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Abstract

We present a new priority-based approach to reasoning with specificity which subsumes
inheritance reasoning. The new approach differs from other priority-based approaches in the
literature in the way priority between defaults is handled. Here, it is conditiona rather than
unconditional asin other approaches. We show that any unconditional handling of priorities between
defaults as advocated in the literature until now is not sufficient to capture general defeasible
inheritance reasoning. We propose a simple and novel argumentation semantics for reasoning
with specificity taking the conditionality of the priorities between defaults into account. Since the
proposed argumentation semantics is a form of stable semantics of nonmonotonic reasoning, it
inherits a common problem of the latter where it is not always defined for every default theory.
We propose a class of stratified default theories for which the argumentation semantics is aways
defined. We also show that acyclic and consistent inheritance networks are stratified. We prove that
the argumentation semantics satisfies the basic properties of a nonmonotonic conseguence relation
such as deduction, reduction, conditioning, and cumulativity for well-defined and stratified default
theories. We give a modular and polynomial transformation of default theories with specificity into
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1. Introduction

Default reasoning is a form of reasoning which is often employed by humans to make
conclusions using commonsense knowledge even if some conclusions will turn out to be
incorrect when new information is available. For instance, if al we know about Tweety is
that it is a bird, we will conclude that Tweety flies because birds normally fly. If we later
learn that Tweety is a penguin, we will withdraw that conclusion and infer that Tweety does
not fly because (i) normally, penguins do not fly and (ii) normally, conclusions supported
by more specific information prevail over those supported by less specific ones. While (i)
represents a part of our common knowledge about penguins, (ii) does not. It is one of the
generally accepted principles, often referred to as the specificity principle, used in default
reasoning to resolvethe conflict between contradictory conclusions. Default reasoning with
specificity refersto default reasoning approacheswhich use the specificity principle as one
of their conflict resolution strategies.

General approaches to nonmonotonic reasoning such as Reiter's default logic [42],
McCarthy’s circumscription [32], Moore's autoepistemic logic [36], or McDermott and
Doyle’'s nonmonotonic logic [34] do not take specificity into consideration, i.e., the
reasoning process in these approaches does not admit the specificity principle. For
example, a naive representation of the above information about Tweety by the following
default theory in Reiter’s default logic notation

<{pengui n(Tweety), penguin(X) > bird(X)},

{ bird(X) : fly(X) penguin(X) : —fly(X) })
fly(X) ’ —fly(X)

(%)

would not yield the intuitive conclusion that Tweety does not fly, i.e., —fly(Tweety) cannot
be concluded since the theory has two extensions and —fly(Tweety) holds in one extension
and does not hold in the other. Thereason for thisistheinteraction between the two defaults
in (x), first noticed by Reiter and Criscuolo [43]. They discussed various situations, in
which the interaction between defaults of anormal default theory can be compiled into the
origina theory to create a new default theory whose semantics yields the intuitive results.
In the case of Tweety, their method yields the following default theory

<{ penguin(Tweety), penguin(X) O bird(X)},

bird(X) : —=penguin(X) A fly(X) penguin(X) : —fly(X)
i )

which entails —fly(Tweety) because it has only one extension that contains —fly(Tweety).
It has been recognized relatively early that priorities between defaults can help in
dealing with specificity. Priorities can be used to remove unintuitive models. In prioritized
circumscription, first defined by McCarthy [33], a priority order between predicates
is added into each circumscription theory. Lifschitz [29] later proved that prioritized
circumscription is a special case of parallel circumscription. A similar approach has been
taken by Konolige [27] in using autoepistemic logic to reason with specificity. He defined
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hierarchical autoepistemic theories in which a preference order between sub-theories and
a syntactical condition on the sub-theories ensure that higher priority conclusions will
be concluded. Brewka [6]—in defining prioritized default logic—also adds a preference
order between defaultsinto a Reiter’s default theory and modifies the semantics of default
logic in such a way that guarantees that default of higher priority is preferred. Baader
and Hollunder [2] devel ops prioritized default logic to handle specificity in terminological
systems. All of the approachesin [2,6,27,29,33] assume that priorities between defaults are
given by the users. For this reason, these approaches are sometime called reasoning with
explicit specificity.

Contrary to approachesto reasoning with explicit specificity are approachesto reasoning
with implicit specificity in which a mechanism for computing the priority order between
defaults is provided. Poole [40] is an early attempt to extract the preference between
defaults from the theory. Poole defined a notion of more specific between pairs consisting
of aconclusion and an argument supporting this conclusion. Moinard [35] pointed out that
Pool€e’s definition yields unnecessary priority, for example, it can arise even in consistent
default theories. He also suggested five principles for establishing the priority between
defaults. Simari and Loui [46] noted that Poole’s definition does not take into consideration
the interaction between arguments. To overcome this problem they combined Poole's
approach and Pollock’s theory [39] to define an approach that unifies various approaches
to argument-based defeasible reasoning. Geffner and Pearl [20] also used an implicit
priority order to define conditional entailment, an approach that exhibits the advantages of
both conditional and extensional approachesto default reasoning. Conditional entailment,
however, is too weak in that it does not capture inheritance reasoning. Pearl [38] aso
discussed how a preference relation between defaults can be established. In alater session,
we will discuss Pearl’s proposal in more details.

Obtaining specificity information is one problem, using specificity is another critical
problem in reasoning with specificity. It can be used directly to define a new formalism
that accounts for specificity. Examples of these systems can be found in [2,5,19,20,
22,38,40,46]. Specificity can also be used indirectly. The idea is to compile it into a
general nonmonotonic reasoning approach thus avoiding the burden of introducing a new
semantics. In the recent years, these approaches seem to get more attention than those
using specificity directly [7-9,15,21]. Regardless of whether specificity is used directly
or indirectly, in many approaches [2,5,9,19,20,22,38,40,46], the priority order is used
unconditionally, independent of the concrete context. Aswewill show in Section 2, priority
order should be used conditionally, if ageneral approach to reasoning with specificity were
to capture nonmonotonic inheritance reasoning.

Argumentation has been recognized lately as an important and natural approach to
nonmonotonic reasoning [1,3,10-13,15,20,24,25,39-41,46,50]. Dung [13] introduced a
simple and abstract argumentation framework. Central to an argumentation framework
is a notion of an argument and a binary relation, called the attack relation, between
arguments. The semantics of an argumentation framework specifies what set of arguments
is acceptable. Like other nonmonotonic logics, argumentation also has different types of
semantics such as the preferred, stable, or well-founded semantics. Dung also proved that
well-known honmonotonic logics like autoepistemic logic, Reiter’s default logic and logic
programming represent different forms of a simple system of argumentation reasoning.
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Based on the results in [13], a simple argument-based logical system has been devel oped
in [3] which captures well-known nonmonotonic logics like autoepistemic logic, Reiter’s
default logic and logic programming as special cases.

Early attempt in using argumentation in default reasoning with specificity can be
attributed to Poole [40] in which a more specific relation between pairs of arguments
and conclusions is defined. Although the semantics provided by this approach is rather
weak, it has inspired others to use argumentation in default reasoning with specificity.
Geffner and Pearl [20] employed argumentation to give a proof procedure for conditional
entailment. Simari and Loui [46] developed an argumentation system for reasoning with
specificity. Both systems are rather weak in that it does not capture inheritance reasoning.
On the other hand, reasoning based on arguments represented as paths, has been studied in
nonmonotonic inheritance reasoning, a specia field of nonmonotonic reasoning, from the
very first day [51] and then in [23,26,44,47-49]. Path-based approaches to nonmonotonic
inheritance networks are widely accepted because they areintuitive and easy to implement.
In [14], we proved that argument-based approaches to inheritance reasoning could be
viewed as a simple form of argumentation. In a later work [15], we extended this result
and showed that argumentation offers a natural and intuitive framework for dealing with
specificity. However, the expressibility of default theories in [15] is rather limited in that
the language for representing default theories does not admit material implication and
digunction.

This paper is concerned with approaches in which an implicit priority order between
defaults is used to resolve conflicts. We concentrate on two important questions of
reasoning with specificity:

(1) How to compute specificity?

(2) How to use specificity?

We propose a novel method to assign priority order to defaults which can be seen as
a generalized version of Touretzky’s specificity principle in inheritance reasoning [51].
We also show that specificity must be applied conditionaly if a general approach to
reasoning with specificity wereto capture general defeasibleinheritance reasoning. I nstead
of developing a new system for reasoning with specificity, we compile specificity into
an argumentation system and develop a smple and novel argumentation semantics for
reasoning with specificity taking the conditionality of the priorities between defaults into
account. The new framework improvesour previouswork [15] in two aspects. It eliminates
the syntactical restrictions on default theories and the more specific relation is much
simpler than the previously defined more specific relation. T We will show that our method
overcomes the shortcoming of the existing proposals in the literature by proving that
our formalism captures general inheritance reasoning. Since the proposed argumentation
semanticsis aform of stable semantics of honmonotonic reasoning, it inherits a common
problem of the latter where it is not always defined for every default theory. We propose
alarge class of stratified default theories for which the argumentation semanticsis aways
defined. We also show that acyclic and consistent inheritance networks [23] are stratified.
We prove that the argumentation semantics satisfies the basic properties of nonmonotonic
consequence relations such as deduction, reduction, conditioning, and cumulativity for

1 Section 6.1 provides a detailed comparison between the two approaches.
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well-defined and stratified default theories. To compute the newly defined entailment
relation, we transform default theorieswith specificity into semantically equivalent Reiter’s
default logic (for acollection of algorithmsfor Reiter’s default logic, the reader can consult
[30]). The trandation is modular with respect to the extension of a default theory. Most
importantly, it is polynomial in the size of the original default theory.

The paper is organized as follows. We first argue that in inheritance reasoning,
specificity between defaultsis conditional thus can not be used unconditionally (Section 2).
In Section 3, we present our approach to reasoning with specificity and define an
argumentation semantics for it. We then study the existence of the proposed semantics.
In Section 4, we introduce the class of sratified default theories and study the general
properties of the newly defined semantics. We show that acyclic inheritance networks
are stratified default theories. In Section 5, we give a polynomial transformation of our
framework into Reiter's default logic. We relate our approach to other approaches in
Section 6. Finally, we conclude in Section 7.

