches in [2,6,27,29,33] assume that priorities between defaults are
given by the users. For this reason, these approaches are sometime called reasoning with
explicit specificity.

Contrary to approaches to reasoning with explicit specificity are approaches to reasoning
with implicit specificity in which a mechanism for computing the priority order between
defaults is provided. Poole [40] is an early attempt to extract the preference between
defaults from the theory. Poole defined a notion of more specific between pairs consisting
of a conclusion and an argument supporting this conclusion. Moinard [35] pointed out that
Poole’s definition yields unnecessary priority, for example, it can arise even in consistent
default theories. He also suggested five principles for establishing the priority between
defaults. Simari and Loui [46] noted that Poole’s definition does not take into consideration
the interaction between arguments. To overcome this problem they combined Poole’s
approach and Pollock’s theory [39] to define an approach that unifies various approaches
to argument-based defeasible reasoning. Geffner and Pearl [20] also used an implicit
priority order to define conditional entailment, an approach that exhibits the advantages of
both conditional and extensional approaches to default reasoning. Conditional entailment,
however, is too weak in that it does not capture inheritance reasoning. Pearl [38] also
discussed how a preference relation between defaults can be established. In a later session,
we will discuss Pearl’s proposal in more details.

Obtaining specificity information is one problem, using specificity is another critical
problem in reasoning with specificity. It can be used directly to define a new formalism
that accounts for specificity. Examples of these systems can be found in [2,5,19,20,
22,38,40,46]. Specificity can also be used indirectly. The idea is to compile it into a
general nonmonotonic reasoning approach thus avoiding the burden of introducing a new
semantics. In the recent years, these approaches seem to get more attention than those
using specificity directly [7–9,15,21]. Regardless of whether specificity is used directly
or indirectly, in many approaches [2,5,9,19,20,22,38,40,46], the priority order is used
unconditionally, independent of the concrete context. As we will show in Section 2, priority
order should be used conditionally, if a general approach to reasoning with specificity were
to capture nonmonotonic inheritance reasoning.

Argumentation has been recognized lately as an important and natural approach to
nonmonotonic reasoning [1,3,10–13,15,20,24,25,39–41,46,50]. Dung [13] introduced a
simple and abstract argumentation framework. Central to an argumentation framework
is a notion of an argument and a binary relation, called the attack relation, between
arguments. The semantics of an argumentation framework specifies what set of arguments
is acceptable. Like other nonmonotonic logics, argumentation also has different types of
semantics such as the preferred, stable, or well-founded semantics. Dung also proved that
well-known nonmonotonic logics like autoepistemic logic, Reiter’s default logic and logic
programming represent different forms of a simple system of argumentation reasoning.

38 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

Based on the results in [13], a simple argument-based logical system has been developed
in [3] which captures well-known nonmonotonic logics like autoepistemic logic, Reiter’s
default logic and logic programming as special cases.

Early attempt in using argumentation in default reasoning with specificity can be
attributed to Poole [40] in which a more specific relation between pairs of arguments
and conclusions is defined. Although the semantics provided by this approach is rather
weak, it has inspired others to use argumentation in default reasoning with specificity.
Geffner and Pearl [20] employed argumentation to give a proof procedure for conditional
entailment. Simari and Loui [46] developed an argumentation system for reasoning with
specificity. Both systems are rather weak in that it does not capture inheritance reasoning.
On the other hand, reasoning based on arguments represented as paths, has been studied in
nonmonotonic inheritance reasoning, a special field of nonmonotonic reasoning, from the
very first day [51] and then in [23,26,44,47–49]. Path-based approaches to nonmonotonic
inheritance networks are widely accepted because they are intuitive and easy to implement.
In [14], we proved that argument-based approaches to inheritance reasoning could be
viewed as a simple form of argumentation. In a later work [15], we extended this result
and showed that argumentation offers a natural and intuitive framework for dealing with
specificity. However, the expressibility of default theories in [15] is rather limited in that
the language for representing default theories does not admit material implication and
disjunction.

This paper is concerned with approaches in which an implicit priority order between
defaults is used to resolve conflicts. We concentrate on two important questions of
reasoning with specificity:

(1) How to compute specificity?
(2) How to use specificity?

We propose a novel method to assign priority order to defaults which can be seen as
a generalized version of Touretzky’s specificity principle in inheritance reasoning [51].
We also show that specificity must be applied conditionally if a general approach to
reasoning with specificity were to capture general defeasible inheritance reasoning. Instead
of developing a new system for reasoning with specificity, we compile specificity into
an argumentation system and develop a simple and novel argumentation semantics for
reasoning with specificity taking the conditionality of the priorities between defaults into
account. The new framework improves our previous work [15] in two aspects. It eliminates
the syntactical restrictions on default theories and the more specific relation is much
simpler than the previously defined more specific relation. 1 We will show that our method
overcomes the shortcoming of the existing proposals in the literature by proving that
our formalism captures general inheritance reasoning. Since the proposed argumentation
semantics is a form of stable semantics of nonmonotonic reasoning, it inherits a common
problem of the latter where it is not always defined for every default theory. We propose
a large class of stratified default theories for which the argumentation semantics is always
defined. We also show that acyclic and consistent inheritance networks [23] are stratified.
We prove that the argumentation semantics satisfies the basic properties of nonmonotonic
consequence relations such as deduction, reduction, conditioning, and cumulativity for

1 Section 6.1 provides a detailed comparison between the two approaches.

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 39

well-defined and stratified default theories. To compute the newly defined entailment
relation, we transform default theories with specificity into semantically equivalent Reiter’s
default logic (for a collection of algorithms for Reiter’s default logic, the reader can consult
[30]). The translation is modular with respect to the extension of a default theory. Most
importantly, it is polynomial in the size of the original default theory.

The paper is organized as follows. We first argue that in inheritance reasoning,
specificity between defaults is conditional thus can not be used unconditionally (Section 2).
In Section 3, we present our approach to reasoning with specificity and define an
argumentation semantics for it. We then study the existence of the proposed semantics.
In Section 4, we introduce the class of stratified default theories and study the general
properties of the newly defined semantics. We show that acyclic inheritance networks
are stratified default theories. In Section 5, we give a polynomial transformation of our
framework into Reiter’s default logic. We relate our approach to other approaches in
Section 6. Finally, we conclude in Section 7.

2. Why should specificity be conditional?

Formally a default theory T could be defined as a pair (E,K) where E is a set of
evidence or facts representing what we call the concrete context of T , and K = (D,B)

constitutes the domain knowledge consisting of a set of default rules D and a first-order
theory B representing the background knowledge. In the literature [2,5,9,19,20,38] the
principle of reasoning with specificity is “enforced” by first determining a set of priority
orders between defaults in D using the information given by the domain knowledge K .
Based on these priorities between defaults and following some sensible and intuitive
criteria, the semantics of T is then defined either model-theoretically by selecting a subset
of the set of all models of E ∪B as the set of preferred models of T or proof-theoretically
by selecting certain extensions as preferred extensions. The problem of these approaches
is that their semantics is rather weak: they do not capture general defeasible inheritance
reasoning. There are many intuitive examples of reasoning with specificity (one of them is
given below) that cannot be handled in these approaches. The reason is that the priorities
between defaults are conditional thus cannot be used unconditionally.

Priority orders are strict partial orders 2 between defaults in D. Let POK be the set of
all such priority orders. For each priority order α ∈ POK , where (d, d ′) ∈ α means that d

is of lower priority than d ′, a priority order <α between the sets of defaults in D is defined
where S <α S′ means that S is preferred to S′. There are many ways to define <α [2,5,
9,19,20,22,38,40]. But whatever the definition of <α is, <α has to satisfy the following
property.

Let d, d ′ be two defaults in D such that (d, d ′) ∈ α. Then {d ′}<α {d}.
<α can be extended into a partial order between models of B ∪E as follows:

M <α M ′ iff DM <α DM ′

2 Strict partial orders are transitive, irreflexive and antisymmetric relations.

40 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

Fig. 1. Student-adult-married network.

where DM is the set of all defaults in D which are true in M whereas a default p→ q is
said to be true in M iff the material implication p⇒ q is true in M .

A model M of B ∪E is defined as a preferred model of T if there exists a partial order
α in POK such that M is minimal with respect to <α . We then say that a formula β is
defeasibly derived from T if β holds in each preferred model of T .

Now we want to show that any preferential semantics based on <α cannot account in
full for general inheritance reasoning.

Example 2.1. Let us consider the following inheritance network 3 (Fig. 1), where the links
s �→ m, a → m, and s → y represent the normative sentences “normally, students are
not married”, “normally, adults are married”, and “normally, students are young adults”,
respectively, and, the strict link y ⇒ a represents the subclass relation “young adults are
adults”.

This defeasible inheritance network represents the domain knowledge (B,D) with
B = {y ⇒ a}, and D = {d1 :a→m, d2 : s→¬m, d3 : s→ y}.

Consider now the marital status of a young adult who is also a student. The problem
is represented by the default theory T = (E,B,D) with E = {s, y, a}. The desirable
semantics here is represented by the model M = {s, y, a,¬m}. To deliver this semantics, all
priority-based approaches in the literature [2,5,9,19,38] assigns default 1 a lower priority
than default 2.

Let us consider now the marital status of another student who is an adult but not a
young one. Let T ′ = (E′,B,D) with E′ = {s,¬y, a}. Now, since y does not hold, default
2 cannot be considered more specific than default 1. Hence, it is intuitive to expect that
neither m nor ¬m should be concluded in this case. This is also the result sanctioned by
all semantics of defeasible inheritance networks [23,26,44,47–49]. In any priority-based
system employing the same priorities between defaults with respect to E′ as with respect
to E, we have M = {¬m,s,¬y, a}<α M ′ = {m,s,¬y, a} since DM = {2}<α D′

M = {1}
(due to (1,2) ∈ α). That means priority-based approaches in the literature conclude ¬m

given (E′,K) which is not the intuitive result we expect.

3 Throughout the paper, solid lines and dash lines represent strict rules and default rules, respectively.

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 41

To produce a correct semantics, 1 should have lower priority than 2 only when default
3 can be applied and hence making default 2 more specific than default 1. In general, the
example shows that specificity-induced priorities between defaults is conditional.

3. A general framework

We assume a propositional language L. For convenience, we use variables in our
representation and a formula with variables is viewed as shorthand of the set of its ground
instantiations. The set of ground literals of L is denoted by lit(L). Literals of L will be
called hereafter simply literals (or L-literals) for short. Following the literature, a default
theory is defined as follows:

Definition 3.1. A default theory T is a triple (E,B,D) where
(i) E is a set of ground literals representing the evidence of the theory,

(ii) B is a set of ground clauses,
(iii) D is a set of defaults of the form l1 ∧ · · · ∧ ln → l0 where li ’s are ground literals,

and
(iv) E ∪B is a consistent theory.

Notice that in the above definition, we use → to denote a default implication. The
material implication is represented by the ⇒ symbol. Intuitively, a → b means that
“typically, if a holds then b holds” while a ⇒ b means that “whenever a holds then b

holds”. For a default d ≡ l1 ∧ · · · ∧ ln → l0, we denote l1 ∧ · · · ∧ ln and l0 by bd(d) and
hd(d), respectively.

Example 3.1. Consider the famous penguin and bird example with B = {p ⇒ b}
(penguins are birds) and D consisting of two defaults p →¬f (normally, penguins do
not fly) and b→ f (normally, birds fly).

The question is whether penguins fly. This problem is represented by the default theory
T = (E,B,D) where E = {p}.

Fig. 2. Penguin-bird-fly network.

42 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

We next define the notion of defeasible derivation that will be used to draw conclusions
given a default theory. Intuitively, a defeasible derivation represents a possible proof for a
conclusion.

Definition 3.2. Let T = (E,B,D) be a default theory and l be a ground literal.
• A sequence of defaults d1, . . . , dn (n � 0) is said to be a defeasible derivation of l if

following conditions are satisfied:
(1) n= 0 and E ∪ B � l where the relation � represents the first-order consequence

relation, or
(2) n > 0 and

(a) E ∪B ∪ {hd(d1), . . . ,hd(di)} � bd(di+1) for i ∈ {1, . . . , n− 1}, and
(b) E ∪B ∪ {hd(d1), . . . ,hd(dn)} � l.

• We say l is a possible consequence of E with respect to B and a set of defaults K ⊆D,
denoted by E ∪B �K l, if there exists a defeasible derivation d1, . . . , dn of l such that
for all 1 � i � n, di ∈K .

For a set of literals L we write E ∪ B �K L iff ∀l ∈ L: E ∪ B �K l. We write
E ∪ B �K ⊥ 4 iff there is an atom a such that both E ∪ B �K a and E ∪ B �K ¬a hold.
For the default theory T from Example 2.1, it is easy to check that E∪B �{s→¬m} ¬m and
E ∪ B �{s→y, a→m} m. Hence E ∪ B �D ⊥. We say that a set of defaults K is consistent
in T if E ∪B ��K ⊥. K is inconsistent if it is not consistent. 5

3.1. The “more specific” relation

We now define the notion of “more specific” between defaults which generalizes the
specificity principle of Touretzky in inheritance reasoning. Consider for example the
network from Example 2.1, it is clear that being a student is more specific than being
a young adult. Since being a young adult is always more specific than being an adult,
it follows that being a student is more specific than being an adult if the respective
individual is a young adult. This stipulates us to say that the default s →¬m (students
are normally not married) is more specific than the default a → m (adults are normally
married) provided that the default s → y (students are normally young adults) can be
applied. Similarly, in Example 3.1, since penguins are birds we can conclude that the
default p → ¬f (penguins do not fly) is always more specific than b → f (birds fly).
This discussion leads to the following definition.

Definition 3.3. Let d1, d2 be two defaults in D. We say that d1 is more specific than d2
with respect to a set of defaults K ⊆D, denoted by d1 ≺K d2, if

(i) B ∪ {hd(d1),hd(d2)} is inconsistent,
(ii) bd(d1)∪B �K bd(d2), and

(iii) bd(d1)∪B ��K ⊥.

4 Throughout the paper, we use � and ⊥ to denote True and False, respectively.
5 If there is no possibility for misunderstanding, we often simply say consistent instead of consistent in T .

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 43

In the above definition (i) guarantees that a priority is defined between two defaults
only if they are in conflict, (ii) ensures that being bd(d1) is a special case of being bd(d2)

provided that the defaults in K can be applied, and (iii) guarantees that K is a consistent set
of defaults. We could say that this is a generalization of Touretzky’s specificity principle to
general propositional default theories. In [15], the more specific relation is defined based
on the notion of minimal conflict set, which in turn is defined based on the notion of
defeasible derivation. As it can be seen, the above definition is much simpler than that
was proposed in [15]. Besides, it allows us to deal with default theories with nonempty
background knowledge. In a later section, we will discuss this in more details. When K = ∅
we say that d1 is strictly more specific than d2 and write d1 < d2 instead of d1 ≺∅ d2.

Example 3.2. In Example 2.1, d2 ≺{d3} d1 holds, i.e., d2 is more specific than d1 if d3 is
applicable.

In Example 3.1, it is obvious that d2 < d1, i.e., d2 is strictly more specific than d1.

Notice that for the default theory in Example 2.1, even though bd(d3) ∪ B � bd(d1),
the relation d3 < d1 does not hold because d3 and d1 are not in conflict, i.e., B ∪
{hd(d3),hd(d1)} �� ⊥. That is, instead of saying that a default is more specific than another
default if its body is more specific than that of the other’s one, we employ a stronger notion
of more specific here. Thus, our approach to specificity could be referred to as specificity-
with-conflict. 6 This allows us to combine both specificity and inconsistency into a simple,
but central to argumentation reasoning, notion of ‘attack’ (defined below) which will be
used for conflict resolution. Further, the stable semantics defined for default theories in
this paper is a kind of credulous semantics that admits maximal set of conclusions when no
conflict arises. Therefore, a more specific relation among non-conflicting pairs of defaults
would be spurious.

3.2. Stable semantics of default reasoning with specificity

The semantics of a default theory is defined by determining which defaults can be
applied to draw new conclusions from the evidence. For example, the semantics of the
network in Example 2.1 is defined by determining that the defaults which could be applied
are 2 and 3.

In the following, we will see that an argumentation-theoretic notion of attack between
a set of defaults K and a default d lies at the heart of the semantics of reasoning with
specificity.

Suppose that K ⊆ D is a set of defaults we can apply. Further let d be a default such
that E ∪ B �K ¬hd(d). It is obvious that d should not be applied together with K . In this
case, we say that K attacks d by conflict. For illustration of attack by conflict, consider the
default theory T in Example 2.1. Let K = {d3, d2}. Since E ∪B �K ¬m, K attacks d1 by
conflict. Similarly, K ′ = {d3, d1} attacks d2 by conflict because E ∪B �K ′ m.