2. Why should specificity be conditional?

Formally a default theory T could be defined as a pair (E, K) where E is a set of
evidence or facts representing what we call the concrete context of T, and K = (D, B)
congtitutes the domain knowledge consisting of a set of default rules D and a first-order
theory B representing the background knowledge. In the literature [2,5,9,19,20,38] the
principle of reasoning with specificity is “enforced” by first determining a set of priority
orders between defaults in D using the information given by the domain knowledge K .
Based on these priorities between defaults and following some sensible and intuitive
criteria, the semantics of T isthen defined either model-theoretically by selecting a subset
of the set of all modelsof E U B asthe set of preferred models of T or proof-theoretically
by selecting certain extensions as preferred extensions. The problem of these approaches
is that their semanticsis rather weak: they do not capture general defeasible inheritance
reasoning. There are many intuitive examples of reasoning with specificity (one of themis
given below) that cannot be handled in these approaches. The reason is that the priorities
between defaults are conditional thus cannot be used unconditionally.

Priority orders are strict partial orders? between defaultsin D. Let PO be the set of
all such priority orders. For each priority order o € POk, where (d, d’) € o means that d
is of lower priority than d’, apriority order <, between the sets of defaultsin D is defined
where § <, S’ meansthat S is preferred to S’. There are many ways to define <, [2,5,
9,19,20,22,38,40]. But whatever the definition of <, is, <, has to satisfy the following

property.
Letd, d’ betwo defaultsin D suchthat (d,d’) € . Then {d'} <, {d]}.
<« Can be extended into a partial order between modelsof B U E asfollows:

M <o M iff Dy <o Dy

2 Strict partial orders are transitive, irreflexive and antisymmetric relations.
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Fig. 1. Student-adult-married network.

where Dy, isthe set of al defaultsin D which are truein M whereas adefault p — ¢ is
said to betruein M iff the material implication p = ¢ istruein M.

A model M of B U E isdefined as a preferred model of T if there exists a partial order
a in POk such that M is minimal with respect to <,. We then say that a formula 8 is
defeasibly derived from T if g holdsin each preferred model of T'.

Now we want to show that any preferential semantics based on <, cannot account in
full for general inheritance reasoning.

Example2.1. Let usconsider thefollowing inheritance network 3 (Fig. 1), wherethelinks
s A m,a— m,and s — y represent the normative sentences “normally, students are
not married”, “normally, adults are married”, and “normally, students are young adults’,
respectively, and, the strict link y = a represents the subclass relation “young adults are
adults”.

This defeasible inheritance network represents the domain knowledge (B, D) with
B={y=a},and D ={d1:a - m, d2:s — —m, d3:s — y}.

Consider now the marital status of a young adult who is also a student. The problem
is represented by the default theory T = (E, B, D) with E = {s, y,a}. The desirable
semanticshereisrepresented by themodel M = {s, y, a, —m}. To deliver thissemantics, all
priority-based approaches in the literature [2,5,9,19,38] assigns default 1 a lower priority
than default 2.

Let us consider now the marital status of another student who is an adult but not a
youngone. Let T’ = (E’, B, D) with E' = {s, =y, a}. Now, since y does not hold, default
2 cannot be considered more specific than default 1. Hence, it is intuitive to expect that
neither m nor —m should be concluded in this case. Thisis aso the result sanctioned by
al semantics of defeasible inheritance networks [23,26,44,47-49]. In any priority-based
system employing the same priorities between defaults with respect to E’ as with respect
to E,wehave M = {—m,s,—y,a} <¢ M' ={m,s,—y,a} since Dy = {2} <, D), = {1}
(dueto (1,2) € o). That means priority-based approaches in the literature conclude —m
given (E’, K) which is not the intuitive result we expect.

3 Throughout the paper, solid lines and dash lines represent strict rules and default rules, respectively.
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To produce a correct semantics, 1 should have lower priority than 2 only when default
3 can be applied and hence making default 2 more specific than default 1. In genera, the
example shows that specificity-induced priorities between defaultsis conditional.

3. A general framework

We assume a propositional language £. For convenience, we use variables in our
representation and a formulawith variablesis viewed as shorthand of the set of its ground
instantiations. The set of ground literals of £ is denoted by lit(£). Literals of £ will be
called hereafter simply literals (or £-literals) for short. Following the literature, a default
theory is defined as follows:

Definition 3.1. A default theory T isatriple (E, B, D) where
(i) E isaset of ground literals representing the evidence of the theory,
(if) B isaset of ground clauses,
(iii) D isaset of defaults of theform Iy A --- AL, — lo where [;’s are ground literals,
and
(iv) E U B isaconsistent theory.

Notice that in the above definition, we use — to denote a default implication. The
material implication is represented by the = symbol. Intuitively, a — b means that
“typically, if a holds then b holds’ while @ = b means that “whenever a holds then b
holds’. For adefault d =13 A --- AL, — lp, wedenotels A --- AL, and lp by bd(d) and
hd(d), respectively.

Example 3.1. Consider the famous penguin and bird example with B = {p = b}
(penguins are birds) and D consisting of two defaults p — — f (normally, penguins do
not fly) and b — f (normally, birdsfly).

The question is whether penguins fly. This problem is represented by the default theory
T = (E, B, D) where E = {p}.

Fig. 2. Penguin-bird-fly network.
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We next define the notion of defeasible derivation that will be used to draw conclusions
given a default theory. Intuitively, a defeasible derivation represents a possible proof for a
conclusion.

Definition 3.2. Let T = (E, B, D) be adefault theory and I be aground literal.
e A sequence of defaults ds, ..., d, (n > 0) issaid to be a defeasible derivation of [ if
following conditions are satisfied:
(1) n=0and E U B+ [ wheretherelation - represents the first-order consequence
relation, or
(2) n>0and
(@ EUBU{hd(d1),...,hd(d;)} Fbd(d;+1) fori e{1,...,n— 1}, and
(b) EUBU{hd(d1),...,hd(d,)} 1.
e We say [ isapossible consequence of E with respect to B and a set of defaults K C D,
denotedby E U B ¢ [, if there exists adefeasible derivation dy, . . ., d,, of I such that
foral 1<i<n,d; eK.

For a set of literals L we write E U B g L iff Vie L. E U B g [. We write
E U B g L%iff thereis an atom a such that both E U B ¢ a and E U B g —a hold.
For the default theory T from Example 2.1, it iseasy to check that E U B (s, —,;; —m and
EUBVFy asmym. Hence EU B p L. We say that aset of defaults K is consistent
inTif EUB g L. K isinconsistent if it is not consistent.®

3.1. The " more specific” relation

We now define the notion of “more specific” between defaults which generalizes the
specificity principle of Touretzky in inheritance reasoning. Consider for example the
network from Example 2.1, it is clear that being a student is more specific than being
a young adult. Since being a young adult is always more specific than being an adult,
it follows that being a student is more specific than being an adult if the respective
individual is a young adult. This stipulates us to say that the default s — —m (students
are normally not married) is more specific than the default « — m (adults are normally
married) provided that the default s — y (students are normally young adults) can be
applied. Similarly, in Example 3.1, since penguins are birds we can conclude that the
default p — —f (penguins do not fly) is always more specific than b — f (birds fly).
This discussion leads to the following definition.

Definition 3.3. Let d1, d2 be two defaultsin D. We say that d; is more specific than da
with respect to a set of defaults K € D, denoted by dy < do, if
(i) BU{hd(d1), hd(d2)} isinconsistent,
(if) bd(d1) U B g bd(d2), and
(iii) bd(d1) U Btk L.

4 Throughout the paper, we use T and _L to denote True and False, respectively.
5 there is no possibility for misunderstanding, we often simply say consistent instead of consistent in 7.
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In the above definition (i) guarantees that a priority is defined between two defaults
only if they arein conflict, (ii) ensuresthat being bd(d1) is a specia case of being bd(d2)
provided that the defaultsin K can be applied, and (iii) guaranteesthat K isaconsistent set
of defaults. We could say that thisis a generalization of Touretzky’s specificity principleto
general propositional default theories. In [15], the more specific relation is defined based
on the notion of minimal conflict set, which in turn is defined based on the notion of
defeasible derivation. As it can be seen, the above definition is much simpler than that
was proposed in [15]. Besides, it allows us to deal with default theories with nonempty
background knowledge. In alater section, wewill discussthisin moredetails. When K = ¢
we say that d1 is strictly more specific than d> and write d1 < do instead of d1 <y do.

Example 3.2. In Example 2.1, d2 <45 d1 holds, i.e., d2 is more specific than dy if d3 is
applicable.
In Example 3.1, it isobviousthat d> < d1, i.e., do is strictly more specific than d.

Notice that for the default theory in Example 2.1, even though bd(d3) U B  bd(d1),
the relation d3 < dq does not hold because d3 and dq are not in conflict, i.e, B U
{hd(d3), hd(d1)} I L. That is, instead of saying that adefault is more specific than another
default if its body is more specific than that of the other’s one, we employ a stronger notion
of more specific here. Thus, our approach to specificity could be referred to as specificity-
with-conflict. ® This allows us to combine both specificity and inconsistency into asimple,
but central to argumentation reasoning, notion of ‘attack’ (defined below) which will be
used for conflict resolution. Further, the stable semantics defined for default theories in
this paper isakind of credulous semanticsthat admits maximal set of conclusionswhen no
conflict arises. Therefore, a more specific relation among non-conflicting pairs of defaults
would be spurious.

3.2. Sable semantics of default reasoning with specificity

The semantics of a default theory is defined by determining which defaults can be
applied to draw new conclusions from the evidence. For example, the semantics of the
network in Example 2.1 is defined by determining that the defaults which could be applied
are2and 3.

In the following, we will see that an argumentation-theoretic notion of attack between
a set of defaults K and a default d lies at the heart of the semantics of reasoning with
specificity.

Suppose that K C D is a set of defaults we can apply. Further let d be a default such
that E U B Fx —hd(d). It is obviousthat d should not be applied together with K. In this
case, we say that K attacks d by conflict. For illustration of attack by conflict, consider the
default theory T in Example 2.1. Let K = {d3, d>}. Since E U B g —m, K attacksdy by
conflict. Similarly, K’ = {d3, d1} attacks d2 by conflict because E U B g+ m.

The other case where d should not be applied together with K iswhereit isless specific
than some default with respect to K. Formally, this means that if there exists d’ € D

6 Suggested by areviewer.
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a

Fig. 3. Nixon-diamond.

such that d’ <x d and E U B Ik bd(d") then d should not be applied together with the
defaultsin K. In this case we say that K attacks d by specificity. For illustration of attack
by specificity, consider again the default theory T in Example 2.1. Let K = {d3}. Because
d2 <45y d1and E U B 14, bd(d), K attacks d1 by specificity.