The other case where d should not be applied together with K is where it is less specific
than some default with respect to K . Formally, this means that if there exists d ′ ∈ D

6 Suggested by a reviewer.

44 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

Fig. 3. Nixon-diamond.

such that d ′ ≺K d and E ∪ B �K bd(d ′) then d should not be applied together with the
defaults in K . In this case we say that K attacks d by specificity. For illustration of attack
by specificity, consider again the default theory T in Example 2.1. Let K = {d3}. Because
d2 ≺{d3} d1 and E ∪B �{d3} bd(d2), K attacks d1 by specificity.

The following definition summarizes what we have just discussed:

Definition 3.4. Let T = (E,B,D) be a default theory. A set of defaults K is said to attack
a default d in T 7 if:

(1) (Attack by conflict) E ∪B �K ¬hd(d), or
(2) (Attack by specificity) There exists d ′ ∈D such that d ′ ≺K d and E ∪B �K bd(d ′).

Note that there is an important difference between attack by conflict and inconsistency.
It is possible that though K is consistent and K ∪ {d} is inconsistent but K does not attack
d by conflict. It is also possible that K attacks some default d by conflict though K ∪ {d}
is consistent. The Nixon diamond example (Fig. 3) illustrates these points.

Let E = {a}, B = ∅, and

D = {d1 : c→ d, d2 :b→¬d, d3 :a→ c, d4 :a→ b}.
Though K = {d1, d2, d4} is consistent and K ∪ {d3} is inconsistent, K does not attack
d3 by conflict. Further, though K ′ = {d2, d4} attacks d1 by conflict, K = K ′ ∪ {d1} is
consistent.

7 If there is no possibility for misunderstanding then T is often omitted.

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 45

K is said to attack some set H ⊆D if K attacks some default in H . K is said to attack
itself if K attacks K . The stable semantics of argumentation is often defined as a set of
arguments that does not attack itself and that attacks every argument not belonging to it. In
the next definition, we employ this type of semantics in defining the semantics of a default
theory with specificity.

Definition 3.5. Let T = (E,B,D) be a default theory. A set of defaults S is called an
extension of T if S does not attack itself and attacks every default not belonging to it.

Definition 3.6. Let T = (E,B,D) be a default theory. Let l be a ground literal. We say T

entails l, denoted by T |∼ l, if for every extension S of T , E ∪B �S l.

Because the defeasible consequence relation �K subsumes the first-order consequence
relation (Definition 3.2), it is obvious that an inconsistent set of defaults attacks every
default. Therefore it is clear that an extension is always consistent. We illustrate Definition
3.5 in the next examples.

Example 3.3. Consider the theory in Example 3.1. We have that d2 < d1, i.e., d2 is
strictly more specific than d1. Let K = {d1} and H = {d2}. Because {p} ∪ B �H ¬f and
{p} ∪ B �K f , we have that K and H attack d2 and d1 by conflict, respectively. Hence
both K and H attack every default not belonging to it. But while H does not attack itself,
K attacks itself by specificity because d1 ∈K , d2 < d1, and {p} ∪B �K bd(d2). Hence H

is the unique extension of T . Therefore T |∼ ¬f .

Example 3.4.
(1) Consider the theory T in Example 2.1. Let H = {d3, d2}. Because {s, y, a} ∪

B �H ¬m, H attacks d1 by conflict. Furthermore, since {s, y, a} ∪ B ��H m and
{s, y, a}∪B ��H ¬y , H does not attack itself by conflict. Because there is no default
which is more specific than d2 or d3 with respect to H , H does not attack itself by
specificity. Hence H does not attack itself and attacks every default not belonging
to it. Therefore H is an extension of T .
Let K = {d1, d3}. Because d2 ≺K d1 and {s, y, a} ∪ B �K bd(d2), K attacks d1 by
specificity. Hence K is not an extension of T . It should be obvious now that H is the
only extension of T . Hence, T |∼ ¬m.

(2) Consider the theory T ′ in Example 2.1. Let H = {d2} and K = {d1}. Since
{s,¬y, a} �H ¬m and {s,¬y, a} �K m, and {s,¬y, a} �∅ ¬y , H attacks d1, d3 by
conflict while K attacks d2, d3 by conflict. Due to the fact that there are no defaults
d, d ′ such that d ≺H d ′ or d ≺K d ′, both H and K do not attack themselves. Thus,
both H and K are extensions of T ′, and so, T ′ �|∼ ¬m and T ′ �|∼m.

Definition 3.5 of an extension of a default theory corresponds to the stable semantics
of argumentation which has been first introduced in [13] and later further studied in [3].
There are also a number of other semantics for argumentation which could be applied
to reasoning with specificity. But in this paper we will limit ourselves to the stable
semantics.

46 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

3.3. Existence of extensions

A well-known problem of stable semantics in nonmonotonic reasoning is that it is not
always defined for every nonmonotonic logic. For example, stable model semantics is not
always defined for logic programs, i.e., there exist logic programs which do not possess a
stable model. The same holds for autoepistemic logic, i.e., not every autoepistemic theory
has a stable expansion. Similarly, there exists argumentation framework without stable
extensions. As our semantics is a form of stable semantics of argumentation, it is expected
that the same problem will be encountered in our framework. The following example
originated from [9] confirms our expectation.

Example 3.5 [9]. Consider T = (E,∅,D) with E = {a, b, c} and
D consists of the following defaults

d1 :a ∧ q →¬p,

d2 :a→ p,

d3 :b ∧ r →¬q,

d4 :b→ q,

d5 : c∧ p→¬r,

d6 : c→ r.

Here we have that d1 < d2, d3 < d4, and d5 < d6.
It is easy to see that for each K ⊆D, there is no d ∈D such that d ≺K d1 or d ≺K d3 or

d ≺K d5.
We will prove that T does not have an extension.
Assume the contrary that T has an extension S. We want to prove that d1 �∈ S. Assume

the contrary that d1 ∈ S. Since E �{d2} p and S does not attack itself, we conclude that
d2 /∈ S. This implies that S attacks d2. There are two cases:

(1) S attacks d2 by conflict. This means that E �S ¬p, which implies that E �S q .
(2) S attacks d2 by specificity. Since the only default in D, that is more specific than d2,

is d1, S attacks d2 by specificity implies that E �S bd(d1). Thus E �S q .
It follows from the above two cases that E �S q . Therefore S contains d4. Now, consider
the two defaults d5 and d6. Since d2 /∈ S, E ��S bd(d5). Therefore S does not attack d6 by
specificity. Further E ��S bd(d5) implies that E ��S ¬r . So, S does not attack d6 by conflict
either. Again, because S is an extension, we have that d6 ∈ S. However, E �{d6} bd(d3),
which implies that S attacks d4 by specificity, i.e., S attacks itself. This contradicts the
assumption that S is an extension of T . Thus the assumption that d1 ∈ S leads to a
contradiction. Therefore d1 /∈ S.

Similarly, we can prove that d3 /∈ S and d5 /∈ S. Since S is an extension of T , S

attacks d1. This implies that S must attack d1 by conflict because there is no default in
D which is more specific than d1. Thus d2 ∈ S. Similar arguments lead to d4 ∈ S and
d6 ∈ S, i.e., S = {d2, d4, d6}. However, S attacks d2 by specificity because d1 < d2 and
E ∪ B �S bd(d1). This means that S attacks itself which contradicts the assumption that
S is an extension of T . Thus the assumption that there exists an extension leads to a
contradiction. Therefore, we can conclude that there exists no extension of T .

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 47

In the next section we will introduce the class of stratified default theories for which
extensions always exist. We will also show that this class of theories is large enough to
cover general inheritance reasoning.

4. Stratified default theories

The definition of stratified default theories is based on the notion of a rank function
which is a mapping from the set of ground literals lit(L)∪{�,⊥} to the set of nonnegative
integers.

Definition 4.1. A default theory T = (E,B,D) over L is stratified if there exists a rank
function of T , denoted by rank, satisfying the following conditions:

(1) rank(�)= rank(⊥)= 0,
(2) for each ground atom l, rank(l)= rank(¬l),
(3) for all literals l and l′ occurring in a clause in B , rank(l)= rank(l′), and
(4) for each default l1, . . . , lm → l in D, rank(li) < rank(l), i ∈ {1, . . . ,m}.

It is not difficult to see that all the default theories in Examples 2.1 and 3.1 are stratified.
The following theorem shows that stratification guarantees the existence of extensions.

Theorem 4.1. Every stratified default theory has at least one extension.

Proof. In Appendix A.1. ✷
4.1. General properties of |∼

There is a large body of work in the literature [4,20,28,31] on what properties
characterize a defeasible consequence relation like |∼. In general, it is agreed that such
relation should extend the monotonic logical consequence relation. Further, since the
intuition of a default rule d is that bd(d) normally implies hd(d), we expect that in
the context E = {bd(d)}, T |∼ hd(d) holds. Another important property of defeasible
consequence relations is related to the adding of proved conclusions to a theory. Intuitively,
this means that if T |∼ a then we expect T and T + a 8 to have the same set of conclusions.
Formally, the discussed key properties are given below:
• Deduction: T |∼ l if E ∪B � l,
• Conditioning: If E = {bd(d)} for d ∈D, then T |∼ hd(d),
• Reduction: If T |∼ a and T + a |∼ b then T |∼ b, and
• Cumulativity: 9 If T |∼ a and T |∼ b then T + a |∼ b,

where T + a denotes the default theory (E ∪ {a},B,D).

8 T + a denotes the default theory (E ∪ {a},B,D).
9 In [20], this property is called augmentation.

48 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

It is obvious that whatever entailed by E ∪B is also entailed by T . Hence, we have the
following theorem.

Theorem 4.2 (Deduction). Let T = (E,B,D) be an arbitrary default theory. Then, for
every l ∈ lit(L), E ∪B � l implies T |∼ l.

It is also easy to see that if T |∼ a then every extension of T is also an extension of
T + a. Therefore from T + a |∼ b, it is obvious that T |∼ b. That means that |∼ satisfies the
reduction property.

Theorem 4.3 (Reduction). Let T = (E,B,D) be an arbitrary default theory and a, b ∈
lit(L) such that T |∼ a and T + a |∼ b. Then, T |∼ b.

Though the entailment relation |∼ satisfies deduction and reduction, it does not satisfy
cumulativity in general as the following example shows.

Example 4.1. Consider the default theory T = (E,B,D) (Fig. 4) where

E = {f }, B = ∅, D = {d1 :f → a, d2 :a→ c, d3 : c→¬a}.
Because the only member of the more specific relation is d1 ≺{d1,d2} d3, T has a unique

extension {d1, d2}. Hence, T |∼ a and T |∼ c.
Now consider T + c. T + c has two extensions: {d1, d2} and {d2, d3}. Thus, T + c �|∼ a.

This implies that |∼ is not cumulative.

The next theorem proves that stratification is sufficient to guarantee cumulativity.

Theorem 4.4 (Cumulativity). Let T = (E,B,D) be a stratified default theory and a, b be
literals such that T |∼ a, and T |∼ b. Then T + a |∼ b.

Proof. In Appendix A.2. ✷

Fig. 4. A noncumulative default theory.

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 49

Because stratification does not rule out the coexistence of defaults like a→¬c, a→ c,
conditioning does not hold for stratified theories as the following example shows.

Example 4.2. Let T = ({a},∅, {d1 :a→¬c, d2 :a→ c}). It is obvious that T is stratified.
Because d1 < d2 and d2 < d1, both d1, d2 are attacked by specificity by the empty set of
defaults. Thus the only extension of T is the empty set. Hence, T �|∼ ¬c, and T �|∼ c. That
means that conditioning is not satisfied.

The coexistence of defaults like a → ¬c, a → c means that a is normally c and
normally ¬c at the same time which is obviously not sensible. Hence it should not be
a surprise that conditioning is not satisfied in such cases.

The conditioning property would hold for a default d if in the context of bd(d), d is
the most specific default. The following definition formalizes this intuition. Let d ≺ d ′ if
d ≺K d ′ for some K . Let ≺∗ be the transitive closure of ≺.

Definition 4.2. A default theory T = (E,B,D) is said to be well-defined if for every
default d :

(1) d �≺∗ d , and
(2) for every set K ⊆D such that bd(d)∪B �K∪{d} ⊥ and bd(d)∪B ��K ⊥, there exist

d ′ ∈K such that d ≺K d ′.

Theorem 4.5 (Conditioning). Let T = (E,B,D) be a well-defined default theory, d be a
default in D, and E = bd(d). Then T |∼ hd(d).

Proof. In Appendix B. ✷
It is interesting to note that well-definedness and stratification are two independent

concepts. Default theories like the one in Example 4.1 are well-defined but not stratified
while default theories like that in Example 4.2 are stratified but not well-defined. Further
while the Example 4.2 shows that stratification does not imply conditioning, Example 4.1
shows that well-definedness does not imply cumulativity.

We will show shortly that acyclic and consistent inheritance networks are stratified and
well-defined default theories.

4.2. Inheritance networks as stratified and well-defined default theories

In this subsection, we show that each inheritance network Γ can be viewed as a
default theory TΓ and the semantics of the latter (as defined by Definition 3.5) captures
the credulous semantics of the former. Many different kinds of semantics of inheritance
networks have been proposed in the literature [23,26,44,49,51]. Among them, the off-
path credulous semantics is probably the most well-known and accepted semantics. In this
subsection, we will prove that the off-path credulous semantics of an inheritance network Γ

coincides with the stable semantics of TΓ . We will not discuss the other types of semantics
of inheritance networks here but we believe that they too could also be formalized within
our framework. Technically, each semantics of inheritance networks relies on its own

50 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

definition of the more specific relation between paths. As such, we only need to change the
definition of the more specific relation accordingly, and the rest would follow. However,
developing a framework that captures all well-known semantics of inheritance networks is
in itself an interesting problem and deserves a separate study. For that reason, we leave it
out as a future work and continue with a brief review of basic definitions of inheritance
networks (see e.g. [23]).

An inheritance network Γ is a directed graph with two types of nodes and four types
of links: individual nodes, predicate nodes and strict positive, strict negative, defeasible
positive, and defeasible negative links. A node x is an individual node if there is no link
which ends at x . Otherwise, it is a predicate node. A strict positive (respectively negative)
link from x to y is denoted by x⇒ y or y ⇐ x (respectively x �⇒ y or y �⇐ x). A defeasible
positive (respectively negative) link from x to y is denoted by x → y (respectively x �→ y).

Using the above representation, the inheritance network in Example 2.1 can be
represented by the set of links {s �→m, s → y, y ⇒ a, a→m}.

Notice the difference between strict link representation and defeasible link representa-
tion here. The reason lies in the fact that paths can be extended (to a longer path) from both
ends of a strict link but only from the ending node of a defeasible link (see Definition 4.3).
For instance, both a → b⇐ c and a → d ⇒ c are considered as a path from a to c but
a→ b← c is not.

Semantically, individual nodes and predicate nodes in Γ represent the constants and
the unary predicates in TΓ , respectively. Strict links denote material implication while
defeasible links represent defaults. Hence an inheritance network Γ can be translated into
a default theory TΓ as follows:

Let IΓ and PredΓ be the set of individual and predicates nodes in Γ , respectively. The
language LΓ of TΓ consists of

(1) the set of constants IΓ and
(2) the set of unary predicate symbols PredΓ .

From the definition of LΓ , it is easy to see that each literal in LΓ has the form p(a) or
¬p(a) where a is an individual node and p is a predicate node. TΓ = (EΓ ,BΓ ,DΓ) is
defined by 10

(1) Facts: for every individual node a and a link a → p or a ⇒ p (respectively a �→ p

or a �⇒ p) in Γ , EΓ contains p(a) (respectively ¬p(a)),
(2) Clauses: for every strict link p⇒ q (respectively p �⇒ q) in Γ , p /∈ IΓ , BΓ contains

the clause p(X)⇒ q(X) (respectively p(X)⇒¬q(X)), and
(3) Defaults: for every defeasible link p→ q (respectively p �→ q) in Γ , p /∈ IΓ , DΓ

contains the default p(X)→ q(X) (respectively p(X)→¬q(X)).
It is easy to verify that the default theories in Examples 2.1 and 3.1 are obtained from

the transformation of the corresponding inheritance networks with one (implicit) individual
node linked to s in Example 2.1 and to p in Example 3.1.

Reasoning in inheritance network are represented by paths which are formally defined
as special sequences of links and are classified into direct, compound, strict, defeasible,
negative, or positive paths. A positive (respectively negative) path from x to y through

10 Note that clauses or defaults with variables are considered a shorthand for the set of their ground
instantiations.

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 51

a path σ is often denoted by π(x,σ, y) (respectively π̄(x, σ, y)). Paths are defined
inductively as follows.