The following definition summarizes what we have just discussed:

Definition 3.4. Let T = (E, B, D) beadefault theory. A set of defaults K issaid to attack
adefaultd in T 7 if:

(1) (Attack by conflict) E U B ¢ —hd(d), or

(2) (Attack by specificity) Thereexistsd’ € D suchthat d’ <x d and E U B g bd(d").

Note that there is an important difference between attack by conflict and inconsistency.
Itispossiblethat though K isconsistent and K U {d} isinconsistent but K does not attack
d by conflict. It is also possible that K attacks some default d by conflict though K U {d}
is consistent. The Nixon diamond example (Fig. 3) illustrates these points.

Let E ={a}, B=¢, and

D={dy:c—d, do:b— —d, d3.a— c, ds:a — b}.

Though K = {d1,d2,ds} is consistent and K U {d3} is inconsistent, K does not attack
dsz by conflict. Further, though K’ = {d>, d4} attacks d1 by conflict, K = K’ U {d1} is
consistent.

7 If there is no possibility for misunderstanding then T is often omitted.
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K issaid to attack someset H C D if K attacks some defaultin H. K is said to attack
itself if K attacks K. The stable semantics of argumentation is often defined as a set of
argumentsthat does not attack itself and that attacks every argument not belongingto it. In
the next definition, we employ thistype of semanticsin defining the semantics of a default
theory with specificity.

Definition 3.5. Let T = (E, B, D) be a default theory. A set of defaults S is called an
extension of 7 if S does not attack itself and attacks every default not belonging to it.

Definition 3.6. Let T = (E, B, D) be adefault theory. Let I beaground literal. We say T
entails/, denoted by T |~ [, if for every extension Sof T, EU B g [.

Because the defeasible consequence relation g subsumes the first-order consequence
relation (Definition 3.2), it is obvious that an inconsistent set of defaults attacks every
default. Thereforeit is clear that an extension is always consistent. We illustrate Definition
3.5in the next examples.

Example 3.3. Consider the theory in Example 3.1. We have that dy < d1, i.e, d2 is
strictly more specific than d1. Let K = {d1} and H = {d>}. Because {p} U By —f and
{ptUBFk f,wehavethat K and H attack d> and dy by conflict, respectively. Hence
both K and H attack every default not belonging to it. But while H does not attack itself,
K attacksitself by specificity because d; € K, d» < dy, and {p} U B g bd(d2). Hence H
isthe unique extension of T. Therefore T  — f.

Example 3.4.

(1) Consider the theory T in Example 2.1. Let H = {d3,d>}. Because {s,y,a} U
By —m, H attacks d1 by conflict. Furthermore, since {s, y,a} U B /g m and
{s,y,a}UBty —y, Hdoesnot attack itself by conflict. Because thereis no default
which is more specific than do or d3 with respect to H, H does not attack itself by
specificity. Hence H does not attack itself and attacks every default not belonging
toit. Therefore H isan extensionof T'.

Let K = {d1, d3}. Because d2 <k d1 and {s, y,a} U B -k bd(d2), K attacks d; by
specificity. Hence K isnot an extension of T'. It should be obviousnow that H isthe
only extension of T. Hence, T t —m.

(2) Consider the theory T’ in Example 2.1. Let H = {d»} and K = {d1}. Since
{s,—y,a}Fyg —m and {s, ~y,a} g m, and {s, -y, a} by -y, H atacks di, d3 by
conflict while K attacks do, d3 by conflict. Due to the fact that there are no defaults
d,d suchthatd <y d’ ord <k d’, both H and K do not attack themselves. Thus,
both H and K are extensionsof 7', and so, T’ * —m and T’ [ m.

Definition 3.5 of an extension of a default theory corresponds to the stable semantics
of argumentation which has been first introduced in [13] and later further studied in [3].
There are also a number of other semantics for argumentation which could be applied
to reasoning with specificity. But in this paper we will limit ourselves to the stable
semantics.
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3.3. Existence of extensions

A well-known problem of stable semantics in nonmonotonic reasoning is that it is not
always defined for every nonmonotonic logic. For example, stable model semanticsis not
aways defined for logic programs, i.e., there exist logic programs which do not possess a
stable model. The same holds for autoepistemic logic, i.e., not every autoepistemic theory
has a stable expansion. Similarly, there exists argumentation framework without stable
extensions. As our semanticsis aform of stable semantics of argumentation, it is expected
that the same problem will be encountered in our framework. The following example
originated from [9] confirms our expectation.

Example 3.5 [9]. Consider T = (E, ¥, D) with E ={a, b, c} and
D consists of the following defaults

diiang— —p,
dy:a— p,
dz:bAr— —q,
ds:b—q,
ds:c A p— —r,
dg.c—r.

Herewe havethat dq < do, d3 < da, and ds < dg.

Itiseasy to seethat for each K € D, thereisnod € D suchthat d <k dy or d <k dz or
d <K d5.

Wewill provethat T does not have an extension.

Assume the contrary that 7 has an extension S. We want to prove that d; € S. Assume
the contrary that d1 € S. Since E (4, p and S does not attack itself, we conclude that
do ¢ S. Thisimpliesthat S attacks d». There are two cases:

(1) S attacksdo by conflict. Thismeansthat E g —p, whichimpliesthat E g g.

(2) S attacks d» by specificity. Sincethe only defaultin D, that is more specific than dz,

isd1, S attacks d> by specificity impliesthat E g bd(dy). ThusE g g.

It follows from the above two cases that E g ¢. Therefore S contains d4. Now, consider
the two defaults ds and ds. Since d2 ¢ S, E /s bd(ds). Therefore S does not attack ds by
specificity. Further E t/g bd(ds) impliesthat E s —r. So, S does not attack dg by conflict
either. Again, because S is an extension, we have that dg € S. However, E 4 bd(ds),
which implies that S attacks d4 by specificity, i.e., S attacks itself. This contradicts the
assumption that S is an extension of 7. Thus the assumption that di € S leads to a
contradiction. Thereforeds ¢ S.

Similarly, we can prove that d3 ¢ S and ds ¢ S. Since S is an extension of T, §
attacks di1. This implies that S must attack d1 by conflict because there is no default in
D which is more specific than di. Thus d2 € S. Similar arguments lead to d4 € S and
de € S, i.e, S={d2,da,ds}. However, S attacks d> by specificity because d1 < d2 and
E U Bt bd(d1). Thismeans that S attacks itself which contradicts the assumption that
S is an extension of T. Thus the assumption that there exists an extension leads to a
contradiction. Therefore, we can conclude that there exists no extension of T'.
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In the next section we will introduce the class of stratified default theories for which
extensions always exist. We will also show that this class of theories is large enough to
cover general inheritance reasoning.

4, Stratified default theories

The definition of stratified default theories is based on the notion of a rank function
which isamapping from the set of ground literalslit(£) U {T, L} to the set of nonnegative
integers.

Definition 4.1. A default theory T = (E, B, D) over L is stratified if there exists a rank
function of T, denoted by rank, satisfying the following conditions:

(D rank(T) =rank(Ll) =0,

(2) for each ground atom [, rank(l) = rank(—1),

(3) for all literals! and I’ occurringin aclausein B, rank(l) = rank(l’), and

(4) foreachdefaultily,...,l,, — [l in D, rank{;) <rank(l),i € {1,...,m}.

Itisnot difficult to seethat all the default theoriesin Examples2.1 and 3.1 are stratified.
The following theorem shows that stratification guarantees the existence of extensions.

Theorem 4.1. Every stratified default theory has at least one extension.
Proof. In AppendixA.1. O
4.1. General propertiesof r

There is a large body of work in the literature [4,20,28,31] on what properties
characterize a defeasible consequence relation like . In generd, it is agreed that such
relation should extend the monotonic logical consequence relation. Further, since the
intuition of a default rule d is that bd(d) normally implies hd(d), we expect that in
the context E = {bd(d)}, T t hd(d) holds. Another important property of defeasible
consequencerelationsisrelated to the adding of proved conclusionsto atheory. Intuitively,
thismeansthat if T ~ a then we expect T and T + a © to have the same set of conclusions.
Formally, the discussed key properties are given below:

e Deduction: T 1 if EUBFI,

e Conditioning: If E = {bd(d)} ford € D, then T i~ hd(d),

e Reduction:If Thaand T +a b bthenT b, and

e Cumulativity:° If T ~aandT ~bthenT 4 a ~ b,
where T + a denotes the default theory (E U {a}, B, D).

8 T + 4 denotes the defauilt theory (E U {a}, B, D).
91In[20], this property is called augmentation.
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It is obviousthat whatever entailed by E U B isalso entailed by T. Hence, we have the
following theorem.

Theorem 4.2 (Deduction). Let T = (E, B, D) be an arbitrary default theory. Then, for
everyl elit(L), EUBFIlimpliesT p 1.

It is also easy to see that if T ~ a then every extension of T is aso an extension of
T +a. Thereforefrom T +a b~ b, itisobviousthat T ~ b. That meansthat  satisfiesthe
reduction property.

Theorem 4.3 (Reduction). Let T = (E, B, D) be an arbitrary default theory and a, b
lit(£) suchthat T vaand T +a r~b. Then, T t~ b.

Though the entailment relation ~ satisfies deduction and reduction, it does not satisfy
cumulativity in general as the following example shows.
Example4.1. Consider the default theory T = (E, B, D) (Fig. 4) where
E={f}, B=0, D={di:f—a,dz:a—c, d3.c— —a}.

Because the only member of the more specific relation is d1 <y4,,4,) d3, T has aunique
extension {d1, d>}. Hence, T va and T b c.

Now consider T + ¢. T + ¢ hastwo extensions: {d1, d»} and {d2, d3}. Thus, T + ¢ }* a.
Thisimpliesthat ~ isnot cumulative.

The next theorem provesthat stratification is sufficient to guarantee cumulativity.

Theorem 4.4 (Cumulativity). Let T = (E, B, D) be a stratified default theory and a, b be
literalssuchthat T a,and T ~b. Then T +a bt b.

Proof. InAppendix A.2. O

o)
/
¥

Fig. 4. A noncumulative default theory.
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Because stratification does not rule out the coexistence of defaultslikea — —¢, a — ¢,
conditioning does not hold for stratified theories as the following example shows.

Example4.2. LetT = ({a},%,{d1:a — —c, d2:a — c}).Itisobviousthat T isstratified.
Because d1 < d2 and d» < d1, both d1, d» are attacked by specificity by the empty set of
defaults. Thus the only extension of T isthe empty set. Hence, T (¢ —c, and T ¢ ¢. That
means that conditioning is not satisfied.

The coexistence of defaults like a — —¢, a — ¢ means that a is normaly ¢ and
normally —c¢ at the same time which is obviously not sensible. Hence it should not be
asurprise that conditioning is not satisfied in such cases.

The conditioning property would hold for a default & if in the context of bd(d), d is
the most specific default. The following definition formalizes this intuition. Let d < d’ if
d <k d’' for some K. Let <* bethetransitive closure of <.

Definition 4.2. A default theory T = (E, B, D) is said to be well-defined if for every
default d:
(1) d £%d,and
(2) forevery set K € D suchthat bd(d) U B gy L and bd(d) U B ik L, thereexist
d' € K suchthatd <k d’'.

Theorem 4.5 (Conditioning). Let T = (E, B, D) be a well-defined default theory, d be a
defaultin D, and E = bd(d). Then T i hd(d).

Proof. In AppendixB. O

It is interesting to note that well-definedness and stratification are two independent
concepts. Default theories like the one in Example 4.1 are well-defined but not stratified
while default theories like that in Example 4.2 are stratified but not well-defined. Further
while the Example 4.2 shows that stratification does not imply conditioning, Example 4.1
shows that well-definedness does not imply cumulativity.

We will show shortly that acyclic and consistent inheritance networks are stratified and
well-defined default theories.

4.2. Inheritance networks as stratified and well-defined default theories

In this subsection, we show that each inheritance network I can be viewed as a
default theory T~ and the semantics of the latter (as defined by Definition 3.5) captures
the credulous semantics of the former. Many different kinds of semantics of inheritance
networks have been proposed in the literature [23,26,44,49,51]. Among them, the off-
path credul ous semantics is probably the most well-known and accepted semantics. In this
subsection, wewill provethat the off-path credul ous semantics of an inheritance network I”
coincideswith the stable semantics of 7. We will not discuss the other types of semantics
of inheritance networks here but we believe that they too could aso be formalized within
our framework. Technically, each semantics of inheritance networks relies on its own
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definition of the more specific relation between paths. As such, we only need to change the
definition of the more specific relation accordingly, and the rest would follow. However,
developing aframework that captures all well-known semantics of inheritance networksis
in itself an interesting problem and deserves a separate study. For that reason, we leave it
out as a future work and continue with a brief review of basic definitions of inheritance
networks (see e.g. [23]).

An inheritance network I' is a directed graph with two types of nodes and four types
of links: individual nodes, predicate nodes and strict positive, strict negative, defeasible
positive, and defeasible negative links. A node x is an individual node if there is no link
which ends at x. Otherwise, it is apredicate node. A strict positive (respectively negative)
linkfromx to y isdenoted by x = y or y <= x (respectively x & y or y = x). A defeasible
positive (respectively negative) link from x to y isdenoted by x — y (respectively x 4 y).

Using the above representation, the inheritance network in Example 2.1 can be
represented by the set of links {s A m, s >y, y = a, a —> m}.

Notice the difference between strict link representation and defeasible link representa-
tion here. Thereason liesin the fact that paths can be extended (to alonger path) from both
ends of astrict link but only from the ending node of a defeasible link (see Definition 4.3).
For instance, both @ — b < ¢ and a — d = ¢ are considered as a path from a to ¢ but
a— b <« cisnot.

Semantically, individual nodes and predicate nodes in I represent the constants and
the unary predicates in T, respectively. Strict links denote material implication while
defeasible links represent defaults. Hence an inheritance network I can be trandated into
adefault theory T asfollows:

Let 7 and Pred, be the set of individual and predicates nodesin I, respectively. The
language £ of T consists of

(1) the set of constants I~ and

(2) the set of unary predicate symbols Pred .

From the definition of £, it is easy to see that each literal in £ has the form p(a) or
—p(a) where a is an individual node and p is a predicate node. T = (E, By, Dr) is
defined by 10

(1) Facts: for every individual nodea and alink a — p or a = p (respectively a A~ p

ora# p)inI, Ep contains p(a) (respectively —p(a)),

(2) Clauses: for every strict link p = g (respectively p % ¢)inI", p ¢ I, Bp contains

the clause p(X) = g (X) (respectively p(X) = —g (X)), and

(3) Defaults: for every defeasible link p — g (respectively p 4 g)inI", p ¢ I, Dp

containsthe default p(X) — ¢(X) (respectively p(X) — —g(X)).

It is easy to verify that the default theories in Examples 2.1 and 3.1 are obtained from
thetransformation of the corresponding inheritance networkswith one (implicit) individual
nodelinked to s in Example2.1 and to p in Example 3.1.

Reasoning in inheritance network are represented by paths which are formally defined
as specia sequences of links and are classified into direct, compound, strict, defeasible,
negative, or positive paths. A positive (respectively negative) path from x to y through

10 Note that clauses or defaults with variables are considered a shorthand for the set of their ground
instantiations.
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a path o is often denoted by n(x,o,y) (respectively 7 (x, o, y)). Paths are defined
inductively asfollows.

Definition 4.3 (Paths[23]).

(1) Direct path: A strict positive (respectively negative) link is a strict positive
(respectively negative) path. Similarly, a defeasible positive (respectively negative)
link is a defeasible positive (respectively negative) path.

(2) Compound path:

(@ if m(x, 0, p) isastrict positive path, then  (x, o, p) = g isastrict positive path,
w(x, 0, p) 7 g isadtrict negative path, 7 (x, o, p) 4= g isastrict negative path,
w(x, 0, p) — q isadefeasible positive path, and 7 (x, o, p) 4 g isadefeasible
negative path;

(b) if 7(x, 0, p) is adrict negative path, then 7 (x, o, p) < ¢ is a strict negative
path;

() if m(x, o, p) is adefeasible positive path, then 7 (x, o, p) = ¢ is a defeasible
positive path, 7 (x, o, p) % ¢ is a defeasible negative path, 7 (x, o, p) 4= g is
a defeasible negative path, 7 (x, o, p) — ¢ is a defeasible positive path, and
7 (x, 0, p) # q isadefeasible negative path;

(d) if 7(x, 0, p) is adefeasible negative path, then 7 (x, o, p) < ¢q is a defeasible
negative path.

Paths represent proofs using defaults, modus ponens and contrapositive reasoning.
A dirict positive (respectively negative) path represents a derivation of an indefeasi-
ble conclusion. For example, a strict positive (respectively negative) path from an in-
dividual node x to a predicate node y is a proof for the conclusion “x has the prop-
erty y” (respectively “x does not have the property y”). On the other hand, a defeasi-
ble positive (respectively negative) path represents a derivation of a defeasible conclu-
sion.

Reasoning in inheritance networks is done by selecting a set of paths as a set of
acceptable arguments. In the literature, the considered networks are often assumed to be
acyclic and consistent [23,26,44,47-49,51]. We recall these two notions below.

The definition of acyclicity is based on the notion of generalized paths where a
generalized path is either a link or a compound generalized path of one of the following
theforms.t - x, T A x, T=x, T4 x, T ¢ x, T < x Where t isageneralized path.
A network I" is acyclic if I contains neither a defeasible generalized path nor a strict
positive path whose starting and end points coincide. By definition, the networks in all
examples until now with the exception of Example 4.1, are acyclic.

Before introducing the definition of consistent networks, we need a couple of new
notation. For any arbitrary node x of I, let

P(x) = {x} U {y | there exists a strict positive path from x to y},
and
N(x) ={y | there exists a strict negative path from x to y}.

An acyclic network I' isinconsistent if thereisanode x such that
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y" rfl (in P(y)) . (in N(y))
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Case (2) Case (a)

Fig. 5. 7 (x,0,u) — y is preempted.

(1) P(x)NN(x)#£W; or
(2) therearelinksx — u andx — v in I" suchthat v € N(u); or
(3) therearelinksx — u andx 4 v in I" suchthat v € P(u).
An acyclic network is consistent if it is not inconsistent.
It can be proventhat if I" is consistent and acyclic then T iswell-defined and stratified.

Theorem 4.6. For every consistent and acyclic network I", the default theory correspond-
ingto I, Tr, iswell-defined and stratified.

Proof. In AppendixC. O

Each path o can be divided into two subpaths Sr(o) and Def (o) where Sr(o) isthe
maximal strict end segment of o and Def (o) is the defeasible initial segment of o which
is obtained by truncating Str(o') fromo. Forinstance, forc =x =>y >z A vt <u
wehaveSr(c) =v<t<uandDef(o) =x =y —> z A v.

The semantics of an inheritance network I is based on the following notions.

Given a set of paths @, a path 7 (x,o,u) — y (respectively n(x,o,u) 4 y) is
constructiblein @ iff 7 (x,o,u) € ® andu — y € I' (respectively u A y € I').

A positive path 7 (x, o, u) is conflicted in @ iff (i) @ contains a path of the form
7 (x,7,m)andm € P(u); or (ii) @ containsapath of theform = (x, ,m) and m € N (u).

A negativepath 77 (x, o, u) isconflicted in @ iff @ containsapath of theform z (x, 7, m)
andu € P(m).

A defeasible positive path y = 7 (x, o, u) — y ispreempted in @ (Fig. 5) iff there exist
nodes v and m such that

(i) either v = x or thereis a positive path of theform = (x, «, v, 7, u) € @, and

(ii) either (@ vAmel,andme P(y)or(b)v—me I’ andm € N(y).

Similarly, a defeasible negative path y = 7 (x, o, u) -~ y is preempted in @ (Fig. 6) iff
thereisanode v and anode m such that

(i) either v = x or thereis a positive path of theform = (x, «, v, 7, u) € @, and

(i) v>meandye P(m).
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Fig. 6. w(x, 0,u) /> y is preempted.

Definition 4.4 [23]. o is defeasibly inheritable in @, written as @ ~ o, if one of the
following condition holds:
(1) o #£Def(0) ando # Sr(o). Then, @ o iff @ ~ Def (o) and @ r Sr(o).
(2) 0 =9r(o). Then, @ o iff o isapath constructed from linksin I".
() 0 =Def(0). Then, @ ~ o iff either o isadirect link or
(@) o iscongtructiblein @, and
(b) o isnot conflicted in &, and
(c) o isnot preemptedin @.

In the following definition, we recall the off-path credul ous semantics.