Definition 4.3 (Paths [23]).
(1) Direct path: A strict positive (respectively negative) link is a strict positive

(respectively negative) path. Similarly, a defeasible positive (respectively negative)
link is a defeasible positive (respectively negative) path.

(2) Compound path:
(a) if π(x,σ,p) is a strict positive path, then π(x,σ,p)⇒ q is a strict positive path,

π(x,σ,p) �⇒ q is a strict negative path, π(x,σ,p) �⇐ q is a strict negative path,
π(x,σ,p)→ q is a defeasible positive path, and π(x,σ,p) �→ q is a defeasible
negative path;

(b) if π̄(x, σ,p) is a strict negative path, then π̄(x, σ,p)⇐ q is a strict negative
path;

(c) if π(x,σ,p) is a defeasible positive path, then π(x,σ,p)⇒ q is a defeasible
positive path, π(x,σ,p) �⇒ q is a defeasible negative path, π(x,σ,p) �⇐ q is
a defeasible negative path, π(x,σ,p) → q is a defeasible positive path, and
π(x,σ,p) �→ q is a defeasible negative path;

(d) if π̄(x, σ,p) is a defeasible negative path, then π̄(x, σ,p)⇐ q is a defeasible
negative path.

Paths represent proofs using defaults, modus ponens and contrapositive reasoning.
A strict positive (respectively negative) path represents a derivation of an indefeasi-
ble conclusion. For example, a strict positive (respectively negative) path from an in-
dividual node x to a predicate node y is a proof for the conclusion “x has the prop-
erty y” (respectively “x does not have the property y”). On the other hand, a defeasi-
ble positive (respectively negative) path represents a derivation of a defeasible conclu-
sion.

Reasoning in inheritance networks is done by selecting a set of paths as a set of
acceptable arguments. In the literature, the considered networks are often assumed to be
acyclic and consistent [23,26,44,47–49,51]. We recall these two notions below.

The definition of acyclicity is based on the notion of generalized paths where a
generalized path is either a link or a compound generalized path of one of the following
the forms: τ → x, τ �→ x, τ ⇒ x, τ �⇒ x, τ �⇐ x, τ ⇐ x where τ is a generalized path.
A network Γ is acyclic if Γ contains neither a defeasible generalized path nor a strict
positive path whose starting and end points coincide. By definition, the networks in all
examples until now with the exception of Example 4.1, are acyclic.

Before introducing the definition of consistent networks, we need a couple of new
notation. For any arbitrary node x of Γ , let

P(x)= {x} ∪ {y | there exists a strict positive path from x to y},
and

N(x)= {y | there exists a strict negative path from x to y}.
An acyclic network Γ is inconsistent if there is a node x such that

52 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

Fig. 5. π(x,σ,u)→ y is preempted.

(1) P(x)∩N(x) �= ∅; or
(2) there are links x → u and x → v in Γ such that v ∈N(u); or
(3) there are links x → u and x �→ v in Γ such that v ∈ P(u).

An acyclic network is consistent if it is not inconsistent.
It can be proven that if Γ is consistent and acyclic then TΓ is well-defined and stratified.

Theorem 4.6. For every consistent and acyclic network Γ , the default theory correspond-
ing to Γ , TΓ , is well-defined and stratified.

Proof. In Appendix C. ✷
Each path σ can be divided into two subpaths Str(σ) and Def (σ) where Str(σ) is the

maximal strict end segment of σ and Def (σ) is the defeasible initial segment of σ which
is obtained by truncating Str(σ) from σ . For instance, for σ = x ⇒ y → z �→ v⇐ t ⇐ u

we have Str(σ)= v⇐ t ⇐ u and Def (σ)= x ⇒ y→ z �→ v.
The semantics of an inheritance network Γ is based on the following notions.
Given a set of paths Φ , a path π(x,σ,u) → y (respectively π(x,σ,u) �→ y) is

constructible in Φ iff π(x,σ,u) ∈Φ and u→ y ∈ Γ (respectively u �→ y ∈ Γ).
A positive path π(x,σ,u) is conflicted in Φ iff (i) Φ contains a path of the form

π̄(x, τ,m) and m ∈ P(u); or (ii) Φ contains a path of the form π(x, τ,m) and m ∈N(u).
A negative path π̄(x, σ,u) is conflicted in Φ iff Φ contains a path of the form π(x, τ,m)

and u ∈ P(m).
A defeasible positive path γ = π(x,σ,u)→ y is preempted in Φ (Fig. 5) iff there exist

nodes v and m such that
(i) either v = x or there is a positive path of the form π(x,α, v, τ, u) ∈Φ , and

(ii) either (a) v �→m ∈ Γ , and m ∈ P(y) or (b) v→m ∈ Γ and m ∈N(y).
Similarly, a defeasible negative path γ = π(x,σ,u) � y is preempted in Φ (Fig. 6) iff

there is a node v and a node m such that
(i) either v = x or there is a positive path of the form π(x,α, v, τ, u) ∈Φ , and

(ii) v→m ∈ Γ and y ∈ P(m).

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 53

Fig. 6. π(x,σ,u) �→ y is preempted.

Definition 4.4 [23]. σ is defeasibly inheritable in Φ , written as Φ |∼ σ , if one of the
following condition holds:

(1) σ �=Def (σ) and σ �= Str(σ). Then, Φ |∼ σ iff Φ |∼Def (σ) and Φ |∼ Str(σ).
(2) σ = Str(σ). Then, Φ |∼ σ iff σ is a path constructed from links in Γ .
(3) σ =Def (σ). Then, Φ |∼ σ iff either σ is a direct link or

(a) σ is constructible in Φ , and
(b) σ is not conflicted in Φ , and
(c) σ is not preempted in Φ .

In the following definition, we recall the off-path credulous semantics.

Definition 4.5. Let Γ be an inheritance network.
(1) A set Φ of paths is a credulous extension of Γ if Φ = {σ | Φ |∼ σ }.
(2) Let a be an individual node, and p be a predicate node. We define Γ |∼c p(a)

(respectively Γ |∼c ¬p(a)) if each credulous extension of Γ contains a positive
path of the form π(a,σ,p) (respectively a negative path of the form π̄(a, σ,p)).

The following theorem shows that for inheritance networks, the path-based semantics
and our argumentation-theoretic semantics coincide.

Theorem 4.7. Let Γ be an acyclic and consistent inheritance network, a be an individual
node, and p be a predicate node. Then

(1) Γ |∼c p(a) iff TΓ |∼ p(a), and
(2) Γ |∼c ¬p(a) iff TΓ |∼ ¬p(a).

Proof. In Appendix C. ✷

5. Computing |∼ by translating into Reiter’s default logic

In this section, we show how the newly defined entailment relation can be computed.
Instead of developing new algorithms for that purpose, we will take advantage of many

54 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

well-known algorithms of Reiter’s default logic such as computing an extension or all
extensions of a Reiter’s default theory, etc. We achieve that by translating each default
theory T into an equivalent Reiter’s default theory RT . In other words, the translation
preserves the semantics of default theories. Moreover, the translation is modular and
polynomial, i.e., RT can be modularly constructed and has a size polynomial in the size of
T . Before presenting the translation let us recall some basic notion of Reiter’s default logic
[30,37,42].

A R-default is a rule of the form

α : β1, . . . , βn

γ

where α, βi (i = 1, . . . , n), and γ are first-order formulas which are referred as the
prerequisite, the justification, and the consequent of the rule, respectively.

A R-default theory is a pair (W,D) where W is a first-order theory and D is a set of
R-defaults. The semantics of R-default theories is defined by the notion of an extension,
defined as follows.

Definition 5.1. Let (W,D) be a R-default theory, S be a set of formulas. Γ (S) is the
smallest set of formulas such that

(1) W ⊆ Γ (S);
(2) Γ (S) is deductively closed; and
(3) if α:β1,...,βn

γ
∈D, α ∈ Γ (S), and ¬βi /∈ S, i = 1, . . . , n, then γ ∈ Γ (S).

S is called an extension of (W,D) if Γ (S)= S. 11

Note that while an extension of a default theory in our framework is defined as a set of
defaults, an extension of a R-default theory is a set of formulas.

We will now discuss the main characteristics of the translation. Assume that RT =
(WT ,DT) is obtained from T = (E,B,D) after the translation. Since the reasoning in T

relies on the evidence set E, the set of rules B , the set of defaults D, and the more specific
relation≺ to draw conclusions, a translation from T to RT , that preserves the semantics of
T , must address the following representational and computational issues:
• What is the role of E and B in RT ?
• How to represent a default of the form bd(d)→ hd(d) in RT ?, and
• How to translate the more specific relation ≺ into elements of RT ?

Obviously, the first issue is easy to resolve. Since E ∪ B represents the first-order part of
T , it is natural to make it a part of WT , the first-order part of RT . That is, E ∪ B ⊆WT

should hold.
A default d = bd(d)→ hd(d) represents the normative statement “normally, if bd(d)

holds then hd(d) holds”. Such a statement can be represented as a R-default, say rd , with
bd(d) and hd(d) as its prerequisite and consequent, respectively, and a justification that
indicates that rd is applicable if and only if the default d is applicable. This can be easily
achieved by introducing a new propositional symbol 12 abd , whose truth value is identical

11 For more on Reiter’s default logic and the many algorithms for Reiter’s default theories, see [30,42].
12 Recall that T is propositional.

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 55

to the abnormality of d . I.e., if abd holds then the default is abnormal, and hence, rd cannot
be applied. Thus, ¬abd can be used as the justification for rd . So, a default d in T can be
translated into a R-default:

bd(d) : ¬abd

hd(d)
(1)

of RT . Furthermore, since a default is abnormal when the complement of its conclusion
has been drawn, the R-default

¬hd(d) : �
abd

(2)

must be paired with (1). In other words, we represent a default d with two R-defaults (1)
and (2).

An important part of the reasoning in T is the use of the more specific relation, ≺.
Therefore, to preserve the semantics of T , the translation must preserve its more specific
relation. The main obstacle for this task lies in the fact that ≺ is computed independently
from the context E but the applicability of its elements depends on E. More precisely,
for every pair of two defaults d and d ′, the fact that d ≺K d ′ for some set of defaults K

is independent from E but whether d overrides d ′ depends on E and the applicability of
defaults in K . In an early version of this paper [17], we proposed a translation of ≺ which
relies on the fact that the applicability of a default d can be characterized by add . Thus,
d ≺K d ′ in T can be translated into the default

bd(d) :∧c∈K ¬abc

abd ′
(3)

in RT . Intuitively, (3) means that if bd(d) can be concluded and every default in K is
not abnormal (or applicable) then the default d ′ cannot be applied. We proved that this
translation indeed preserves the semantics of T in [17]. However, this translation suffers
from a severe drawback in that it has a high complexity. This is because of the fact that
|≺|, the number of elements in the more specific relation, could be exponential on the size
of T in the worst case. This can be seen in the next example, suggested by a reviewer and
can also be found in [8,45].

Example 5.1. Let T = ({b},∅,D), D consists of

b→ c,

d →¬c,

b→ bi1 for i ∈ {1,2},
bij → bi′(j+1) for i, i ′ ∈ {1,2} and j ∈ {1, . . . , n− 1},
bin → d for i ∈ {1,2}.

It is easy to verify that the cardinality of the set {K | b→ c ≺K d →¬c} is 2n. Thus, while
there are only 4n defaults in T , ≺ has 2n elements.

The above example represents a real challenge to the translation. It also shows that
separating the process of computing the more specific relation from the translation will

56 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

probably not lead to a polynomial translation. To accomplish that goal, a better way to
encode ≺ is needed. To this end we develop a new technique to encode the more specific
relation. Instead of using the abnormal atoms, we use intermediate variables, which play
a role similar to that of the variables recording the connectivity between nodes of an
inheritance network in You et al. [53].

We introduce, for each default d in D, and for each atom a ∈ L such that a does not
occur in the body of d , a new atom ad . Let Ld denote the propositional language {ad | a
does not occur in bd(d)}. Note that for two different defaults d, c in D, Ld ∩Lc = ∅.

For illustration, consider Example 2.1. Then

Ld2 = {yd2, ad2,md2},
Ld1 = {yd1,md1, sd1}, and

Ld3 = {yd3, ad3,md3}.
For each default d in D, define a new default theory Td = (∅,Bd,Dd) as follows:

For each rule r in B , let rd be the rule obtained from r by replacing every occurrence of
an atom a in r , that does not occur in bd(d), with ad . Let Bd = {rd | r ∈B}. Similarly, for
each default c in D, let cd be the default obtained from c by replacing every occurrence of
an atom a in c, that does not occur in bd(d), with ad . Let Dd = {cd | c ∈D}. For default
d1 in Example 2.1, we have that

Bd1 = {yd1 ⇒ a}, Dd1 =
{
(d1)d1 :a→md1, (d2)d1 : sd1 →¬md1, (d3)d1 : sd1 → yd1

}
.

The connection between T and Td is illustrated in the following lemma.

Lemma 5.1. Let K ⊆ D. Then for each default c ∈ D, K attacks c by specificity if and
only if there exists a default d ∈D such that following conditions are satisfied:

(1) E ∪B ∪Bd �K∪Kd bd(d)∧ bd(cd), where Kd = {ed | e ∈K} ⊆Dd , and
(2) B ∪ {hd(d),hd(c)} is inconsistent.

Proof. Follows directly from Lemma D.3 and D.4, Appendix D. ✷
The above lemma suggests that T can be translated into RT as follows:
• Defaults in T and Td are translated according to (1)–(2).
• To guarantee that whenever a default c is dismissed in T then its variant in Td is also

dismissed, the R-default

abc : �
abcd

(4)

can be used.
• For defaults d, c in D such that B ∪ {hd(d),hd(c)} is inconsistent, the following R-

default
bd(d),bd(cd) : �

abc

(5)

can be used to dismiss default c. As we will later prove formally, an extension S of
RT is determined by the set of atoms abc, for c ∈ D ∪⋃

Dd . Further, it also holds

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 57

that for all c, d ∈D: abc ∈ S iff abcd ∈ S. Thus an extension S of RT corresponds to
an extension KS of T in the following sense: d ∈KS iff abd �∈ S. Given an extension
S, a default of the form (5) will be applied iff E ∪ B ∪ Bd �KS∪Kd bd(d) ∧ bd(cd)
where Kd = {ed | e ∈KS} ⊆Dd .

The above translation would yield a R-default theory RT whose size is polynomial in the
size of T . But the time complexity of the translation remains problematic since it requires
to check for the inconsistency of B∪{hd(d),hd(c)} that is an instance of the unsatisfiability
problem in propositional logic that is known to be coNP-complete [18]. This problem could
be avoided by introducing for each atom a in L a new atom a′ not occurring in L or in any
of the language Ld , and introducing for each pair of defaults d, c ∈D, a R-default 13

bd(d),bd(cd), (B ′ ∧ (hd(d))′ ⇒ ¬(hd(c))′) : �
abc

, (6)

where B ′ is obtained from B by replacing every occurrence of the atoms a ∈ L in each rule
r in B by the corresponding atoms a′ ∈L′.

Let

B∗ = B ∪B ′ ∪
⋃
d∈D

Bd and D∗ =D ∪
⋃
d∈D

Dd.

To summarize, T is translated into RT as follows:
We first associate with each default d in D∗ a new atom abd . The R-default theory RT ,

that corresponds to T , is defined by

RT = (E ∪B∗,DT), (7)

where DT consists of defaults of the following forms
• for each default d ∈D∗,

bd(d) : ¬abd

hd(d)
and

¬hd(d) : �
abd

belong to DT ,
• for each default d ∈D and default dc ∈Dc,

abd : �
abdc

belongs to DT , and
• for each pair of defaults d and c in D, d �= c,

bd(d),bd(cd), (B ′ ∧ (hd(d))′ ⇒ ¬(hd(c))′) : �
abc

belongs to DT .

13 Notice that hd(d) is a literal. Therefore (hd(d))′ is the literal obtained from hd(d) by replacing the atom, say
a, that occurs in hd(d), with a′. B ′ stands for the conjunction of all clauses in B ′.

58 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

We denote the set of defaults in the above items by regular(T), equi(T), and specific(T),
respectively. The next examples illustrate the translation from T to RT .

Example 5.2. Consider the theory T in Example 3.1. For simplicity of presentation,
we will write i instead of di in the definition of RT . Further, dij stands for (di)dj . For
convenience, we will also omit the justification � in listing the defaults of RT .

L1 = {p1, f1}, B1 = {p1 ⇒ b}, D1 = {d11 :b→ f1, d21 :p1 →¬f1},
L2 = {b2, f2}, B2 = {p⇒ b2}, D2 = {d12 :b2 → f2, d22 :p→¬f2},

and

L′ = {p′, b′, f ′}, B ′ = {p′ ⇒ b′}.
Thus, RT = ({p,p ⇒ b,p1 ⇒ b,p ⇒ b2,p

′ ⇒ b′},DT) where DT = regular(T) ∪
equi(T)∪ specific(T) and

regular(T) =
{
b : ¬ab1

f
,
¬f :
ab1

,
p : ¬ab2

¬f
,
f :
ab2

}
∪

{
b : ¬ab11

f1
,
¬f1 :
ab11

,
p1 : ¬ab21

¬f1
,
f1 :
ab21

}
∪

{
b2 : ¬ab12

f2
,
¬f2 :
ab12

,
p : ¬ab22

¬f2
,
f2 :
ab22

}
,

equi(T)=
{

ab1 :
ab11

,
ab1 :
ab12

,
ab2 :
ab21

,
ab2 :
ab22

}
,

and

specific(T)=
{
p,b2, (B

′ ∧ f ′ ⇒ f ′) :
ab1

,
b,p1, (B

′ ∧ ¬f ′ ⇒ ¬f ′) :
ab2

}
.

It is easy to see that p1 cannot belong to any extension of RT . On the other hand, b2
must belong to every extension of RT because p and p⇒ b2 belong to WT . Furthermore,
B ′ ∧ f ′ ⇒ f ′ is a valid sentence. Thus, from the first default in specific(D), we conclude
that ab1 belongs to every extension of RT . This implies that RT has only one extension
Th({p,b,¬f,b2,¬f2,ab1,ab11,ab12}∪E∪B∗), where Th(X) denotes the logical closure
of X in the language of RT , which corresponds to the unique extension {d2} of T .

We show how the context E affects the applicability of defaults in RT in the next example.

Example 5.3. Let us consider again the theories T ,T ′ in Example 2.1. We have that,

L1 = {y1,m1, s1}, B1 = {y1 ⇒ a},
D1 = {d11 :a→m1, d21 : s1 →¬m1, d31 : s1 → y1},
L2 = {y2,m2, a2}, B2 = {y2 ⇒ a2},
D2 = {d12 :a2 →m2, d22 : s→¬m2, d32 : s→ y2},
L3 = {y3,m3, a3}, B3 = {y3 ⇒ a3},

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 59

D3 = {d13 :a3 →m3, d23 : s→¬m3, d33 : s→ y3}, and

L′ = {a′, y ′, s′,m′}, B ′ = {y ′ ⇒ a′}.
Thus, RT = (E ∪B∗,DT) and RT ′ = (E′ ∪B∗,DT ′) where B∗ = {y⇒ a, y1 ⇒ a, y2 ⇒
a2, y3 ⇒ a3, y

′ ⇒ a′}, DT =DT ′ = regular(T)∪ equi(T)∪ specific(T) and

regular(T) =
{
a : ¬ab1

m
,
¬m :
ab1

,
s : ¬ab2

¬m
,
m :
ab2

,
s : ¬ab3

y
,
¬y :
ab3

}
∪

{
a : ¬ab11

m1
,
¬m1 :
ab11

,
s1 : ¬ab21

¬m1
,
m1 :
ab21

,
s1 : ¬ab31

y1
,
¬y1 :
ab31

}
∪

{
a2 : ¬ab12

m2
,
¬m2 :
ab12

,
s : ¬ab22

¬m2
,
m2 :
ab22

,
s : ¬ab32

y2
,
¬y2 :
ab32

}
∪

{
a3 : ¬ab13

m3
,
¬m3 :
ab13

,
s : ¬ab23

¬m3
,
m3 :
ab23

,
s : ¬ab33

y3
,
¬y3 :
ab33

}
,

equi(T)=
{

ab1 :
ab11

,
ab1 :
ab12

,
ab1 :
ab13

,
ab2 :
ab21

,
ab2 :
ab22

,
ab2 :
ab23

,
ab3 :
ab31

,
ab3 :
ab32

,
ab3 :
ab33

}
,

and

specific(T)=

a, s1, (B
′ ∧m′ ⇒m′) :
ab2

a, s1, (B
′ ∧m′ ⇒ ¬y ′) :

ab3

s, a2, (B
′ ∧ ¬m′ ⇒ ¬m′) :

ab1

s, (B ′ ∧ ¬m′ ⇒ ¬y ′) :
ab3

s, a3, (B
′ ∧ y ′ ⇒ ¬m′) :

ab1

s, (B ′ ∧ y ′ ⇒m′) :
ab2

.

Consider the two cases:
(1) Case 1: E = {s, y, a}. We can easily check that s1 and ¬y2 cannot belong to any

extension of RT . This implies that every extension of RT contains y2 and a, which
again implies that ab1 belongs to every extension of RT . Hence, RT has only one
extension

Th
({s, y, a,¬m,y2, y3, a2, a3,¬m2,¬m3,ab1,ab11,ab12,ab13, }
∪ (E ∪B∗),

which corresponds to the unique extension {d2, d3} of T .

60 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

(2) Case 2: E′ = {s,¬y, a}. We have that ab3 belongs to every extension of RT ′ because
¬y holds. Thus, every extension of RT will contain {ab31,ab32,ab33}. Thus, none of
the defaults in specific(T) can be applied. This implies that RT ′ has two extensions:

Th
({a,¬y, s,¬m,¬m2,¬m3,ab1,ab11,ab12,ab13,ab3,ab31,ab32,ab33}
∪E′ ∪B∗)

and

Th
({a,¬y, s,m,ab2,ab21,ab22,ab23,ab3,ab31,ab32,ab33} ∪E′ ∪B∗),

which correspond to the two extensions {d2} and {d1} of T ′, respectively.

We now prove the equivalence between T and RT . More precisely, we will prove that
for each ground literal l, T |∼ l iff l is contained in every extension of RT .

Theorem 5.1. Let T be a default theory and l be a ground literal. Then, T |∼ l iff l is
contained in every extension of RT .

Proof. In Appendix D. ✷
It is easy to see that the translation from T to RT is incremental in the following sense:

Theorem 5.2. Let T = (E,B,D) and T ′ = (P,Q,R) such that E ⊆ P, B ⊆ Q and
D ⊆ R. Assume that RT = (WT ,DT) and RT ′ = (WT ′ ,DT ′). Then, WT ⊆ WT ′ and
DT ⊆DT ′ .

Proof. Since B ⊆ P and D ⊆ R, we have that B ′ ⊆ Q′, Bd ⊆ Pd and Dd ⊆ Rd for
every d ∈D. Since WT = E ∪ B ∪ B ′ ∪⋃

d∈D Bd and WT ′ = P ∪Q ∪Q′ ∪⋃
d∈R Qd ,

we have that WT ⊆ WT ′ . Furthermore, it is easy to see that regular(T) ⊆ regular(T ′)
and equi(T) ⊆ equi(T ′). Furthermore, specific(T) ⊆ specific(T ′) because of B ⊆Q and
D ⊆R . This completes the proof of the theorem. ✷

Theorem 5.2 has an important implication on the translation from default theories to
Reiter’s default theories. It shows that adding new facts, rules, or defaults into a default
theory only introduces new propositions or defaults to its corresponding Reiter’s default
theory. Thus, no revision is necessary, i.e., RT ′ can be obtained from RT by adding some
new facts or rules. For example, when we add one default d to T , besides the introduction
of the language Ld , we add to RT the set of propositions Bd , the set of defaults of forms
(1) and (2) representing Dd , the set of defaults of form (4) and (6) for the default d . We
now show that the complexity of the translation from T to RT is polynomial in the size
of T which is characterized by |L|, |B|, and |D|, the size of the language, the number of
rules, and the number of defaults in T , respectively.

Theorem 5.3. For a finite default theory T , the translation from T to RT is polynomial in
the size of T .

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 61

Proof. Assume that RT = (WT ,DT). Obviously, the complexity of the translation from T

to RT depends on the size of RT , which again depends on three numbers: the number of
atoms in the language of RT , the number of propositions in WT , and the number of defaults
in DT . We will show that the size of RT = (WT ,DT) is O((|L| + |B| + |D|)× |D| × |L|)
where |L|, |B|, and |D| represent the size of the language, the number of rules, and the
number of defaults in T , respectively. It is easy to see that the number of atoms of the form
ad is at most |D| × |L|. In addition, there are |D| × (|D| + 1) abnormal atoms and at most
|L| × |B| atoms used in constructing B ′. Thus, the size of the language of RT is at most
|D| × |L| × (2+ |D| + |B|). Since WT = E ∪ B ∪ B ′ ∪⋃

d∈D Bd and |B| = |B ′| = |Bd |
for every d ∈ D, we have that |WT | = |E| + |B ′| + |B| × (|D| + 1) which is less than
2× |L| + |B| × (|D| + 2). Since each default in D∗ generates two defaults in regular(T),
|regular(T)| = 2× |D| × (|D| + 1). For each abnormal atom abd , d ∈D, there exist |D|
defaults in equi(T). Hence, |equi(T)| = |D|2. Furthermore, there are |D|×|D−1| defaults
in specific(T) since there are |D| × |D − 1| pairs of defaults in D. Thus, we have that
|DT |� 4× |D| × (|D| + 1). Therefore, the size of RT is at most |D| × |L| × (2+ |D| +
|B|) + 2 × |L| + |B| × (|D| + 2)+ 4|D| × |D + 1| � 9|D| × |L| × (|L| + |D| + |B|).
This implies that the size of RT is O((|L| + |B| + |D|)× |D| × |L|), i.e., the translation is
polynomial in the size of T . ✷

We conclude the section with a brief discussion on the complexity of computing |∼, i.e.,
the complexity of the entailment problem:
• Given a default theory T and a literal l.
• Determine whether T |∼ l.

Because the entailment problem of (E,B,∅) is coNP-complete, and because it is
polynomially decidable whether a default theory (E,B,D) has an empty set of defaults
D, the entailment problem is coNP-hard.

6. Related work

Approaches to reasoning with specificity differ from each others in two aspects. One
is how specificity information is obtained and the other is how this information can be
used to eliminate unintended models and to resolve conflicts. Specificity information
can be extracted from the theory (or implicit specific knowledge) or obtained from users
(or explicit specific knowledge). It is often the case that only one source of specificity
information is used. However, in all of these approaches, the specificity principle is the
only principle used for conflict resolution and discarding unintended models. We note that
some authors (see, e.g., Vreeswijk [52]) have argued that there are situations in which
the specificity principle might not necessarily be the only principle that can be used.
Even though this maybe true, we will concentrate on comparing our work with others
that advocate the specificity principle. We have discussed the shortcoming of previous
approaches in their treatment of specificity in Section 2. We now compare our approach
with some earlier work on reasoning with specificity in more detail. In particular, we
distinguish the current work with our early work [15] and some of the close related work
such as condition entailment of Geffner and Pearl [20] and the approach of Simari and Loui

62 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

[46]. We choose to do so since both approaches use implicit specificity information and are
argument-based. We then compare our specificity relation in this paper with Z-ordering,
a well-known specificity ordering introduced by Pearl [38]. Finally, we compare our
translation of default theories into Reiter’s default theories with Delgrande and Schaub’s
translation of default theories into Reiter’s default theories.

6.1. Our early work

Our current work is a continuation and improvement of our own work in [15].
Throughout the paper, we have mentioned the differences and similarities between the
two approaches. We now discuss the major differences and similarities between them in
more details.
• The current approach is more general than its predecessor in the sense that default

theories in [15] are special cases of default theories considered in this paper. There, we
consider only acyclic and consistent default theories without rules (or ground clauses).
In this paper, we lift all these restrictions and consider more general default theories,
which can have rules or even cycles in their atom dependency graphs. The technical
framework developed in [15] cannot be applied for the general cases.

• The “more specific” relation in this paper is much simpler than its counterpart in
[15]. It is a faithfully generalization of Touretzky’s specificity principle in inheritance
reasoning to more general default theories—it is defined in a single definition
(Definition 3.3). On the other hand, its counterpart in [15] is given by a series of
five definitions (Definitions 4.6–4.10 of [15]), in which minimal conflict set (MCS),
conflicted defaults, more specific default, most specific default, and specific relevant
MCS are defined. These definitions provide an adequate framework for the class of
default theories considered in our early paper but they cannot be easily extended to
more general default theories. In hindsight, we would say that the definitions in [15]
are unnecessary complicated.
We note that the more specific relation in this paper is not the same as the more specific
relation in [15]: in the Nixon diamond example (Fig. 3), d4 is more specific than d2
(with respect to the MCS {d1, d2, d3, d4}) in [15] while the more specific relation in
this paper will yield an empty set.

• Both approaches are argumentation-based, i.e., both employ the principles or
argumentation in defining the semantics of default theories. In [15], each default
theory is translated into an argumentation framework and the semantics of a default
theory is defined by the preferred semantics of its corresponding argumentation
framework. On the other hand, the current approach does not employ an explicit
notion of arguments. Its attacks relation is defined between a set of defaults and a
default. This semantics is a type of stable semantics of argumentation. As such, in
this paper we face the problem of existence of extensions that does not occur in [15].

• In this paper, we give a polynomial translation from default theories into Reiter’s
default theories. The translation from default theories into logic programs presented
in [15] is exponential in the worst case.

• Having stated the major differences between the two approaches, we now present
some informal results about the connection between the two papers. Readers, who are

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 63

not interested in technical details, might want to skip this paragraph. For the rest of
this subsection, by a default theory we mean a consistent and acyclic default theory,
which satisfies the Definitions 4.1, 4.3, and 4.4 of [15].
Let (E,∅,D) be default theory. Furthermore, let d and d ′ be defaults in D and K be
a minimal set of defaults such that d ≺K d ′, i.e., there exists no K ′ ⊂ K such that
d ≺K ′ d ′. Then, we can prove that

(1) C = {d, d ′} ∪K is a MCS with respect to d ,
(2) d and d ′ are two conflicted defaults of C,
(3) d is the most specific default of C, and
(4) C is a specific relevant MCS with respect to d .

On the other hand, let C be a specific relevant MCS (with respect to d), d be a most
specific default in C, and d ′ be the other conflicted default in C. Then, d ≺K d ′.
It can be shown that the newly defined entailment relation subsumes the old ones
by showing that for every default theory T = (E,∅,D), if S is an extension of T

(with respect to the new approach) then Arg(S) = {A | A ⊆ S, A is an argument
(with respect to the old approach)} is a stable extension of AFT , the corresponding
argumentation framework of T .

6.2. Conditional entailment

In this subsection, we compare our approach with conditional entailment, a prominent
approach to reasoning with specificity introduced by Geffner and Pearl [20]. In their paper,
after discussing the pros (dealing with irrelevant evidence and the general properties of the
entailment relation) and cons of extensional and conditional approaches to reasoning with
specificity, Geffner and Pearl wrote:

. . . “The question arises whether a unifying framework can be developed which
combines the virtues of both the extensional and conditional interpretations.” . . .

Conditional entailment does indeed express the best features of the ε-entailment of the
conditional approaches and the p-entailment of the extensional approaches: it can deal with
irrelevant evidence and it satisfies many desirable properties of nonmonotonic consequence
relations such as deduction, reduction, conditioning, cumulativity, and disjunction.

In conditional entailment, each default schema p(x)→ q(x) is encoded by a sentence
p(x) ∧ δi(x) ⇒ q(x) and a default schema p(x) → δi(x) where δi denotes a new and
unique assumption predicate which summarizes the normality conditions required for
concluding q(x) from p(x). Hence default theories in their formalization are called
assumption-based default theories.

An irreflexive and transitive priority order ≺ over the set of assumptions of a default
theory is admissible if for every default δ and a set of assumptions ∆ that is logically
inconsistent with δ in the context {p}, i.e., {p} ∪B ∪∆ � ¬δ, there exists one assumption
δ′ ∈∆ such that δ′ ≺ δ, i.e., δ′ has lower priority than δ. Preferred models are then defined
with respect to admissible priority orders similar to what has been described in Section 1.
Finally, a conclusion q is conditional entailed by a theory T if q holds in very preferred
model of T .

64 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

We now list the differences and similarities between our formalism and Geffner and
Pearl’s conditional entailment.
• We demonstrate the difference by using a default theory in Example 2.1. It is easy to

see that the ordering between assumptions requires that {δ1, δ3} ≺ δ2 and {δ1, δ2} ≺ δ3.
This implies that any admissible priority ordering must satisfy δ1 ≺ δ2 and δ1 ≺ δ3.
Furthermore, the context E = {a, s,¬y} gives rise to two classes C1 and C2 of
minimal models M1 and M2 with the gaps ∆[M1] = {δ1, δ3} and ∆[M2] = {δ2, δ3},
respectively. The priority ordering implies that C1 is the preferred class of models, i.e.,
¬m is supported in conditional entailment in the context E = {a, s,¬y}. This shows
that conditional entailment treats priority between defaults unconditional. It follows
from Example 2.1 that conditional entailment cannot capture inheritance reasoning.
Both of these points distinguish our approach from conditional entailment.