Definition 4.5. Let I' be an inheritance network.
(1) A set @ of pathsisacredulousextensionof I' if ® ={o | @ o}.
(2) Let a be an individual node, and p be a predicate node. We define I" t~. p(a)
(respectively I" . —p(a)) if each credulous extension of I" contains a positive
path of theform =z (a, o, p) (respectively a negative path of the form 7 (a, o, p)).

The following theorem shows that for inheritance networks, the path-based semantics
and our argumentation-theoretic semantics coincide.

Theorem 4.7. Let I be an acyclic and consistent inheritance network, a be an individual
node, and p be a predicate node. Then

(V) 't~ pla) iff Tr b p(a), and
(@ I bte—=pl@)iff Tr =p(a).

Proof. In AppendixC. O

5. Computing p~ by trandating into Reiter’sdefault logic

In this section, we show how the newly defined entailment relation can be computed.
Instead of developing new algorithms for that purpose, we will take advantage of many
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well-known algorithms of Reiter's default logic such as computing an extension or all
extensions of a Reiter’s default theory, etc. We achieve that by trandating each default
theory T into an equivalent Reiter's default theory Rr. In other words, the trandation
preserves the semantics of default theories. Moreover, the trandation is modular and
polynomial, i.e., Ry can be modularly constructed and has a size polynomial in the size of
T . Before presenting the translation let us recall some basic notion of Reiter’s default logic

[30,37,42].
A R-default isarule of theform
o:B1,...,Bn

v

where o, B; (i =1,...,n), and y are first-order formulas which are referred as the
prerequisite, the justification, and the consequent of the rule, respectively.

A R-default theory is a pair (W, D) where W is a first-order theory and D is a set of
R-defaults. The semantics of R-default theories is defined by the notion of an extension,
defined as follows.

Definition 5.1. Let (W, D) be a R-default theory, S be a set of formulas. I'(S) is the
smallest set of formulas such that

1) wcre),

(2) I'(S) isdeductively closed; and

(3) if “Prsbo e D a e I(S),and—pi ¢ S,i=1,...,n,theny € I'(S).

S iscaled an extension of (W, D) if I'(S) = §.11

Note that while an extension of a default theory in our framework is defined as a set of
defaults, an extension of a R-default theory is a set of formulas.

We will now discuss the main characteristics of the translation. Assume that Ry =
(Wr, Dr) isobtained from T = (E, B, D) after the trandation. Since the reasoning in T
relieson the evidence set E, the set of rules B, the set of defaults D, and the more specific
relation < to draw conclusions, atranslation from T to Ry, that preservesthe semantics of
T, must address the following representational and computational issues:

e What istheroleof E and B in Ry ?

e How to represent a default of the form bd(d) — hd(d) in Rr?, and

e How to trandate the more specific relation < into elements of Ry ?

Obviously, the first issue is easy to resolve. Since E U B represents the first-order part of
T, it is natural to make it a part of Wr, the first-order part of Ry. Thatis, EU B C Wy
should hold.

A default d = bd(d) — hd(d) represents the normative statement “normally, if bd(d)
holds then hd(d) holds’. Such a statement can be represented as a R-default, say r4, with
bd(d) and hd(d) as its prerequisite and consequent, respectively, and a justification that
indicates that r; is applicable if and only if the default d is applicable. This can be easily
achieved by introducing a new propositional symbol 12 ab,, whose truth value is identical

11 For more on Reiter's default logic and the many algorithms for Reiter’s default theories, see[30,42].
12 Recall that T is propositional.
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to the abnormality of d. |.e., if ab,; holdsthen the default is abnormal, and hence, r; cannot
be applied. Thus, —ab, can be used as the justification for r;. So, adefault 4 in T can be
trandated into a R-default:
bd(d) : —ab,
— @
hd(d)
of Rr. Furthermore, since a default is abnorma when the complement of its conclusion
has been drawn, the R-default

=hd(d): T
_ 2
ab, 2
must be paired with (1). In other words, we represent a default 4 with two R-defaults (1)
and (2).

An important part of the reasoning in T is the use of the more specific relation, <.
Therefore, to preserve the semantics of T, the tranglation must preserve its more specific
relation. The main obstacle for thistask lies in the fact that < is computed independently
from the context E but the applicability of its elements depends on E. More precisely,
for every pair of two defaults d and d’, the fact that d <g d’ for some set of defaults K
is independent from E but whether d overrides d’ depends on E and the applicability of
defaultsin K. In an early version of this paper [17], we proposed atranslation of < which
relies on the fact that the applicability of a default d can be characterized by ad;. Thus,
d <k d'in T can betrandated into the default

bd(d) : g\bCEK —ab, 3

0

in Rr. Intuitively, (3) means that if bd(d) can be concluded and every default in K is
not abnormal (or applicable) then the default d’ cannot be applied. We proved that this
trandation indeed preserves the semantics of T in [17]. However, this trandation suffers
from a severe drawback in that it has a high complexity. This is because of the fact that
| <, the number of elementsin the more specific relation, could be exponential on the size
of T intheworst case. This can be seen in the next example, suggested by a reviewer and
can also befoundin [8,45].

Example5.1. Let T = ({b}, @, D), D consists of

b—c,

d — —c,

b— by forie{l,?2},

bij = birj+1 fori,i’e{l,2}andje{l,....,n—1},
bin —d forie{l,?2}.

Itiseasy to verify that the cardinality of theset {K | b — ¢ <x d — —c}is2". Thus, while
thereare only 4n defaultsin T, < has 2" elements.

The above example represents a real challenge to the trandation. It also shows that
separating the process of computing the more specific relation from the translation will
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probably not lead to a polynomial trandation. To accomplish that goal, a better way to
encode < is needed. To this end we develop a hew technique to encode the more specific
relation. Instead of using the abnormal atoms, we use intermediate variables, which play
a role smilar to that of the variables recording the connectivity between nodes of an
inheritance network in You et al. [53].

We introduce, for each default d in D, and for each atom a € £ such that a does not
occur in the body of d, a new atom a,. Let L; denote the propositional language {ay | a
does not occur in bd(d)}. Note that for two different defaultsd, cin D, Ly N L. = @.

For illustration, consider Example 2.1. Then

Ldz = {de’ adz’ md2}7
La']_ = {)’dl, md,, Sdl}v and
Ld3 = {ng, Aads, md3}~
For each default d in D, define anew default theory T, = (@, By, Dy) asfollows:
For eachruler in B, let r; betherule obtained from r by replacing every occurrence of
an atoma in r, that does not occur in bd(d), with ay. Let By = {ry | r € B}. Similarly, for
each default ¢ in D, let ¢; be the default obtained from ¢ by replacing every occurrence of

an atoma in ¢, that does not occur in bd(d), with ay. Let Dy = {cy | ¢ € D}. For default
d1 in Example 2.1, we have that

By, ={yay = a}, Da,={(dDa,:a = may, (d2)a,:sa, = =may, (d3)a; :Sa; —> Yay }-

The connection between T and 7y isillustrated in the following lemma.

Lemma55.1. Let K € D. Then for each default ¢ € D, K attacks ¢ by specificity if and
only if there exists a default d € D such that following conditions are satisfied:

(1) EUBU By Fiuk, bd(d) Abd(cg), where Kg ={eq | e € K} € Dy, and

(2) BU{hd(d), hd(c)} isinconsistent.

Proof. Followsdirectly from LemmaD.3 and D.4, Appendix D. O

The above lemma suggeststhat T can be trandated into Ry asfollows:
e Defaultsin T and T, aretrandated according to (1)—(2).
e To guarantee that whenever adefault ¢ isdismissed in T thenitsvariant in T, isaso
dismissed, the R-default
ab.: T
ab,,
can be used.
e For defaultsd, ¢ in D such that B U {hd(d), hd(c)} is inconsistent, the following R-
default

bd(d), bd(cy) : T
_ 5
b, (5)
can be used to dismiss default ¢. As we will later prove formally, an extension S of
R7 is determined by the set of atoms ab,, for ¢ € D U | Dy. Further, it aso holds

(4)
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that for all ¢, d € D: ab, € S iff ab,, € S. Thusan extension S of R7 correspondsto
an extension Ky of T inthefollowing sense: d € K iff ab; ¢ S. Given an extension
S, adefault of the form (5) will be applied iff E U B U By Fk,uk, bd(d) A bd(cq)
where K; ={eqs | e € Ks} C Dy.
The above trandation would yield a R-default theory Ry whose size is polynomial in the
size of T. But the time complexity of the tranglation remains problematic since it requires
to check for theinconsistency of BU{hd(d), hd(c)} that isaninstance of the unsatisfiability
problemin propositional logic that is known to be coNP-complete[18]. This problem could
be avoided by introducing for each atom a in £ anew atom a’ not occurring in £ or in any
of the language L4, and introducing for each pair of defaultsd, c € D, aR-default 13

bd(d), bd(cy), (B’ A (hd(d)) = —=(hd(c))): T
ab, ’

(6)

where B’ is obtained from B by replacing every occurrence of theatomsa € £ ineachrule
r in B by the corresponding atomsa’ € £'.
Let
B*=BUB'U| JBs ad D*=Du | J Du.
deD deD

To summarize, T istrandated into Ry asfollows:
We first associate with each default d in D* anew atom ab,. The R-default theory Rr,
that correspondsto 7, is defined by

Ry =(EUB*, Dr), ()

where D7 consists of defaults of the following forms
o for each default d € D*,

bd(d) : —aby and =hdd): T

hd(d) aby
belongto D7,
e for each default d € D and default d. € D,
ab;: T
aby.

belongsto D7, and
o for each pair of defaultsd and cin D, d # ¢,

bd(d), bd(cy), (B’ A (hd(d))’ = —(hd(c))): T
ab,

belongsto Dr.

13 Notice that hd(d) isalitera. Therefore (hd(d))’ istheliteral obtained from hd(d) by replacing the atom, say
a, that occursin hd(d), with a’. B’ stands for the conjunction of al clausesin B’.
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We denote the set of defaultsin the above items by regular (T"), equi(T), and specific(T),
respectively. The next examplesillustrate the trandation from 7' to Ry.

Example 5.2. Consider the theory T in Example 3.1. For simplicity of presentation,
we will write i instead of d; in the definition of Ry. Further, d;; stands for (d;)q;. For
convenience, we will also omit the justification T in listing the defaults of Ry .