• δi—in their encoding of defaults—plays the role of ¬abi in our translation from
default theories into Reiter’s default theories. Both approaches rely on an implicit
priority ordering between defaults to resolve conflicts. The proof theory of conditional
entailment is defined around the notion of arguments. Each argument is a set of
assumptions which is consistent. In our formalization, we do not have an explicit
notion of arguments as it is not necessary for our purpose.

• One important feature of conditional entailment, that distinguishes conditional
entailment from other approaches, is that it can deal with irrelevant evidence. We
next demonstrate, using an example given in [20], that our approach can also deal
with irrelevant evidence correctly.

Example 6.1 (Dealing with irrelevant evidence [20]). Consider the default theories
T = (E,∅,D) and T ′ = (E′,∅,D) with

D = {d1 :b→ f, d2 :p→¬f, d3 :p→ b, d4 : r → b},
E = {r} and E′ = {r,p}. The defaults are depicted in Fig. 7.
It is easy to see that d2 ≺{d3} d1. The priority order of conditional entailment requires
that δ1 ≺ δ2 and δ1 ≺ δ3.
– E = {r}. Since default d3 is not applicable, T has only one extension {d1, d3, d4}.

This corresponds to the class of preferred models supporting b and f of conditional
entailment.

Fig. 7. Red birds do fly.

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 65

– E′ = {r,p}. Obviously, any extension of T ′ must contain d3 and d4 since
there exists no attack against them. Furthermore, {d1, d2, d3, d4} attacks itself by
conflict (also by specificity). Thus, there are two possible extensions of T ′ :H1 =
{d4, d3, d2} and H2 = {d4, d3, d1}. Since there exists no default, which is more
specific than d for d ∈H1, and H1 attacks d1 by conflict, we conclude that H1 is an
extension of T ′. On the other hand, H2 attacks itself by specificity since d1 ∈ H2
and d1 ≺{d3} d2 and E′ �H2 p = bd(d3). Hence, the only extension of T ′ is H1
which yields ¬f and b. These are also the conclusions sanctioned by conditional
entailment.

• Another important difference between conditional entailment and the entailment rela-
tion |∼ defined in Section 3 lies in the fact that conditional entailment satisfies condi-
tioning and cumulativity and |∼ does not. Even though we agree that conditioning and
cumulativity are important properties of nonmonotonic consequence relations, we are
not sure if they should always be enforced. Given a theory T = ({p},∅, {p→ q,p→
¬q}), neither q nor ¬q is concluded in our approach but both will be concluded in
conditional entailment. 14 This, together with the cumulativity property, implies that
we should conclude ¬q given the default theory T + q = ({p,q},∅, {p → q,p →
¬q}). This seems to contradict the common understanding about defaults that says
that a default can be applied to derive new conclusions if no contrary information is
available. In this case, the default p→¬q can be used to derive new conclusion (¬q)

only if no information contrary to ¬q is available. As such, instead of enforcing the
two properties, we characterize situations when they hold.

• Finally, we note that even though formulas are not allowed in the head of a default
in our formalization, a default of the form p → q where p and q are propositional
formulas can be easily encoded in our formalization by

(i) introducing two new atoms p′ and q ′,
(ii) replacing p→ q with p′ → q ′, and

(iii) adding the clauses p⇔ p′ and q ⇔ q ′ to B .
Thus, the class of default theories considered in conditional entailment and in our
approach is the same.

6.3. Simari and Loui’s approach

The goal of Simari and Loui [46] is to develop a general framework that unifies different
argument-based approaches to defeasible reasoning. They want to achieve this goal by
defining a framework that combines the best ideas of two well-known approaches to
defeasible reasoning: Poole’s [40] (a comparative measure of the relevance of information)
and Pollock’s [39] (the interaction between arguments).

The language for knowledge representation in Simari and Loui’s approach is a first-order
language L plus a metalinguistic relation between non-grounded well-formed formulas,
denoted by >−, which represents defeasible rules. For example, α >− β means that

14 It is easy to check that there is no admissible priority order for defaults in T and hence there exists no
preferred model of T . We took the view that in this case conditional entailment entails every possible conclusions
of the theory.

66 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

“reasons to believe in α provide reasons to believe in β . Thus the defeasible rules are
the defaults in our representation. A theory is represented by a pair (K,∆) where K, called
context, is a set of sentences in L and ∆ is a finite set of defeasible rules. K is further
divided into two sets: the set of grounded sentences KC and the set of non-grounded
sentences KN . For brevity, we omit here the definitions of a defeasible derivation and
defeasible consequence |∼ of a set of ground instances of sentences in K ∪∆ as they are
fairly close to our Definition 3.2. An argument A for a conclusion h, written 〈A,h〉, 15 is
a subset of the set of ground instances of defeasible rules ∆↓ that satisfies the following
conditions:

(1) K ∪A |∼ h,
(2) K ∪A �|∼ ⊥, and
(3) there exists no argument A′ ⊂A such that K ∪A′ |∼ h.
An argument 〈A1, h1〉 is a subargument of 〈A,h〉 if A1 ⊆A. Two comparative measures

between arguments are defined.
• 〈A1, h1〉 is strictly more specific than 〈A2, h2〉, denoted by 〈A1, h1〉 ≺spec 〈A2, h2〉, if

– for each ground sentence e in L such that KN ∪ {e} ∪A1 |∼ h1 and KN ∪ {e} �|∼ h1,
then KN ∪ {e} ∪A2 |∼ h2, and

– there exists a grounded sentence e in L such that (i) KN ∪ {e} ∪ A2 |∼ h2, (ii)
KN ∪ {e} ∪A1 �|∼ h1, and (iii) KN ∪ {e} �|∼ h2.

• 〈A1, h1〉 and 〈A2, h2〉 are equi-specific, denoted by 〈A1, h1〉 ≡spec 〈A2, h2〉, if
– for each ground sentence e in L, KN ∪{e}∪A1 |∼ h1 if and only if KN ∪{e}∪A2 |∼

h2.
The two specificity relations are used to define the counterargument and defeat relations

between arguments, which are used to draw the (defeasible) conclusions of the theory.
We now list some similarities and differences between Simari and Loui’s approach and

ours.
• The strictly more specific relation is defined between arbitrary arguments. The first

condition of the definition of ≺spec is similar but stronger than condition (ii) in
our definition of the more specific relation (Definition 3.3). Furthermore, our more
specific relation is defined only between conflicting defaults.

• The entailment relation defined in Simari and Loui’s paper does not satisfy the
cumulativity property, even for stratified default theories. To see why, consider a
modification of the famous penguin-bird example in which the implication p(x) ⊃
b(x) is replaced by a defeasible rule, i.e., we have a theory with the context K =
{p(a)} and the set of defeasible rules ∆= {p(x) >− b(x), b(x) >− f (x), p(x) >−
¬f (x)}. It is easy to see that 〈{p(a) >− ¬f (a)},¬f (a)〉 is strictly more specific
than 〈{p(a) >− b(a), b(a) >− f (a)}, f (a)〉. Therefore, the theory entails ¬f (a).
Furthermore, no argument is in conflict with 〈{p(a) >− b(a)}, b(a)〉. So, the theory
entails b(a) too. However, the theory (K∪{b(a)},∆) does not entail ¬f (a), nor does
it entail f (a) (see Example 6.5 [46]).

• Simari and Loui’s definition of an argument in [46] requires that an argument is
minimal with respect to the set inclusion. One consequence of this requirement is that
adding a new fact to a theory might eliminate some existing arguments, thus altering

15 In [46], 〈A,h〉 is called a argument structure. We follow [41] and call it an argument for convenience.

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 67

the specificity relations and the ordering between arguments. In the above example,
adding b(a) to (K,∆) removes the argument 〈{p(a) >− b(a), b(a) >− f (a)}, f (a)〉
from ∆↓ and introduces a new one, 〈{b(a) >− f (a)}, f (a)〉.

6.4. System Z and its use in Delgrande and Schaub’s approach

In System Z [38], Pearl uses consistency check to determine the order of a default.
The lower the order of a default is, the higher is its priority. He only considered theories
whose background knowledge is empty, i.e., default theories without rules. In this respect,
System Z is closely related to our previous work [15] than this one. A default is of the form
α → β , where α and β are propositional formulas. For convenience, a default r is often
used interchangeable with αr → βr , when no confusion is possible.

Let R be a set of defaults. A default α→ β is tolerated by R if {α∧β}∪{αr ⊃ βr | r ∈R}
is satisfiable.

A set of defaults R is Z-consistent if for every nonempty R′ ⊆ R, some r ′ ∈ R′ is
tolerated by R′. A set of defaults R is partitioned into an ordered list of mutually exclusive
sets of rules R0,R1, . . . ,Rn, called Z-ordering on R, in the following way:

(1) Find all defaults tolerated by R, and call this subset R0.
(2) Next, find all defaults tolerated by R \R0, and call this subset R1.
(3) Continue in this fashion until all defaults in R have been accounted for.
It is easy to see that

Ri =
{
r | r is tolerated by R \ (R0 ∪ · · · ∪Ri−1)

}
for 1 � i � n. R is said to have a non-trivial Z-ordering if n > 0. Otherwise, it has a
trivial Z-ordering. For i < j , defaults in Ri are considered less specific than defaults in
Rj . This order is used to define the rank of an interpretation of R, the rank of a formula,
and the 1-entailment. Since the weakness of System Z has been discussed in [8], we will
not compare the entailment relation |∼ with Pearl’s 1-entailment. Instead we will compare
our approach with the approach of Delgrande and Schaub which exploits the Z-ordering
but overcomes its weakness. Delgrande and Schaub [8] showed that sometimes Z-order
introduces unwanted priority and cannot deal with irrelevant knowledge. However, the Z-
ordering shares some of the properties of our specificity relation such as
• it is defined independently from the context (E),
• it is unique, and
• it is monotonic with respect to the addition of new defaults.
In [8], Delgrande and Schaub showed how the Z-ordering can be used to deal with

specificity. They improved it by not using it directly but for the purpose of finding minimal
conflict sets (MCS). They also extended it to work with rules. In their notation, a default
theory (E,B,D) is called an entire world description of which (D,B) is called a generic
world description. Rules in B are given in the form α ⊃ β .

For a default theory T = (E,B,D), the Z-ordering of T is the ordering of the set of
defaults R =D ∪ {α→ β | α ⊃ β ∈ B}. That is, in determining the Z-ordering of defaults
of T , Delgrande and Schaub considered rules as defaults.

Let R = (D,B) be a world description. C ⊆R is a minimal conflict set in R iff C has a
nontrivial Z-ordering (C0,C1) and any C′ ⊂ C has a trivial Z-ordering.

68 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

Delgrande and Schaub proved a number of important properties of MCS’s. To resolve
the conflict they identify the least specific defaults in a MCS and falsify some of them by
defining the conflicting core of a MCS.

Let R = (D,B) be a world description and C ⊆R a MCS with the Z-ordering (C0,C1).
A conflicting core of C is a pair of least sets (min(C),max(C)) where

(1) min(C)⊆ C0 ∩D,
(2) max(C)⊆ C1 ∩D, and
(3) {αr ∧ βr | r ∈max(C)∪min(C)} |= ⊥

provided that min(C) and max(C) are nonempty.
They use this to convert a default theory into a Reiter’s default theory whose semantics

specifies the semantics of the original theory. The translation is similar to our translation
(Section 5) but has also some differences due to the differences in the specificity relation
and in our treatment of defaults. For example,
• Both translations use only information about defaults and specificity information to

create defaults of the destination theory.
• They do not introduce the literal ab(d) for each default d as we do.
• For each default α→ β , their translation produces only one default (in Reiter’s sense)

in the destination theory whose prerequisite encodes the applicability condition of
higher priority defaults; thus making the default applicable only when none of the
higher priority defaults is applicable (later, we demonstrate this in an example). This
makes the translation not modular: when adding a default that introduces some new
MCS, some defaults must be revised. On the other hand, our translation is modular:
none of the previous defaults needs to be revised. Also, our translation converts each
default α→ β into two defaults and each element of the specificity relation into one
default.

• White try to enforce the order between defaults they consider defaults as rules. For
example, if r has higher priority than r ′, then the prerequisite of the Reiter’s default
corresponding to r ′ contains a conjunction αr ⊃ βr .

• We show that our approach captures inheritance reasoning. Delgrande and Schaub did
not compare their approach with inheritance reasoning. They wrote [8, p. 306],

. . . “Lastly there are direct or path-based approaches to nonmonotonic inher-
itance, as expressed using inheritance networks [23]. It is difficult to compare
such approaches with our own for two reasons.”. . .

We show now by example that their approach does not capture inheritance reasoning.
We continue with the default theory in Example 2.1. In their notation, we have that
R = (D,B) is a world description with B = {y ⇒ a}, and D = {d1 :a→m, d2 : s→
¬m, d3 : s → y}. The Z-ordering of R is ({a → m, y → a}, {s → y, s →¬m}).
Furthermore, R is a minimal conflict set. Its only conflicting core is ({a→m}, {s→
¬m}). In Example 5.3, we present the Reiter’s default theories corresponding to the
theory T and T ′ of the Example 2.1 already. In Delgrande and Schaub’s translation,
a default αr → βr is translated into

αr : βr ∧∧
r ′∈Rr

αr ′ ⊃ βr ′

βr

,

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 69

where Rr = {r ′ ∈max(Ci) | r ∈min(Ci)} and (Ci)i∈I is the family of all MCS of D.
Thus, it yields the default theory DT = (E ∪B,D′) where

D′ =
{
s : y
y

,
s : ¬m

¬m
,

a :m∧¬s

m

}
,

where the last default is obtained from the default a:m∧s⊃¬m
m

. As such, for E = {s}
or E = {s,¬y, a}, Z-default theories will conclude ¬m. This also shows that priority
between defaults is used unconditional in Delgrande and Schaub framework.

7. Conclusion and future work

In this paper we present a new approach to reasoning with specificity which subsumes
inheritance reasoning. We show that priorities between defaults can be computed a priory
but cannot be used unconditional. We generalize Touretzky’s principle to specificity
to define a “more specific” relation among defaults and use the stable semantics
of argumentation to define the semantics of default theories. We present sufficient
conditions for the existence of extensions. We identify a class of stratified and well-
defined default theories, in which the newly defined entailment relation satisfies the
basic properties of nonmonotonic consequence relations such as deduction, reduction,
conditioning, and cumulativity. To show how well-known algorithms for computing
extensions and consequences of Reiter’s default theories can be used to compute extensions
and consequences of default theories as defined here, we translate each default theory into
a semantically equivalent Reiter’s default theory. We prove that the translation is modular
and polynomial in the size of the original default theory.

Acknowledgement

We would like to thank the anonymous reviewers for their valuable comments that help
us to improve the paper in many ways. A part of this manuscript appeared in [16]. We
would also like to thank Yves Moinard for his valuable comments and discussion on the
topic of this paper and for his support in sending us his paper [35].

Appendix A. Proofs of Theorems 4.1–4.4

A.1. Stratification guarantees existence of extensions

Let rank be a ranking function of the literals. We can extend rank on the set of clauses
and defaults in T by defining:
• rank(c)=max{rank(l) | l appears in c}, for every clause c; and
• rank(d)= rank(hd(d)), for every default d .

70 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

For every set of literals, clauses, or defaults X, define X|i = {x ∈ X | rank(x) = i}, and
X‖i = {x ∈X | rank(x) � i}. Further define Ti = (E‖i ,B‖i ,D‖i).
Lemma A.1. Let T be a stratified default theory. For all i, all K ⊆D, and l ∈ lit(L) with
rank(l)= i:

E ∪B �K l iff E‖i ∪B‖i �K‖i l.

Proof. The if-direction is trivial. We only need to prove the only-if-direction. There are
two cases:

Case 1: K = ∅, i.e., E∪B � l. In this case the lemma follows immediately from the fact
that a set of positive ground literals M is a model of E ∪B iff for each i , M‖i is a model
of E‖i ∪B‖i .

Case 2: There exists a sequence of defaults d1, . . . , dm (m � 1) in K such that
(1) E ∪B � bd(d1),
(2) E ∪B ∪ {hd(d1), . . . ,hd(dj)} � bd(dj+1) for j ∈ {1, . . . ,m− 1}, and
(3) E ∪B ∪ {hd(d1), . . . ,hd(dm)} � l.

Without loss of generality, we can assume that d1, . . . , dm is one of the shortest defeasible
derivations of l, where the length of a defeasible derivation is defined as the number
of defaults appearing in it. We want to show that there is no default in this derivation
whose rank is greater than i . Assume the contrary, i.e., there exists some defaults in
{d1, . . . , dm} whose rank is greater than i . Let k = max{j | 1 � j � m, rank(dj) > i }.
Therefore, for each j > k, rank(dj) � i . Hence from Case 1, it is easy to see that for each
j > k, E ∪ B ∪ {hd(dt) | t < j and t �= k} � bd(dj). Thus d1, . . . , dk−1, dk+1, . . . , dm is
a defeasible derivation of l. This contradicts our assumption that d1, . . . , dm is a shortest
defeasible derivation of l.

Thus we have proved that E‖i ∪B‖i �K‖i l. ✷
The following lemma follows immediately from Lemma A.1.

Lemma A.2. Let T be a stratified default theory, S ⊆D, and d ∈D|i . Then,
(1) S attacks d by conflict in T iff S‖i attacks d by conflict in Ti , and
(2) S attacks d by specificity in T iff S‖i attacks d by specificity in Ti .

Lemma A.2 implies the following lemma.

Lemma A.3. Let T be a stratified default theory. S ⊆D is an extension of T iff for each
i � 1, S‖i is an extension of Ti .

In the following lemma, we give an algorithm to construct an extension of Ti from an
extension of Ti−1.

Lemma A.4. Let T be a stratified default theory. Let K ⊆D‖i−1 .
• Let C denote the set of all defaults in D|i which are not attacked by specificity by K.
• Let C0,C1 ⊆ C such that

C1 =
{
c ∈ C | E ∪B �K bd(c)

}
and C0 = C \C1.

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 71

• Let H be a maximal (with respect to set-inclusion) set of defaults such that H ⊆ C1,
and K ∪H is consistent in T (or equivalently in Ti).

• Let G= {c ∈ C0 |E∪B ��H∪K ¬hd(c)}, i.e., G consists of those defaults in C0 which
are not attacked by K ∪H by conflict.

Then K ∪H ∪G is an extension of Ti iff K is an extension of Ti−1.

Proof. Let S =K ∪H ∪G.
• Only-If-direction. It is obvious that S‖i−1 =K . Because S is an extension of Ti , it is

clear from Lemma A.3, that K is an extension of Ti−1.
• If-direction. From Lemma A.1, it follows that

for each d ∈D|i , E ∪B �K bd(d) iff E ∪B �K∪H bd(d) iff E ∪B �S bd(d). (∗)

We prove first that S attacks every default d ∈D‖i \S. If rank(d) < i then it is clear that
K attacks d . Hence Lemma A.2 implies that S attacks d . Let now rank(d)= i . Then there
are two cases:
• d /∈ C. Then d is attacked by K by specificity. Hence d is attacked by S by specificity.
• d ∈ C. Therefore either d ∈ C1 \H or d ∈ C0 \G. Let d ∈C1 \H . Then K ∪H ∪ {d}

is inconsistent in T . Since E ∪ B �K bd(d), E ∪ B �K∪H ¬hd(d). Hence S attacks d by
conflict.

Let d ∈C0 \G. Then from the definition of G, it follows that S attacks d by conflict.
Now we want to prove that S does not attack itself. Assume the contrary. Lemma

A.2 implies that S attacks some c ∈ D|i . Suppose that S attacks c by specificity, i.e.,
there exists c′ such that c′ ≺S c, E ∪ B �S bd(c′). Further, from Lemma A.2, E‖i−1 ∪
B‖i−1 �S‖i−1 bd(c′). Lemma A.2 also implies that bd(c′) ∪ B‖i−1 �S‖i−1 bd(c). Hence
c′ ≺K c. Therefore K attacks c by specificity. This contradicts the construction of H and
G. Hence S must attack c by conflict. That means E∪B �S ¬hd(c). From the construction
of S, we can see that S is consistent. Therefore, c ∈G. But then from the assertion (∗), we
have E ∪ B �K∪H ¬hd(c). Again, this contradicts the construction of G. Thus S cannot
attack itself. ✷

We now prove Theorem 4.1.

Theorem 4.1. Every stratified default theory T = (E,B,D) has at least one extension

Proof. Since rank(d) > 0 for every d ∈ D, we have that T0 = (E0,B0,∅). Furthermore,
E ∪B is consistent implies that E0 ∪B0 is consistent. Thus, S0 = ∅ is an extension of T0.
This, together with Lemma A.4, proves that T has an extension. ✷
A.2. Stratification guarantees cumulativity

The following lemma is a key step in our proof of the cumulativity property.

Lemma A.5. Let T = (E,B,D) be a stratified default theory, l be a literal l such that
T |∼ l, and S ⊆D be an extension of T + l. Then S is also an extension of T .

72 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

Proof. Let rank(l)= i . We want to show that for each j , S‖j is an extension of Tj . There
are three cases:

(1) j < i . Obviously because Tj = (T + l)j .
(2) j = i . Let K = S‖i−1 and C,C0,C1,H,G be defined as in Lemma A.4 with respect

to T + l. Further let C′,C′
0,C

′
1 be defined as in Lemma A.4 with respect to T . It is not

difficult to see that C = C′, C1 = C′
1, and C0 = C′

0. It is also obvious that K ∪ H is
consistent in T . Let H ′ be a maximal (with respect to set-inclusion) set of defaults such
that
• H ⊆H ′ ⊆ C1, and
• K ∪H ′ is consistent in T .

Let G′ = {c ∈C0 |E ∪B ��K∪H ′ ¬hd(c)}.
From Lemma A.4, it follows that R = K ∪ H ′ ∪ G′ is an extension of Ti . From the

assumption T |∼ l, it follows that R is also an extension of (T + l)i . From the definition of
G′, it is easy to see that for each literal h, E ∪ B �R h iff E ∪ B �K∪H ′ h. It is clear that
Ti |∼ l. Hence E ∪B �R l. Therefore E ∪B �K∪H ′ l. Hence K ∪H ′ is consistent in T + l.
From the definition of H , it follows that H =H ′. That means that S‖i =R. So S‖i is also
an extension of T .

(3) j > i . From Case 2, it is clear that for each j � i , E‖j ∪ B‖j �S‖j l. Therefore for
each literal h, E‖j ∪ {l} ∪B‖j �S‖j h iff E‖j ∪B‖j �S‖j h. Hence it is obvious that S‖j
is an extension of Tj . ✷

We are now ready to prove Theorem 4.4.

Theorem 4.4. Let T = (E,B,D) be a stratified default theory and a, b be literals such
that T |∼ a, and T |∼ b. Then T + a |∼ b.

Proof. Assume the contrary, T + a �|∼ b. This means that there exists an extension S of
T + a such that b /∈ S. Lemma A.5 shows that S is an extension of T , which contradicts
the fact that T |∼ b. So, our assumption is incorrect, i.e., for every extension S of T + a,
b ∈ S. This means that T + a |∼ b. ✷

Appendix B. Conditioning of well-defined default theories

Let csq(K)= {l |E ∪B �K l }.

Theorem 4.5. Let T = (E,B,D) be a well-defined default theory, d be a default in D,
and E = bd(d). Then, T |∼ hd(d).

Proof. Let S be an extension of T . We need to prove that hd(d) ∈ csq(S). Assume the
contrary that hd(d) /∈ csq(S). Since bd(d)⊆ csq(S), it follows that d /∈ S. Hence S attacks
d . There are two cases:

(1) S attacks d by conflict, i.e., ¬hd(d) ∈ csq(S). Hence bd(d) ∪ B �S∪{d} ⊥. Because
S is consistent, bd(d) ∪ B �S∪{d} ⊥, and T is well-defined, we can conclude that there
exists d0 ∈ S such that d ≺S d0. That means S attacks d0 by specificity. Hence S attacks

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 73

itself (because d0 ∈ S). This contradicts the assumption that S is an extension. So, this case
cannot occur.

(2) S attacks d by specificity, i.e., there exists a default d ′ such that d ′ ≺S d , bd(d ′) ⊆
csq(S). Hence B ∪ {hd(d),hd(d ′)} � ⊥. Because bd(d ′)⊆ csq(S), bd(d) ∪ B �S bd(d ′).
It is clear that bd(d) ∪ B ��S ⊥. Therefore, d ≺S d ′. Hence, d ≺∗ d . This contradicts the
fact that D is well-defined. That means this case cannot occur either.

Since both cases are impossible, hd(d) ∈ csq(S). This holds for every extension of T .
Hence, T |∼ hd(d). ✷

Appendix C. Properties of default theories of inheritance networks

In this section by Γ we denote an arbitrary but fixed, acyclic, and consistent network.
Let TΓ be the default theory corresponding to Γ . For a path σ in Γ , let d(σ) and r(σ)

denote the set of defaults and rules corresponding to defeasible and strict links belonging
to σ , which do not begin from an individual node, respectively. In other words,

d(σ) = {
p(X)→ q(X) | p /∈ IΓ , p→ q belongs to σ

}∪{
p(X)→¬q(X) | p /∈ IΓ , p �→ q belongs to σ

}
.

r(σ) = {
p(X)⇒ q(X) | p /∈ IΓ , p⇒ q belongs to σ

}∪{
p(X)⇒¬q(X) | p /∈ IΓ , p �⇒ q belongs to σ

}
.

By d(σ)/a and r(σ)/a we denote the set of ground defaults and ground rules obtained
from d(σ) and r(σ) by instantiating the variable X with a.

Lemma C.1. For acyclic and consistent network Γ , TΓ is stratified.

Proof. To prove the lemma, we define a rank function over ground literals of TΓ ∪{�,⊥},
that satisfies the conditions of Definition 4.1, as follows.

(i) rank(�)= rank(⊥)= 0; and
(ii) for each individual node a and predicate node p, rank(p(a)) = rank(¬p(a)) =

max{|d(σ)/a| | σ is a generalized path from a to p} where |d(σ)/a| denotes the
cardinality of the set d(σ)/a.

Since Γ is acyclic, for every a ∈ IΓ and p ∈ PredΓ , rank(p(a)) is defined for every p and
a. In other words, rank is defined for every literal of TΓ . Furthermore, by its definition,
rank satisfies the first two conditions of Definition 4.1. Thus, to complete the proof, we
consider the following two cases.
• p(a)⇒ q(a) is a rule in BΓ . Since for each generalized path σ from a to p there

exists a generalized path σ ′ = σ ⇒ q from a to q with |d(σ)/a| = |d(σ ′)/a|,
by definition of rank, we conclude that rank(p(a)) � rank(q(a)). By definition
of generalized paths, we can also prove that rank(q(a)) � rank(p(a)). Hence,
rank(p(a))= rank(q(a)). Similarly, we can prove that if p(a)⇒¬q(a) ∈ BΓ , then
rank(p(a))= rank(¬q(a)).

74 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

• p(a)→ q(a). Since for each generalized path σ from a to p there exists a generalized
path σ ′ = σ → q from a to q with |d(σ)/a| + 1 = |d(σ ′)/a|, by definition of
rank, we conclude that rank(p(a)) < rank(q(a)). Similarly, we can prove that if
p(a) �→ q(a) ∈DΓ , then rank(p(a)) < rank(¬q(a)).

The above two cases conclude the lemma. ✷
The next two lemmas show the correspondence between the consequence relation � in

TΓ and paths in a consistent and acyclic Γ .

Lemma C.2. Let a be a constant in the language of TΓ and σ = π(x, δ,u) be a positive
path in Γ . Then, x(a)∪ r(σ)/a �d(σ)/a u(a) and x(a)∪BΓ ��d(σ)/a ⊥.

Likewise, let a be a constant in the language of TΓ and σ = π(x, δ,u) be a negative
path of Γ . Then, x(a)∪ r(σ)/a �d(σ)/a ¬u(a) and x(a)∪BΓ ��d(σ)/a ⊥.

Lemma C.3. Let x(a) and u(a) be ground literals of TΓ and K be a minimal set of
defaults such that x(a) ∪ BΓ �K u(a) (respectively x(a) ∪ BΓ �K ¬u(a)). Then, there
exists a positive path σ = π(x, δ,u) of Γ (respectively a negative path σ = π(x, δ,u) of
Γ) such that d(σ)/a =K .

The next lemma represents a relationship between the more specific relation in TΓ and
paths in Γ . We note that if d is a default in DΓ then the predicate symbol occurring in the
body of d is the label of a node in Γ . We will call it the start node of d .

Lemma C.4. For two ground defaults d and d ′ of TΓ if d ≺K d ′ then there exists a positive
path from p to q in Γ where p and q are the begin nodes of d and d ′ respectively.

We omitted here the proofs of these three lemmas as they are fairly simple and
straightforward.

Theorem 4.6. For every consistent and acyclic network Γ , the default theory correspond-
ing to Γ , TΓ , is well-defined and stratified.

Proof. By Lemma C.1, we have that TΓ is stratified. To prove that TΓ is well-defined, we
need to prove for each default d in DΓ , the following conditions are satisfied.

(i) d �≺∗ d ; and
(ii) for each set of defaults K in TΓ such that bd(d)∪BΓ �K∪{d} ⊥ and bd(d)∪BΓ ��K

⊥ there exists a default d0 ∈K such that d ≺K d0.
Let us begin with (i). Assume the contrary, there exists a sequence of default d ≺ d1 ≺
· · · ≺ dn ≺ d . Let p,p1, . . . , pn be the begin nodes of d, d1, . . . , dn respectively. Then, by
Lemma C.4, there exists a path from p to p over p1, . . . , pn. This violates the acyclicity
of Γ . Thus, our assumption is incorrect, i.e., d �≺∗ d , or (i) holds. (1)

We now prove (ii). Let H ⊆K be a minimal set satisfying that bd(d) ∪ BΓ �H∪{d} ⊥
and bd(d)∪BΓ ��H ⊥. We will prove that there exists a default d ′ ∈K such that d ≺H d ′,

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 75

and hence, d ≺K d ′. Assume that d is a default of the form u(c)→ v(c) 16. If H = ∅, then
u ∈ N(v) or v ∈N(u). In both cases, we have that Γ is inconsistent. Thus, H �= ∅. Then,
from our assumption about d and H , we have that u(c)∪BΓ �H ¬v(c). This, together with
Lemmas C.3 and C.2, implies that there exists a path σ = π(u, δ, v) such that d(σ)/c=H ,
and for every d ′ ∈ H , u(c) ∪ BΓ �H bd(d ′) and u(c) ∪ BΓ ��H ⊥. It is easy to check
that d ≺H d ′ where d ′ is the default in H such that rank(hd(d ′)) = max{rank(hd(d ′′)) |
d ′′ ∈ H }. This implies that (ii) holds for d . The proof for (ii) for default of the form
u(c)→¬v(c) is similar. Hence, we conclude that for every d ∈DΓ , (ii) holds. (2)

It follows from (1) and (2) that TΓ is well-defined. ✷
To prove Theorem 4.7, we need the following notation. For a set of paths ∆ in Γ , let

csq_path(∆) = {
p(a) | a ∈ IΓ , ∃π(a, . . . ,p) ∈∆

}∪{¬p(a) | a ∈ IΓ , ∃π̄(a, . . . , p) ∈∆
}
,

S∆ = {
d ∈DΓ | there exists a ground path in ∆ containing d

}∪{
d ∈DΓ | bd(d) �⊆ csq_path(∆) and ¬hd(d) /∈ csq_path(∆)

}
,

and for a set of defaults S,

path(S)= {
π(a,σ,p) | d(σ)/a ⊆ S

} ∪ {
π̄(a, σ,p) | d(σ)/a ⊆ S

}
.

It is easy to see that the following lemma holds.

Lemma C.5. For every credulous extension ∆ of Γ , csq_path(∆) is consistent and
csq_path(∆)= csq(S∆). 17

This leads us to the following lemma.

Lemma C.6. Let ∆ be a credulous extension of Γ . Then, S∆ is an extension of TΓ .

Proof. First, we show that S∆ does not attack itself. Assume the contrary, S∆ attacks itself.
We consider two cases:
• S∆ attacks a default d ∈ S∆ by conflict. Assume that d = u(c)→ v(c). That means that

¬v(c) ∈ csq(S∆) = csq_path(∆). By definition of S∆, u(c) ∈ csq_path(∆). Thus, from
d ∈ S∆ and u(c) ∈ csq_path(∆), we conclude that there exists a path σ containing d in ∆.
Due to the constructivity of ∆, we have that v(c) ∈ csq_path(∆). This contradicts the fact
that csq_path(∆) is consistent. So, this case cannot occur.
• S∆ attacks a default d ∈ S∆ by specificity. Assume that d = u(c)→ v(c). This means

that there exists a default d ′ in DΓ and a set of defaults K ⊆ S∆ such that d ′ ≺K d ,
p(c) ∈ csq(S∆) where p is the start node of the link d ′. Again, there are two cases:

(a) d ′ has the form p(c)→¬q(c). From the definition of the more specific relation,
we can easily verify that u(c) ∈ csq(S∆). Therefore, by construction of S∆, we
conclude that there exists a path σ1 = π(c, η1,p, η2, u, v) ∈∆. Since d ′ ≺K d , we
have that BΓ ∪{¬q(c), v(c)} is inconsistent. This implies that v ∈ P(q) or q ∈ P(v).
Furthermore, σ2 = π(c, η1,p) ∈∆. Thus, σ1 is preempted in ∆ (because of σ2 and

16 Recall that we assume that defaults are grounded.
17 Recall that for a set of defaults X of a theory (E,B,D), csq(X)= {l |E ∪ B �X l}.