Ly ={p1, fa}, By ={p1= b}, D1 ={d11:b— f1, dn: p1—> —fi},

Lo ={b2, f2}, By ={p = b2}, Do ={d12:b2 — f2, d22:p — —fa},
and

l:/ — {p/,b/, f/}, B/ — {p/ :>b/}
Thus, Rt = ({p,p = b, p1 = b, p = by, p’ = b'}, Dr) where Dr = regular(T) U
equi(T) U specific(T) and

b:—aby —f: p:—abp f:}

regular(T) = , , ,— U

IO =177~ ab
b:—ab1 —f1: pi:—abn fi: }U

fi Tabu —ft Taby
bz:—abiy —f2: p:—abpn f2:
fa  Tabn’ —f2 abzz}’
abp: abi: aby: abp:
abyy " abiz " abp; abz }

equi(T) = {

and

specific(T):{p’bz’(B Af :>f)1,b,P1,(B A=f =>“f)2}'

aby aby

It is easy to see that p1 cannot belong to any extension of Ry. On the other hand, b2
must belong to every extension of R because p and p = b, belong to Wr. Furthermore,
B’ A f' = fisavalid sentence. Thus, from the first default in specific(D), we conclude
that ab; belongs to every extension of Ry. Thisimpliesthat Ry has only one extension
Th({p, b, —f, ba, — f2, aby, abi1, abi2} U E U B*), where Th(X) denotesthelogical closure
of X inthelanguage of Ry, which correspondsto the unique extension {d2} of T'.

We show how the context E affectsthe applicability of defaultsin Ry in the next example.

Example5.3. Let us consider again thetheories T, T’ in Example 2.1. We have that,
L1={y1,ma,s1}, B1={y1= a},
D1 ={di1:a — ma, do1:s1 —> —m1, d31:s1—> y1},
Lo = {y2,m2, az}, By ={y2 = a2},
Do ={d12:a2 — m2, dy.s — —mp2, d3p:s — yo2},
L3 ={y3, m3,as}, B3 ={y3 = az},
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D3 ={d13:a3—> m3, d23:s — —ms3, d3z:s — y3}, and
E/ — {a/’y/’s/’m/}’ B/ — {y/ :>a/}.

Thus, Ry = (EUB*, D7) and Ry = (E' U B*, Dy/) where B* = {y = a, y1 = a, y2 =
az, y3=as,y = a'}, Dy = Dy =regular(T) U equi(T) U specific(T) and

regular(T) — a:—ab; —-m: s:—abp m: s:—abz —y: U
= - m 7ab]_7 —m 7abz7 y ’ab3
a:—abjp —my: sy:—abpy mi1: sp:—abz oy }
, , , , , U
mi aby1 —my  abp n aba;
a —'ab12 -mo. §: —-abzz mo: §: —'ab32 —y2: } U
my ' abpp’ —mp Tabyp’  y2 T absp
az:—abiz —m3: s:—abpz m3: s:—abzgz —y3: }
m3  abiz’ -—mz “abx’  yz T abx
equi(T)—{abl: aby: abp: abp: aby: aby: abz: abs: abg:}
abyy " abip” abyz’ abpi’ @by abps’ abs;’ absy’ abss )’
and
a,s1, BAm' =m'):
abp
a,s1,(B'Am' = —=y'):
abg
s,az2, (B'A—=m' = —-m'):
. aby
specific(T) =
s, (B'A=—m' = —=y'):
abs
s,a3, (B'ANy = —m'):
ab;
s,(BAY =m'):
abp

Consider the two cases:

(1) Casel: E ={s,y,a}. We can easily check that s; and —y, cannot belong to any
extension of Ry. Thisimpliesthat every extension of Ry contains y» and a, which
again implies that ab; belongs to every extension of Ry. Hence, Ry has only one
extension

Th({s, y.a, —m, y2, y3, az, a3, =m2, ~m3, aby, aby1, aby, abss, }
U (E U B%),

which corresponds to the unique extension {d>, ds} of T.
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(2) Case2: E' ={s, —y, a}. We havethat abs belongsto every extension of Ry because
—y holds. Thus, every extension of Ry will contain {absz, absz, abszz}. Thus, none of
the defaultsin specific(T') can be applied. Thisimpliesthat Ry has two extensions:

Th({a, =y, s, —m, —m2, —m3, aby, aby1, abyo, aby3, abs, aba;, abzp, abss}
UE'UB*)
and
Th({a, =y, s, m, abp, aby1, abyo, abys, abs, abay, abaz, abss} U E' U B*),
which correspond to the two extensions {d2} and {d1} of T’, respectively.

We now prove the equivalence between T and Ry. More precisely, we will prove that
for each ground literal I, T t~ [ iff I is contained in every extension of Ry.

Theorem 5.1. Let T be a default theory and I be a ground literal. Then, T [ iff [ is
contained in every extension of Ry .

Proof. In Appendix D. O
It iseasy to see that the trandation from T to Ry isincremental in the following sense:

Theorem 52. Let T = (E,B,D) and T’ = (P, Q,R) such that EC P, B C Q and
D C R. Assume that Ry = (Wr, D) and Ry = (Wy/, D7/). Then, Wy € W7 and
D7 C Dy

Proof. Since B < P and D C R, we have that B € Q', By € P; and D; C R, for
everyd e D. Since Wy = EUBU B ' U|JyepBa and Wrr = PU QU Q' U g Qu,
we have that Wy € Wy.. Furthermore, it is easy to see that regular(7) C regular(T”")
and equi(T) < equi(T"). Furthermore, specific(T) < specific(T’) because of B € Q and
D C R . Thiscompletesthe proof of thetheorem. 0O

Theorem 5.2 has an important implication on the tranglation from default theories to
Reiter's default theories. It shows that adding new facts, rules, or defaults into a default
theory only introduces new propositions or defaults to its corresponding Reiter’s default
theory. Thus, no revision is necessary, i.e., Ry can be obtained from Ry by adding some
new facts or rules. For example, when we add one default d to T, besides the introduction
of the language L., we add to Ry the set of propositions B, the set of defaults of forms
(1) and (2) representing Dy, the set of defaults of form (4) and (6) for the default d. We
now show that the complexity of the trandation from 7' to Ry is polynomial in the size
of T which is characterized by | L], |B|, and | D|, the size of the language, the number of
rules, and the number of defaultsin T', respectively.

Theorem 5.3. For afinite default theory T, the trandlation from 7' to Ry is polynomial in
thesizeof T.
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Proof. Assumethat Ry = (Wr, Dr). Obviously, the complexity of the trandation from T
to Ry depends on the size of Ry, which again depends on three numbers: the number of
atomsin thelanguage of Rz, the number of propositionsin Wr, and the number of defaults
in D7. We will show that thesizeof Ry = (Wr, D7) isO((|£| + |B| + |D|) x |D| x |£])
where |L|, |B|, and | D| represent the size of the language, the number of rules, and the
number of defaultsin T', respectively. It is easy to see that the number of atoms of the form
ag isatmost |[D| x |L£|. Inaddition, thereare | D| x (|D| + 1) abnormal atoms and at most
|£] x |B| atoms used in constructing B’. Thus, the size of the language of Ry is at most
|D| x |£] x (2+ |D| + |B). Since Wy = EU B U B’'UJ,cp B4 and |B| = |B'| = | By|
for every d € D, we have that |Wr| = |E| + |B’| + |B| x (|D| + 1) which is less than
2 x |L|+ |B] x (|D] + 2). Since each default in D* generatestwo defaultsin regular(T),
[regular(T)| =2 x |D| x (|D| + 1). For each abnormal atom aby,, d € D, there exist | D|
defaultsin equi(7'). Hence, |equi(T)| = | D|2. Furthermore, thereare | D| x | D — 1| defaults
in specific(T) since there are |D| x |D — 1| pairs of defaults in D. Thus, we have that
|Dr| <4 x |D| x (|ID] + 1). Therefore, the size of Ry isat most |D| x |£]| x (2+ |D| +
IB) +2x |L] +|B| x (ID| +2) + 4|D| x |D + 1] <9ID| x |L]| x (IL| + |D| + |B]).
Thisimpliesthat thesize of Ry isO((|£]| + |B| + |D]) x |D| x |L]), i.e, thetrandationis
polynomial inthesizeof 7. O

We conclude the section with a brief discussion on the complexity of computing t~, i.e.,
the complexity of the entailment problem:

e Given adefault theory T and aliteral [.

e Determinewhether T~ [.
Because the entailment problem of (E, B,?) is coNP-complete, and because it is
polynomialy decidable whether a default theory (E, B, D) has an empty set of defaults
D, the entailment problem is coNP-hard.

6. Related work

Approaches to reasoning with specificity differ from each others in two aspects. One
is how specificity information is obtained and the other is how this information can be
used to eliminate unintended models and to resolve conflicts. Specificity information
can be extracted from the theory (or implicit specific knowledge) or obtained from users
(or explicit specific knowledge). It is often the case that only one source of specificity
information is used. However, in all of these approaches, the specificity principle is the
only principle used for conflict resolution and discarding unintended models. We note that
some authors (see, e.g., Vreeswijk [52]) have argued that there are situations in which
the specificity principle might not necessarily be the only principle that can be used.
Even though this maybe true, we will concentrate on comparing our work with others
that advocate the specificity principle. We have discussed the shortcoming of previous
approaches in their treatment of specificity in Section 2. We now compare our approach
with some earlier work on reasoning with specificity in more detail. In particular, we
distinguish the current work with our early work [15] and some of the close related work
such as condition entailment of Geffner and Pearl [20] and the approach of Simari and L oui
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[46]. We chooseto do so since both approaches use implicit specificity information and are
argument-based. We then compare our specificity relation in this paper with Z-ordering,
a well-known specificity ordering introduced by Pearl [38]. Finally, we compare our
tranglation of default theories into Reiter’'s default theories with Delgrande and Schaub’'s
tranglation of default theoriesinto Reiter’s default theories.

6.1. Our early work

Our current work is a continuation and improvement of our own work in [15].
Throughout the paper, we have mentioned the differences and similarities between the
two approaches. We now discuss the major differences and similarities between them in
more details.

e The current approach is more general than its predecessor in the sense that default
theoriesin [15] are special cases of default theories considered in this paper. There, we
consider only acyclic and consistent default theorieswithout rules (or ground clauses).
In this paper, we lift al these restrictions and consider more general default theories,
which can have rules or even cycles in their atom dependency graphs. The technical
framework developed in [15] cannot be applied for the general cases.

e The “more specific” relation in this paper is much simpler than its counterpart in

[15]. Itisafaithfully generalization of Touretzky’s specificity principlein inheritance
reasoning to more general default theories—it is defined in a single definition
(Definition 3.3). On the other hand, its counterpart in [15] is given by a series of
five definitions (Definitions 4.6—4.10 of [15]), in which minimal conflict set (MCYS),
conflicted defaults, more specific default, most specific default, and specific relevant
MCS are defined. These definitions provide an adequate framework for the class of
default theories considered in our early paper but they cannot be easily extended to
more general default theories. In hindsight, we would say that the definitionsin [15]
are unnecessary complicated.
We notethat the more specific relation in this paper is not the same asthe more specific
relation in [15]: in the Nixon diamond example (Fig. 3), d4 is more specific than d>
(with respect to the MCS {d1, d2, d3, da}) in [15] while the more specific relation in
this paper will yield an empty set.

e Both approaches are argumentation-based, i.e., both employ the principles or
argumentation in defining the semantics of default theories. In [15], each default
theory is translated into an argumentation framework and the semantics of a default
theory is defined by the preferred semantics of its corresponding argumentation
framework. On the other hand, the current approach does not employ an explicit
notion of arguments. Its attacks relation is defined between a set of defaults and a
default. This semantics is a type of stable semantics of argumentation. As such, in
this paper we face the problem of existence of extensionsthat does not occur in [15].

e In this paper, we give a polynomial trandation from default theories into Reiter's
default theories. The trandation from default theories into logic programs presented
in [15] is exponential in the worst case.

e Having stated the major differences between the two approaches, we now present
someinformal results about the connection between the two papers. Readers, who are



P.M. Dung, T.C. Son/ Artificial Intelligence 133 (2001) 35-85 63

not interested in technical details, might want to skip this paragraph. For the rest of
this subsection, by a default theory we mean a consistent and acyclic default theory,
which satisfies the Definitions 4.1, 4.3, and 4.4 of [15].
Let (E, @, D) be default theory. Furthermore, let d and d’ be defaultsin D and K be
aminimal set of defaults such that d < d’, i.e., there exists no K’ C K such that
d <k d'. Then, we can prove that

(1) C={d,d'} UK isaMCSwithrespecttod,

(2) d and d’ aretwo conflicted defaults of C,

(3) d isthe most specific default of C, and

(4) C isaspecific relevant MCS with respect to d.
On the other hand, let C be a specific relevant MCS (with respect to d), d be a most
specific default in C, and d’ be the other conflicted defaultin C. Then, d <k d’.
It can be shown that the newly defined entailment relation subsumes the old ones
by showing that for every default theory T = (E, @, D), if S is an extension of T
(with respect to the new approach) then Arg(S) ={A | A C §, A is an argument
(with respect to the old approach)} is a stable extension of AF, the corresponding
argumentation framework of 7.

6.2. Conditional entailment

In this subsection, we compare our approach with conditional entailment, a prominent
approach to reasoning with specificity introduced by Geffner and Pearl [20]. In their paper,
after discussing the pros (dealing with irrelevant evidence and the general properties of the
entailment relation) and cons of extensional and conditional approachesto reasoning with
specificity, Geffner and Pearl wrote:

... “The question arises whether a unifying framework can be developed which
combines the virtues of both the extensional and conditional interpretations.” ...

Conditional entailment does indeed express the best features of the e-entailment of the
conditional approachesand the p-entailment of the extensional approaches: it can deal with
irrelevant evidence and it satisfies many desirabl e properties of nonmonotonic consequence
relations such as deduction, reduction, conditioning, cumulativity, and disjunction.

In conditional entailment, each default schema p(x) — g (x) is encoded by a sentence
p(x) A di(x) = g(x) and a default schema p(x) — §;(x) where §; denotes a hew and
unique assumption predicate which summarizes the normality conditions required for
concluding ¢g(x) from p(x). Hence default theories in their formalization are called
assumption-based default theories.

An irreflexive and transitive priority order < over the set of assumptions of a default
theory is admissible if for every default § and a set of assumptions A that is logically
inconsistent with § in the context {p}, i.e., {p} U B U A - =4, there exists one assumption
8’ € A suchthat 8’ < §,i.e., 8’ haslower priority than §. Preferred models are then defined
with respect to admissible priority orders similar to what has been described in Section 1.
Finally, a conclusion ¢ is conditiona entailed by atheory T if ¢ holdsin very preferred
model of T.
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We now list the differences and similarities between our formalism and Geffner and
Pearl’s conditional entailment.

o We demonstrate the difference by using a default theory in Example 2.1. It iseasy to
seethat the ordering between assumptionsrequiresthat {51, 83} < 82 and {81, 82} < d3.
Thisimplies that any admissible priority ordering must satisfy 81 < 82 and 81 < 83.
Furthermore, the context £ = {a, s, —y} gives rise to two classes C1 and C» of
minima models M1 and M» with the gaps A[M1] = {81, 83} and A[M2] = {82, 83},
respectively. The priority orderingimpliesthat C; isthe preferred class of models, i.e.,
—m is supported in conditional entailment in the context E = {a, s, —y}. This shows
that conditional entailment treats priority between defaults unconditional. It follows
from Example 2.1 that conditional entailment cannot capture inheritance reasoning.
Both of these points distinguish our approach from conditional entailment.

e §;—in their encoding of defaults—plays the role of —ab; in our translation from
default theories into Reiter’s default theories. Both approaches rely on an implicit
priority ordering between defaultsto resolve conflicts. The proof theory of conditional
entailment is defined around the notion of arguments. Each argument is a set of
assumptions which is consistent. In our formalization, we do not have an explicit
notion of argumentsasit is not necessary for our purpose.

e One important feature of conditional entailment, that distinguishes conditional
entailment from other approaches, is that it can deal with irrelevant evidence. We
next demonstrate, using an example given in [20], that our approach can aso deal
with irrelevant evidence correctly.

Example 6.1 (Dealing with irrelevant evidence [20]). Consider the default theories
T =(E,%,D)andT' = (E’, ¥, D) with

D={d1:b— f, do:p— —f, d3:p—b, da:r — b},

E ={r}and E' = {r, p}. The defaults are depicted in Fig. 7.

Itiseasy to seethat dz <45 d1. The priority order of conditional entailment requires

that §1 < 82 and 81 < §3.

— E = {r}. Since default d3 is not applicable, T has only one extension {d1, d3, d4}.
This correspondsto the class of preferred models supporting » and f of conditional
entailment.

Fig. 7. Red birds do fly.
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— E’ = {r, p}. Obvioudy, any extension of 7’ must contain d3 and d4 since
there exists no attack against them. Furthermore, {d1, d2, d3, d4} attacks itself by
conflict (also by specificity). Thus, there are two possible extensionsof 77 : H; =
{da, ds, do} and Hy = {da, d3, d1}. Since there exists no default, which is more
specificthan d for d € H1, and Hi attacksds by conflict, we concludethat H1 isan
extension of 7'. On the other hand, H» attacks itself by specificity since dy € H»
and d1 <43 d2 and E’ by, p = bd(ds). Hence, the only extension of T is Hy
which yields —f and b. These are also the conclusions sanctioned by conditional
entailment.

e Another important difference between conditional entailment and the entailment rela-
tion h defined in Section 3 lies in the fact that conditional entailment satisfies condi-
tioning and cumulativity and  does not. Even though we agree that conditioning and
cumulativity are important properties of nonmonotonic consequence relations, we are
not sureif they should always be enforced. Givenatheory T = ({p}, %, {p — ¢, p —
—q}), neither ¢ nor —g is concluded in our approach but both will be concluded in
conditional entailment. 1 This, together with the cumulativity property, implies that
we should conclude —g given the default theory T + ¢ = ({p, ¢}, 9, {p = g, p —
—q}). This seems to contradict the common understanding about defaults that says
that a default can be applied to derive new conclusions if no contrary information is
available. In this case, the default p — —¢ can be used to derive new conclusion (—q)
only if no information contrary to —¢ is available. As such, instead of enforcing the
two properties, we characterize situations when they hold.

e Finally, we note that even though formulas are not allowed in the head of a default
in our formalization, a default of the form p — ¢ where p and ¢ are propositional
formulas can be easily encoded in our formalization by

(i) introducing two new atoms p’ and ¢/,
(ii) replacing p — ¢ with p’ — ¢’, and
(iii) addingtheclauses p < p’ andg < ¢’ to B.
Thus, the class of default theories considered in conditional entailment and in our
approach is the same.

6.3. Simari and Loui’s approach

Thegoal of Simari and Loui [46] isto develop agenera framework that unifies different
argument-based approaches to defeasible reasoning. They want to achieve this goa by
defining a framework that combines the best ideas of two well-known approaches to
defeasible reasoning: Poole's[40] (acomparative measure of the relevance of information)
and Pollock’s[39] (the interaction between arguments).

Thelanguagefor knowledgerepresentation in Simari and Loui’sapproach isafirst-order
language £ plus a metalinguistic relation between non-grounded well-formed formulas,
denoted by >—, which represents defeasible rules. For example, « > 8 means that

14t is easy to check that there is no admissible priority order for defaults in T and hence there exists no
preferred model of 7. Wetook the view that in this case conditional entailment entails every possible conclusions
of the theory.
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“reasons to believe in « provide reasons to believe in B. Thus the defeasible rules are
the defaultsin our representation. A theory isrepresented by apair (I, A) where IC, called
context, is a set of sentencesin £ and A is afinite set of defeasible rules. K is further
divided into two sets: the set of grounded sentences K¢ and the set of non-grounded
sentences /Cy. For brevity, we omit here the definitions of a defeasible derivation and
defeasible consequence ~ of a set of ground instances of sentencesin K U A asthey are
fairly close to our Definition 3.2. An argument A for a conclusion /, written (A, ), 1° is
a subset of the set of ground instances of defeasible rules AV that satisfies the following
conditions:

(1) KUAh,

(2 KUAR L,and

(3) thereexistsno argument A’ ¢ A suchthat CU A’ i h.

Anargument (A1, k1) isasubargument of (A, i) if A1 C A. Two comparative measures

between arguments are defined.

o (A1, hy) isstrictly more specific than (A, ko), denoted by (A1, h1) <spec (A2, h2), if
— for each ground sentencee in £ such that Iy U {e} U A1 b~ hy and Ky U {e} P~ h1,

then Cy U {e} U A2 i~ ho, and
— there exists a grounded sentence e in £ such that (i) Ky U {e} U Az b ha, (ii)
Ky Uf{e} U A1 B hy, and (iii) Ky U {e} * ho.

e (A1, h1) and (A2, ho) are equi-specific, denoted by (A1, h1) =spec (A2, h2), if
— foreach ground sentencee in £, Ky U{e}UA1  hpifandonlyif Ky U{e}U Ao

ha.