76 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

p �→ q). This contradicts the fact that ∆ is a credulous extension of Γ . So, this case
cannot occur. (1)

(b) d ′ has the form p(c)→ q(c). Similar to the above case, we can show that ∆ contains
a path which is preempted in ∆, and hence, we conclude that this case cannot occur
too. (2)

The second case is proved by (1) and (2).
The above two cases show that S∆ does not attack itself. (3)

To complete the proof, we need to show that S∆ attacks every d /∈ S∆. From the
construction of S∆, there are two cases:
• bd(d) �⊆ csq_path(∆). Then, by definition of S∆, ¬hd(d) ∈ csq_path(∆)= csq(S∆).

Hence, S∆ attacks d by conflict. (4)

• bd(d) ⊆ csq_path(∆). Assume that d = p(c) → q(c) for some individual node c.
This implies that there exists a path σ1 = π(c, η,p) in ∆. Thus, the path σ2 =
π(c, η,p)→ q is constructible in ∆. Since d /∈ S∆, σ2 /∈ ∆. If σ2 is conflict in ∆,
then ¬hd(d) ∈ csq(S∆), and hence, σ2 is attacked by conflict by S∆. Otherwise, σ2
is preempted in ∆, then we can easily check that d is attacked by S∆ by specifi-
city. (5)

From (4)–(5) we conclude that S∆ attacks every d /∈ S∆. Together with (3), we have proved
that S∆ is an extension of TΓ . ✷

We now prove the reverse of Lemma C.6.

Lemma C.7. Let S be a consistent extension of TΓ . Then, path(S) = {σ | σ is a ground
path and path(S) |∼ σ }.
Proof. Consider a path σ = π(a, δ,p) in path(S). We prove that path(S) |∼ σ by induction
over |d(σ)/a|.

Base case: |d(σ)/a| = 0. That is, σ is a direct link or a strict path. Thus, d(σ)/a ⊆ S.
By construction of path(S), we have that σ ∈ path(S). The base case is proved.

Inductive step: Assume that we have proved path(S) |∼ σ for σ ∈ path(S) with
|d(σ)/a|� n. We need to prove it for |d(σ)/a| = n+ 1. First, let us prove the case where
σ = Def (σ). Assume that σ = π(a, δ,u) → p. Let τ = π(a, δ,u). By construction of
path(S) and inductive hypothesis, we have that τ ∈ path(S) and path(S) |∼ τ . Thus, σ is
constructible in path(S). (1)

Since S is an extension of TΓ and p(a) ∈ csq(S) (because EΓ ∪ BΓ �d(σ)/a p(a)), we
have that¬p(a) /∈ csq(S). Thus, there exists no path in path(S) supporting¬p(a). In other
words, σ is not conflicted in path(S). (2)

To prove that path(S) |∼ σ , we need to show that σ is not preempted in path(S). Assume
the contrary, then there are the following cases:
• There exists a link a �→ t in Γ and t ∈ P(p). In this case, we have that ¬t (a) ∈ EΓ

and EΓ ∪ BΓ �∅ ¬p(a). Hence, ¬p(a) ∈ csq(S). This contradicts the fact that
p(a) ∈ csq(S) and S is a consistent extension of TΓ . Thus, this case cannot occur.

• There exists a link a → t in Γ and t ∈ N(p). In this case, we have that t (a) ∈ EΓ

and EΓ ∪ BΓ �∅ ¬p(a). Hence, ¬p(a) ∈ csq(S). This contradicts the fact that
p(a) ∈ csq(S) and S is a consistent extension of TΓ . Thus, this case cannot occur.

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 77

• There exists a path π(a,α, v,β,u) in path(S) and v �→ t ∈ Γ , and t ∈ P(p). Let
γ = π(v,β,u). It is easy to see that we have v(a) → ¬t (a) ≺d(γ)/a u(a)→ p(a)

and d(γ)/a ⊆ S. This implies that d is attacked by S by specificity and d ∈ S, i.e.,
S attacks itself. This contradicts the fact that S is an extension of TΓ . Therefore, this
case cannot occur too.

• There exists a path π(a,α, v,β,u) in path(S) and v→ t ∈ Γ and t ∈ N(p). Similar
to the third the case, we conclude that this case cannot occur.

The above four cases show that our assumption that σ is preempted in path(S) is
incorrect. In other words, σ is not preempted in path(S). (3)

Similarly, we can prove (1)–(3) for defeasible negative paths in path(S) whose last link
is a defeasible link. (4)

Now, consider the case the last link of σ is a strict link, i.e., |d(σ)| = n + 1 and
σ �= Def (σ). From (3) and (4), we can show that path(S) |∼ Def (σ) is σ ∈ path(S).
Furthermore, by definition of path(S), we have that path(S) |∼ Str(σ). Hence, we have
that path(S) |∼ σ for this case too. (5)

The inductive step follows from (1)–(5) for paths in path(S). So, we have proved that if
σ ∈ path(S) then path(S) |∼ σ . (6)

Similarly, we can show that if σ /∈ path(S) then path(S) �|∼ σ . Together with (6), we
conclude the lemma. ✷

The next lemma is the final step toward the proof of Theorem 4.6.

Lemma C.8. Let S be an extension of TΓ . Then, there exists a credulous extension ∆ of
Γ such that csq(S)= csq_path(∆).

Proof. From Lemma C.7 and the definition of path(S), we have that csq(S) =
csq_path(path(S)). Thus, to prove the lemma we prove that there exists a credulous
extension ∆ of Γ such that path(S) ⊆ ∆ and every ground path σ ∈ ∆ belongs to
path(S). (∗)

Let Γ ′ be the network obtained from Γ by removing from Γ all individual nodes and
links going out from these nodes. Let Φ be a credulous extension of Γ ′. It is easy to see
that ∆ = path(S) ∪ Φ is a credulous extension of Γ that satisfying (∗). The lemma is
proved. ✷

We now prove the theorem about the relationship between the credulous semantics of Γ

and that of TΓ .

Theorem 4.7. For every acyclic and consistent inheritance network Γ , an individual node
a, and a predicate node p,

(1) Γ |∼c p(a) iff TΓ |∼ p(a); and
(2) Γ |∼c ¬p(a) iff TΓ |∼ ¬p(a).

Proof. Assume that Γ |∼c p(a). We prove that TΓ |∼ p(a). Assume the contrary, TΓ �|∼
p(a). This means that there exists an extension S of TΓ such that p(a) /∈ csq(S). By

78 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

Lemma C.8, there exists a credulous extension of Γ which does not support p(a). In other
words, Γ �|∼c p(a). This contradicts the assumption that Γ |∼c p(a). Thus, TΓ |∼ p(a). (1)

Similarly, using Lemma C.6, we can show that if TΓ |∼ p(a) then Γ |∼ p(a). (2)

The first conclusion of the theorem follows from (1) and (2).
The second conclusion of the theorem can be proven similarly. ✷

Appendix D. Translation into Reiter’s default logic

Let T = (E,B,D) be a default theory. Recall that for K ⊆D, csq(K)= {l | E ∪ B �K

l }. Further, for a set of first-order sentences X, Th(X) denotes the least logical closure
of X. For a literal l in L, let atom(l) denote the atom occurring in l and ld denote the
literal obtained from l by replacing a = atom(l) with ad if a /∈ bd(d). For simplicity of
the presentation, we define Ld = Ld ∪ {a | a is an atom occurring in bd(d)}. For a literal
l in Ld , let origin(l, d) denote the literal h in L such that hd = l. For a set of literals X in
L, let Xd = {ld | l ∈ X}. It is easy to see that the construction of Bd and Dd satisfies the
following lemma.

Lemma D.1. For a set of literals X and a literal l of L, X ∪B � l iff Xd ∪Bd � ld .

Lemma D.2. For a default d ∈D, a set of defaults K ⊆ D, a literal l in L, and a set of
literals X, if X ∪B �K l then Xd ∪Bd �Kd ld where Kd = {c′d | c′ ∈K}.

Proof. Without the loss of generality, we can assume that K is a minimal set of defaults
(with respect to the set inclusion operator). We prove the lemma by induction over |K|, the
cardinality of K . The inductive case, |K| = 0, is trivial because of Lemma D.1. Assume
that we have proved the lemma for |K| =m. We need to prove the lemma for |K| =m+1.
Assume that K = {c1, . . . , cm, cm+1} and c1, . . . , cm, cm+1 is a defeasible derivation of
l. By Definition 3.2, we have that X ∪ B �K\{cm+1} bd(cm+1) and X ∪ B ∪ Y � l where
Y = {hd(c1), . . . ,hd(cm+1)}. From the inductive hypothesis, we can conclude that Xd ∪
Bd �Kd\{cm+1

d } bd(cm+1
d). Furthermore, by Lemma D.1, we have that Xd ∪Bd ∪ Yd � ld . It

follows from Definition 3.2 that Xd ∪ Bd �Kd ld . The inductive step is proved and hence
the lemma is proved. ✷
Lemma D.3. For every literal l ∈Ld and a set of defaults K ⊆D∗, E ∪ (B∗ \B ′) �K l iff
there exists a set X⊆ bd(d) such that E ∪B �K∩D X and X ∪Bd �K∩Dd l.

Proof. It follows from the construction of Bd and Dd that

E ∪ (B∗ \B ′) �K l

iff E ∪B ∪Bd �K∩(D∪Dd) l

iff E ∪B �K∩D Y and Y ∪Bd �K∩Dd l

iff E ∪B �K∩D X and X ∪Bd �K∩Dd l for X = bd(d)∩ Y .

The lemma is proved. ✷

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 79

Lemma D.4. Let X be a set of literals of L ∪ Ld and l be a literal in Ld such that
X ∪ Bd �K l for some set of defaults K ⊆ Dd . Then Xd ∪ B �Kd origin(l, d) where
Xd = {origin(l, d) | l ∈X} and Kd = {c | c ∈D and cd ∈K}.

Proof. Without the loss of generality, we can assume that K is a minimal set of defaults
(with respect to the set inclusion operator). We prove that Xd ∪ B �Kd origin(l, d) by
induction over |K|, the cardinality of K . The inductive case, |K| = 0 follows from
Lemma D.1. Assume that we have proved the lemma for |K| = m. We need to prove
the lemma for |K| =m+ 1. Assume that K = {c1

d, . . . , c
m
d , cm+1

d } and c1
d, . . . , c

m
d , cm+1

d is
a defeasible derivation of l. By Definition 3.2, we have that X ∪ Bd �K\{cm+1

d } bd(cm+1
d)

and X ∪ Bd ∪ Yd � l where Y = {hd(c1), . . . ,hd(cm+1)}. From the inductive hypothesis,
we can conclude that Xd ∪B �Kd\{cm+1} bd(cm+1) and Xd ∪B ∪Y � origin(l, d) (Lemma
D.1). This implies that Xd ∪ B �Kd origin(l, d). The inductive step is proved and hence
the lemma is proved. ✷

To continue, we need some additional notations. Let S be a set of defaults in T , S ⊆D.
Define Ab(S)=Ab1(S)∪Ab2(S) where

Ab1(S)= {abd | d /∈ S},
Ab2(S)= {abdc | abd ∈Ab1(S)},
Reduct(DT ,S)=

{
α→ γ

∣∣∣ α : β
γ

∈DT and ¬β /∈ (
Ab1(S)∪Ab2(S)

)}
,

and

Consequence(DT ,S)= {
l |E ∪ (B∗ \B ′) �Reduct(DT ,S) l

}
.

Furthermore, let R′
T = (WT \B ′,D′

T) where

D′
T = regular(T)∪ equi(D) ∪{

bd(d),bd(cd) : �
abc

∣∣∣ d, c ∈D, and B ∪ {hd(d),hd(c)} is inconsistent

}
.

First, it is easy to see that RT and R′
T are equivalent in the following sense.

Lemma D.5. For every default theory T , S is an extension of R′
T iff Th(S′ ∪ B ′) is an

extension of RT = (WT ,DT).

Proof. It is easy to see that any default y ∈DT \D′
T has the form

bd(d),bd(cd), (B ′ ∪ (hd(d))′ ⇒ ¬(hd(c))′) : �
abc

and B ∪ {hd(d),hd(c)} is consistent. This implies that the prerequisite of y can never be
satisfied, and hence, y cannot be applied in any consistent set of formulas of RT . This,
together with the fact that no default in RT has its consequent in the language of B ′,
concludes the lemma. ✷

80 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

It follows from Lemma D.5 that to prove Theorem 5.1 it is sufficient to prove that T is
equivalent to R′

T . This is what we will do in the rest of this appendix. The following lemma
follows from the definition of Reduct(DT ,S).

Lemma D.6. For every set of defaults S, a default d ∈ S, and a set of defaults K ⊆ S,

Kd = {c′d | c′ ∈K} ⊆ Reduct(DT ,S).

Lemma D.7. For an extension S of T , Consequence(DT ,S) ∩L= csq(S).

Lemma D.8. For an extension S of T and a default d ∈D∗, abd ∈ Consequence(DT ,S)

iff abd ∈Ab(S).

Proof. First, we show that if abd ∈Ab(S) then abd ∈ Consequence(DT ,S). Consider two
cases:
• d ∈ D. Then, abd ∈ Ab1(S). Thus, d /∈ S. This implies that either (i) S attacks

d by conflict or (ii) S attacks d by specificity. (i) and Lemma D.8 imply that
¬hd(d) ∈ Consequence(DT ,S), and hence, abd ∈ Consequence(DT ,S) because
¬hd(d)→ abd ∈ Reduct(DT ,S). (ii) implies that there exists some c ∈ S and K ⊆ S

such that c ≺K d and E ∪ B �K bd(c). Again, from Lemma D.8, we have that
bd(c)⊆ Consequence(DT ,S). This also implies that K ⊆ Reduct(DT ,S), and hence,
Kc = {d ′c | d ′ ∈K} ⊆ Reduct(DT ,S) (Lemma D.7). Because bd(c)∪B �K bd(d), we
have that bd(c)∪Bc �Kc bd(dc) (Lemma D.2). By definition of Consequence(DT ,S),
abd ∈ Consequence(DT ,S).

• d is a default in Dc , say pc. abpc ∈ Ab(S) means that abpc ∈ Ab2(S). By definition
of Ab2(S), we have that abp ∈ Ab1(S). From the above case, we have that abp ∈
Consequence(DT ,S), and hence, abpc ∈ Consequence(DT ,S).

We now prove that if abd ∈ Consequence(DT ,S) then abd ∈ Ab(S). Consider two
cases:
• d ∈D. Then, abd ∈ Consequence(DT ,S) if either (i) ¬hd(d) ∈ Consequence(DT ,S)

or (ii) there exists some c such that bdc ∪ bddc ⊆ Consequence(DT ,S). (i), together
with Lemma D.8, implies that ¬hd(d) ∈ csq(S), and hence, d is attacked by conflict
by S. (ii), together with Lemmas D.3 and D.4, implies that there exists a set of
defaults K ⊆ S such that bd(c) ∪ B �K bd(d), and E ∪ B �S bd(c). Because
B ∪ {hd(d),hd(c)} is inconsistent, this implies that d is attacked by specificity by
S. In both case, we have that d /∈ S which implies that abd ∈Ab1(S).

• d is a default in Dc , say pc. abpc ∈ Consequence(DT ,S) if either (i) ¬hd(pc) ∈
Consequence(DT ,S) or (ii) abp ∈ Consequence(DT ,S). From (i) and Lemma D.4
imply that ¬hd(p) ∈ Consequence(DT ,S), and hence, abp ∈ Consequence(DT ,S).
In both cases, we have that abp ∈ Consequence(DT ,S). It follows from the above
case that abpc ∈Ab2(S).

The conclusion of the lemma follows from the above two cases. ✷

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 81

To prove the equivalence between R′
T and T we will need the following notation. Let Y

be a set of first-order formula in the language of R′
T . Define, B+ = B∗ \B ′,

appl(Y)=
{
α→ γ

∣∣∣ α : β
γ

∈DT ,¬β /∈ Y

}

and

concl(Y)= {
l |E ∪B+ �appl(Y) l

}
.

Let Γ (Y) be the smallest set of first-order sentences satisfying the following properties:
(c1) E ∪B+ ⊆ Γ (Y);
(c2) Γ (Y) is deductively closed; and
(c3) if α:β

γ
∈DT , α ∈ Γ (Y), and ¬β /∈ Y then γ ∈ Γ (Y).

Lemma D.9. For every set of sentences Y , concl(Y)⊆ Γ (Y).

Proof. Let l be an arbitrary literal in concl(Y). By definition, there exists a set of defaults
K ⊆ appl(Y) such that E ∪ B+ �K l. Without the loss of generality, we can assume
that K is minimal (with respect to the set inclusion operator). We prove that l ∈ Γ (Y)

by induction over |K|, the cardinality of K . The inductive case, |K| = 0, is trivial since
E ∪B+ ⊆ Γ (Y) and Γ (Y) is deductively closed. Assume that we have proved the lemma
for |K| = n. Consider the case |K| = n+ 1. Without the loss of generality, we can assume
that K = {d1, . . . , dn, dn+1} and d1, . . . , dn+1 is a defeasible derivation of l. By Definition
3.2 and the inductive step, we can conclude that bd(di) ⊆ concl(Y) and bd(di) ⊆ Γ (Y)

for every i ∈ {1, . . . , n + 1}. This implies that hd(di) ∈ concl(Y) and hd(di) ∈ Γ (Y) for
every i ∈ {1, . . . , n + 1}. Again, because Γ (Y) is deductively closed, we conclude that
l ∈ Γ (Y) because l ∈ Th(E∪B+∪{hd(d1), . . . ,hd(dn+1)}). The inductive step, and hence,
the lemma is proved. ✷
Lemma D.10. S is an extension of R′

T iff S = Th(B+ ∪ concl(S)).

Proof. (⇒) Let S be an extension of R′
T . Recall that S is an extension of R′

T iff S = Γ (S).
It is easy to see that S′ = Th(B+ ∪ concl(S)) satisfies the following properties:

(i1) E ∪B+ ⊆ S′ (because E ∪B+ ⊆ Th(concl(S))),
(i2) S′ is deductively closed (because of its definition), and
(i3) if α:β

γ
∈DT , α ∈ S′, and ¬β /∈ S then γ ∈ S′.

Thus, because of the minimality of Γ (S), we have that Γ (S) ⊆ Th(B+ ∪ concl(S)).
On the other hand, because S is an extension of R′

T , concl(S) ⊆ Γ (S). This, together
with (c3), shows that B+ ∪ concl(S) ⊆ Γ (S). Because of (c2), we can conclude that
Th(B+ ∪ concl(S))⊆ Γ (S). Hence, S = Γ (S)= Th(B+ ∪ concl(S)).

(⇐) Let S be a set of first-order sentences in R′
T such that S = Th(B+ ∪ concl(S)). It

is easy to see that E ∪ B+ ⊆ S and S is deductively closed. Furthermore, concl(S) ⊆ S,
and hence, Γ (S) ⊆ S because of the minimality of Γ (S). By Lemma D.9, we have that
concl(S) ⊆ Γ (S). Because B+ ⊆ Γ (S) and Γ (S) is deductively closed, we have that
S = Th(B+ ∪ concl(S)) ⊆ Γ (S). This implies that S = Γ (S), i.e., S is an extension of
R′

T . ✷

82 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

Lemma D.11. Let S be an extension of T . Then, A= Th(B+ ∪ Consequence(DT ,S)) is
an extension of R′

T .

Proof. It is easy to see that abd ∈A iff abd ∈ Consequence(DT ,S). Thus, by Lemma D.8,
abd ∈A iff abd ∈Ab(S). Hence, appl(A)= Reduct(DT ,S). Therefore,

concl(A)= Consequence(DT ,S).

Thus, A= Th(B+∪concl(A)). By Lemma D.10, we have that A is an extension of R′
T . ✷

Lemma D.12. Let A be a consistent extension of R′
T . Then, S = {d | d ∈D and abd /∈A}

is an extension of S.

Proof. It is easy to see that Ab(S)= {abd | d ∈D∗ and abd ∈A}. By construction of S, it
is easy to see that S ⊆ Reduct(DT ,S).

First, we prove that S does not attack itself. Assume the contrary, i.e., S attacks some
d ∈ S. We consider two cases. S attacks d by conflict, that means that E ∪ B �S ¬hd(d).
This implies that ¬hd(d) ∈ A, i.e., abd ∈ A. This contradicts the assumption that d ∈ S.
Hence, this case cannot occur. S attacks d by specificity. This means that there exists a
default c ∈ S such that c ≺S d and E ∪B �S bd(c). So, bd(c)⊆A and bd(cd)⊆A, which
implies that abd ∈ A. Again, this contradicts the fact that d ∈ S, i.e., this case cannot
happen too. Thus, our assumption is incorrect, i.e., we have proved that S does not attack
itself.

For each d ∈ D \ S, either (i) ¬hd(d) ∈ A or (ii) there exists some c ∈ D such that
bd(c) ⊆ A and bd(cd) ⊆ A. (i) implies that S attacks d by conflict; (ii) implies that
bd(c) �K bd(d) for some K ⊆ S and E ∪ B �S bd(c), i.e., S attacks d by specificity.
Both cases prove that S attacks d , i.e., S attacks every default that does not belong to S.
Together with the fact that S does not attack itself, we conclude that S is an extension of
T . The lemma is proved. ✷

We now prove Theorem 5.1.

Theorem 5.1. Let T be a default theory and l be a ground L-literal. Then, T |∼ l iff l is
contained in every extension of RT .

Proof. Because of Lemma D.5, it is sufficient to prove that T |∼ l iff l is contained in every
extension of R′

T .
Let T |∼ l, and A be an extension of R′

T . We want to prove that l ∈A. Let S = {d | d ∈D

and abd /∈A}. From Lemma D.11, it follows that S is an extension of T . Hence l ∈ csq(S).
Because csq(S)⊆ concl(W), it follows that l ∈ concl(A). Thus, l ∈A.

Let l be a L-literal contained in every extension of R′
T . We want to prove that T |∼ l.

Let S be an extension of T . Let A= Th(B+ ∪Consequence(DT ,S)). We have that l ∈A.
From the definition of csq(S), it follows that l ∈ csq(S). ✷

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 83

References

[1] J.J. Alferes, L.M. Pereira, Reasoning with Logic Programming, Lecture Notes in Artificial Intelligence,
Vol. 1111, Springer, Berlin, 1996.

[2] F. Baader, B. Hollunder, How to prefer more specific defaults in terminological default logic, in: Proc.
IJCAI-93, Chambéry, France, Morgan Kaufmann, San Mateo, CA, 1993, pp. 669–674.

[3] A. Bondarenko, P.M. Dung, R.A. Kowalski, F. Toni, An abstract, argumentation-theoretic approach to
default reasoning, Artificial Intelligence 97 (1997) 63–101.

[4] G. Brewka, Cumulative default logic: In defense of nonmonotonic inference rules, Artificial Intelligence 50
(1992) 183–205.

[5] G. Brewka, Adding priorities and specificity to default logic, in: Proc. European Workshop on Logics in AI
(JELIA’94), Lecture Notes in Artificial Intelligence, Vol. 838, Springer, Berlin, 1994, pp. 247–260.

[6] G. Brewka, Reasoning about priorities in default logic, in: Proc. AAAI-94, Seattle, WA, AAAI Press, 1994,
pp. 940–945.

[7] G. Brewka, T. Eiter, Preferred answer sets for extended logic programs, Artificial Intelligence 109 (1999)
297–356.

[8] J.P. Delgrande, T.H. Schaub, Compiling specificity into approaches to nonmonotonic reasoning, Artificial
Intelligence 90 (1997) 301–348.

[9] J.P. Delgrande, T.H. Schaub, A general approach to specificity in default reasoning, in: Proc. 4th
International Conference on Knowledge Representation and Reasoning (KR-94), Bonn, Germany, Morgan
Kaufmann, San Mateo, CA, 1994, pp. 47–158.

[10] Y. Dimopoulos, B. Nebel, F. Toni, Preferred arguments are harder to compute than stable extensions, in:
Proc. IJCAI-99, Stockholm, Sweden, Morgan Kaufmann, San Mateo, CA, 1999, pp. 36–41.

[11] Y. Dimopoulos, B. Nebel, F. Toni, Finding admissible and preferred arguments can be very hard, in: T.
Cohn, F. Giunchiglia, B. Selman (Eds.), Proceedings of the 7th International Conference on Principles of
Knowledge Representation and Reasoning (KR-2000), Breckenridge, CO, Morgan Kaufmann, San Mateo,
CA, 2000, pp. 53–61.

[12] P.M. Dung, Negation as hypothesis: An abductive foundation for logic programming, in: K. Furukawa (Ed.),
Proceedings of the 8th International Conference on Logic Programming (ICLP’91), MIT Press, Cambridge,
MA, 1991, pp. 3–17.

[13] P.M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games, Artificial Intelligence 77 (1995) 321–357.

[14] P.M. Dung, T.C. Son, Nonmonotonic inheritance, argumentation, and logic programming, in: Proc. 3rd
International Conference on Logic Programming and NonMonotonic Reasoning Conference (LPNMR’95),
Lecture Notes in Artificial Intelligence, Vol. 928, Springer, Berlin, 1995, pp. 316–329.

[15] P.M. Dung, T.C. Son, An argumentation-theoretic approach to default reasoning with specificity, in: Proc.
5th International Conference on Knowledge Representation Reasoning (KR-96), Cambridge, MA, Morgan
Kaufmann, San Mateo, CA, 1996, pp. 407–418.

[16] P.M. Dung, T.C. Son, Default reasoning with specificity, in: Proc. First International Conference on
Computational Logic (CL’00), Lecture Notes in Computes Science, Vol. 1861, Springer, Berlin, 2000,
pp. 792–805.

[17] P.M. Dung, T.C. Son, An argument-based approach to reasoning with specificity, Technical Report,
Computer Science Department, New Mexico State University, Las Cruces, NM, March 2001.

[18] M.R. Garey, D.S. Johnson, Computers and Intractability—A Guide to the Theory of NP-Completeness,
Freeman, San Francisco, CA, 1979.

[19] P. Geerts, D. Vermeir, A nonmonotonic reasoning formalism using implicit specificity information, in: Proc.
2th International Conference on Logic Programming NonMonotonic Reasoning Conference (LPNMR’93),
MIT Press, Cambridge, MA, 1993, pp. 380–396.

[20] H. Geffner, J. Pearl, Conditional entailment: Bridging two approaches to default reasoning, Artificial
Intelligence 53 (1992) 209–244.

[21] M. Gelfond, T.C. Son, Prioritized default theory, in: Selected Papers from the Workshop on Logic
Programming Knowledge Representation 1997, Lecture Notes in Artificial Intelligence, Vol. 1471, Springer,
Berlin, 1998, pp. 164–223.

84 P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85

[22] M. Goldszmidt, J. Pearl, Qualitative probabilities for default reasoning, belief revision, and causal modeling,
Artificial Intelligence 84 (1–2) (1996) 57–112.

[23] J.F. Horty, Some direct theories of non-monotonic inheritance, in: D. Gabbay, C. Hogger, J. Robinson
(Eds.), Handbook of Logic in Artificial Intelligence and Logic Programming, Oxford University Press,
Oxford, 1994, pp. 111–187.

[24] A.C. Kakas, R.A. Kowalski, F. Toni, The role of abduction in logic programming, in: D. Gabbay, C.
Hogger, J. Robinson (Eds.), Handbook of Logic in Artificial Intelligence and Logic Programming 5, Oxford
University Press, Oxford, 1998, pp. 235–324.

[25] A.C. Kakas, F. Toni, Computing argumentation in logic programming, J. Logic Comput. 9 (1999) 515–562.
[26] J.F. Horty, R.H. Thomason, D.S. Touretzky, A skeptical theory of inheritance in nonmonotonic semantic

networks, Artificial Intelligence 42 (1987) 311–348.
[27] K. Konolige, Hierarchic autoepistemic theories for nonmonotonic reasoning, in: Proc. AAAI-88, St. Paul,

MN, AAAI Press, 1988, pp. 439–443.
[28] S. Kraus, D. Lehmann, M. Magidor, Nonmonotonic reasoning, preferential models and cumulative logics,

Artificial Intelligence 44 (1990) 167–207.
[29] V. Lifschitz, Computing circumscription, in: Proc. IJCAI-85, Los Angeles, CA, Morgan Kaufmann, San

Mateo, CA, 1985, pp. 121–127.
[30] W. Marek, M. Truszczyński, Nonmonotonic Logic: Context Dependent Reasoning, Springer, Berlin, 1993.
[31] D. Matkinson, K. Schlechta, Floating conclusion and zombie paths: Two deep difficulties in the ‘directly

skeptical’ approach to defeasible inheritance nets, Artificial Intelligence 48 (1989) 99–209.
[32] J. McCarthy, Circumscription—A form of nonmonotonic reasoning, Artificial Intelligence 13 (1–2) (1980)

27–39, 171–172.
[33] J. McCarthy, Applications of circumscription to formalizing common sense knowledge, Artificial Intelli-

gence 26 (3) (1986) 89–116.
[34] D. McDermott, J. Doyle, Nonmonotonic logic I, Artificial Intelligence 13 (1–2) (1980) 41–72.
[35] Y. Moinard, Preference by specificity in default logic, in: ESPRIT Project DRUMS RP1 1st Workshop,

Marseille, France, February 1990.
[36] R. Moore, Semantical considerations on nonmonotonic logic, Artificial Intelligence 25 (1) (1985) 75–94.
[37] I. Niemelä, Towards efficient default reasoning, in: Proc. IJCAI-95, Montreal, Quebec, Morgan Kaufmann,

San Mateo, CA, 1995, pp. 312–318.
[38] J. Pearl, System Z: A natural ordering of defaults with tractable applications to nonmonotonic reasoning, in:

Proc. 3rd Conference on Theoretical Aspects of Reasoning about Knowledge (TARK’90), 1990, pp. 121–
135.

[39] J.L. Pollock, Defeasible reasoning, Cognitive Sci. 17 (1987) 481–518.
[40] D. Poole, On the comparison of theories: Preferring the most specific explanation, in: Proc. IJCAI-85, Los

Angeles, CA, Morgan Kaufmann, San Mateo, CA, 1985, pp. 144–147.
[41] H. Prakken, G.A.W. Vreeswijk, Logics for defeasible argumentation, in: D. Gabbay (Ed.), Handbook of

Philosophical Logic, Oxford University Press, Oxford, 1991.
[42] R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1–2) (1980) 81–132.
[43] R. Reiter, G. Criscuolo, On interacting defaults, in: Proc. IJCAI-81, Vancouver, BC, Morgan Kaufmann,

San Mateo, CA, 1981, pp. 270–276.
[44] E. Sandewall, Nonmonotonic inference rules for multiple inheritance with exceptions, Proc. IEEE 74 (10)

(1986) 1345–1353.
[45] B. Selman, H.J. Levesque, The complexity of path-based defeasible inheritance, Artificial Intelligence 62 (2)

(1993) 303–340.
[46] G.R. Simari, R.P. Loui, A mathematical treatment of defeasible reasoning and its implementation, Artificial

Intelligence 52 (1992) 125–257.
[47] G. Simonet, On Sandewall’s paper: Nonmonotonic inference rules for multiple inheritance with exceptions,

Artificial Intelligence 86 (2) (1996) 359–374.
[48] G. Simonet, R. Ducournau, On Stein’s paper: Resolving ambiguity in nonmonotonic inheritance hierarchies,

Artificial Intelligence 71 (1994) 183–193.
[49] L.A. Stein, Resolving ambiguity in nonmonotonic inheritance hierarchies, Artificial Intelligence 55 (1993)

259–310.

P.M. Dung, T.C. Son / Artificial Intelligence 133 (2001) 35–85 85

[50] M. Thielscher, A nonmonotonic disputation-based semantics and proof procedure for logic programs, in:
M. Maher (Ed.), Proc. 1996 Joint International Conference and Symposium on Logic Programming, Bonn,
Germany, MIT Press, Cambridge, MA, 2000, pp. 483–497.

[51] D. Touretzky, The Mathematics of Inheritance Systems, Morgan Kaufmann, San Mateo, CA, 1986.
[52] G.A.W. Vreeswijk, The feasibility of defeat in defeasible reasoning, in: Proc. 2nd International Conference

on Knowledge Representation Reasoning (KR-91), Cambridge, MA, Morgan Kaufmann, San Mateo, CA,
1991, pp. 478–483.

[53] J.H. You, X. Wang, L.Y. Yuan, Compiling defeasible inheritance networks to general logic programs,
Artificial Intelligence 113 (1) (1999) 247–268.