The two specificity relations are used to define the counterargument and defeat relations

between arguments, which are used to draw the (defeasible) conclusions of the theory.

We now list some similarities and differences between Simari and Loui’s approach and

ours.

e The strictly more specific relation is defined between arbitrary arguments. The first
condition of the definition of <gec is similar but stronger than condition (ii) in
our definition of the more specific relation (Definition 3.3). Furthermore, our more
specific relation is defined only between conflicting defaults.

e The entailment relation defined in Simari and Loui’'s paper does not satisfy the
cumulativity property, even for stratified default theories. To see why, consider a
modification of the famous penguin-bird example in which the implication p(x) D
b(x) is replaced by a defeasible rule, i.e., we have a theory with the context K =
{p(a)} and the set of defeasiblerules A = {p(x) > b(x), b(x) > f(x), p(x) >
—f(x)}. It is easy to see that ({p(a) > —f(a)}, ~f(a)) is strictly more specific
than {({p(a) > b(a), b(a) > f(a)}, f(a)). Therefore, the theory entails — f (a).
Furthermore, no argument is in conflict with {({p(a) > b(a)}, b(a)). So, the theory
entails b(a) too. However, thetheory (KX U {b(a)}, A) doesnot entail — f (a), hor does
it entail f(a) (see Example 6.5 [46]).

e Simari and Loui’'s definition of an argument in [46] requires that an argument is
minimal with respect to the set inclusion. One consequence of this requirement is that
adding a new fact to a theory might eliminate some existing arguments, thus altering

151n[46], (A, ) iscaled aargument structure. We follow [41] and call it an argument for convenience.
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the specificity relations and the ordering between arguments. In the above example,
adding b(a) to (KC, A) removes the argument ({p(a) > b(a), b(a) > f(a)}, f(a))
from A' and introduces anew one, ({b(a) > f(a)}, f(a)).

6.4. System Z and its use in Delgrande and Schaub’s approach

In System Z [38], Pearl uses consistency check to determine the order of a default.
The lower the order of a default is, the higher isits priority. He only considered theories
whose background knowledge is empty, i.e., default theories without rules. In this respect,
System Z isclosely related to our previouswork [15] than thisone. A default is of theform
a — B, where a and g are propositional formulas. For convenience, a default » is often
used interchangeable with o, — B,, when no confusion is possible.

Let R beaset of defaults. A default « — g istolerated by R if {a A B}U{a, D B, | r € R}
is satisfiable.

A set of defaults R is Z-consistent if for every nonempty R' € R, some r’ € R is
tolerated by R’. A set of defaults R is partitioned into an ordered list of mutually exclusive
setsof rules Rg, R1, ..., Ry, called Z-ordering on R, in the following way:

(1) Find al defaultstolerated by R, and call this subset Rg.

(2) Next, find all defaultstolerated by R \ Rg, and call this subset R;.

(3) Continuein thisfashion until all defaultsin R have been accounted for.

Itiseasy to see that

Ri={r|ristoleratedby R\ (RoU---U R;i_1)}

for 1 <i < n. R is said to have a non-trivial Z-ordering if n > 0. Otherwise, it has a
trivial Z-ordering. For i < j, defaultsin R; are considered less specific than defaults in
R;. This order is used to define the rank of an interpretation of R, the rank of aformula,
and the 1-entailment. Since the weakness of System Z has been discussed in [8], we will
not compare the entailment relation r~ with Pearl’s 1-entailment. Instead we will compare
our approach with the approach of Delgrande and Schaub which exploits the Z-ordering
but overcomes its weakness. Delgrande and Schaub [8] showed that sometimes Z-order
introduces unwanted priority and cannot deal with irrelevant knowledge. However, the Z-
ordering shares some of the properties of our specificity relation such as

e it isdefined independently from the context (E),

e itisunique, and

e it ismonotonic with respect to the addition of new defaults.

In [8], Delgrande and Schaub showed how the Z-ordering can be used to deal with
specificity. They improved it by not using it directly but for the purpose of finding minimal
conflict sets (MCS). They aso extended it to work with rules. In their notation, a default
theory (E, B, D) iscalled an entire world description of which (D, B) is called ageneric
world description. Rulesin B are givenintheform o« D 8.

For a default theory T = (E, B, D), the Z-ordering of T is the ordering of the set of
defaults R = D U{a — B | « D B € B}. That is, in determining the Z-ordering of defaults
of T, Delgrande and Schaub considered rules as defaults.

Let R = (D, B) beaworld description. C € R isaminimal conflict setin R iff C hasa
nontrivial Z-ordering (Cop, C1) and any C’ C C hasatrivia Z-ordering.
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Delgrande and Schaub proved a number of important properties of MCS's. To resolve
the conflict they identify the least specific defaultsin a MCS and falsify some of them by
defining the conflicting core of aMCS.

Let R = (D, B) beaworld descriptionand C € R aMCSwith the Z-ordering (Cop, C1).
A conflicting core of C isapair of least sets (min(C), max(C)) where

(1) min(C) S CoN D,

(2) max(C) < C1nD,and

3 {or ABr | remax(C)yumin(C)} = L
provided that min(C) and max(C) are nonempty.

They use this to convert a default theory into a Reiter’s default theory whose semantics
specifies the semantics of the original theory. The translation is similar to our trandation
(Section 5) but has also some differences due to the differences in the specificity relation
and in our treatment of defaults. For example,

e Both trandations use only information about defaults and specificity information to

create defaults of the destination theory.

e They do not introduce the literal ab(d) for each default d as we do.

e For each default @ — B, their trandation producesonly one default (in Reiter’s sense)
in the destination theory whose prerequisite encodes the applicability condition of
higher priority defaults; thus making the default applicable only when none of the
higher priority defaultsis applicable (later, we demonstrate this in an example). This
makes the translation not modular: when adding a default that introduces some new
MCS, some defaults must be revised. On the other hand, our trandation is modular:
none of the previous defaults needs to be revised. Also, our trandation converts each
default « — B into two defaults and each element of the specificity relation into one
default.

e White try to enforce the order between defaults they consider defaults as rules. For
example, if r has higher priority than r’, then the prerequisite of the Reiter’s default
corresponding to ' contains a conjunction o O f;.

e \We show that our approach capturesinheritance reasoning. Delgrande and Schaub did
not compare their approach with inheritance reasoning. They wrote [8, p. 306],

... “Lastly there are direct or path-based approaches to nonmonotonic inher-
itance, as expressed using inheritance networks [23]. It is difficult to compare
such approacheswith our own for two reasons.”. . .

We show now by example that their approach does not capture inheritance reasoning.
We continue with the default theory in Example 2.1. In their notation, we have that
R = (D, B) isaworld descriptionwith B={y = a},and D ={d1:a - m, d2:s —
—m, d3:s — y}. The Z-ordering of R is ({a > m, y — a},{s —> y, s —> —m}).
Furthermore, R isaminimal conflict set. Its only conflicting coreis ({a — m}, {s —
—m}). In Example 5.3, we present the Reiter’s default theories corresponding to the
theory T and T’ of the Example 2.1 aready. In Delgrande and Schaub’s trandation,
adefault o, — B, istrandated into

o Br A Nprer, % D Br
Br

’
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where R, = {r' e max(C’) | r e min(C")} and (C");¢; isthefamily of all MCS of D.
Thus, it yields the default theory DT = (E U B, D’) where

’ sy s:m a:mAN-—s
D= — ) )
y -m m

where the last default is obtained from the default “A22M  As such, for E = {s}
or E ={s, ~y, a}, Z-default theories will conclude —m. This also shows that priority
between defaultsis used unconditional in Delgrande and Schaub framework.

7. Conclusion and futurework

In this paper we present a new approach to reasoning with specificity which subsumes
inheritance reasoning. We show that priorities between defaults can be computed a priory
but cannot be used unconditional. We generalize Touretzky’s principle to specificity
to define a “more specific’ relation among defaults and use the stable semantics
of argumentation to define the semantics of default theories. We present sufficient
conditions for the existence of extensions. We identify a class of dtratified and well-
defined default theories, in which the newly defined entailment relation satisfies the
basic properties of honmonotonic consequence relations such as deduction, reduction,
conditioning, and cumulativity. To show how well-known algorithms for computing
extensionsand consequences of Reiter’s default theories can be used to compute extensions
and consequences of default theories as defined here, we trand ate each default theory into
a semantically equivalent Reiter’s default theory. We prove that the trandation is modular
and polynomial in the size of the original default theory.
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Appendix A. Proofsof Theorems4.1-4.4

A.1. Stratification guarantees existence of extensions

Let rank be a ranking function of the literals. We can extend rank on the set of clauses
and defaultsin T by defining:

e rank(c) = max{rank(l) | I appearsin c}, for every clause c; and

e rank(d) = rank(hd(d)), for every default d.
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For every set of literals, clauses, or defaults X, define X|; = {x € X | rank(x) =i}, and
X|li = {x € X | rank(x) < i}. Further define ; = (E|;, Blli, Dll;).

LemmaA.l. Let T be a gtratified default theory. For all i, all K € D, and ! € lit(£) with
rank(l) =i:

EUBFg! iff E|; UBJ; gy, L

Proof. The if-direction is trivial. We only need to prove the only-if-direction. There are
two cases:

Casel: K =, i.e, EUB . Inthiscasethelemmafollowsimmediately from the fact
that a set of positive ground literals M isamodel of E U B iff for each i, M||; isamodel
of Ell; UB;.

Case 2: There exists asequence of defaultsdy, ..., d, (m > 1) in K such that

() EUBFbd(dy),

(2) EuBU{hd(dy),...,hd(dj)} - bd(dj41) for j e{1,...,m — 1}, and

(3 EUBU{hd(d1),...,hd(d,)} +1.

Without loss of generality, we can assumethat dy, . .., d;, isone of the shortest defeasible
derivations of [, where the length of a defeasible derivation is defined as the number
of defaults appearing in it. We want to show that there is no default in this derivation
whose rank is greater than i. Assume the contrary, i.e., there exists some defaults in
{d1,...,dn) whose rank is greater than i. Let k =max{j | 1 < j <m, rank(d;) > i}.
Therefore, for each j > k, rank(d;) <i. Hencefrom Case 1, it is easy to see that for each
j>k, EUBU{hd(d) |t < jandt #k}Fbdd;). Thusdy,...,di-1,dks1, ..., dn 1S
a defeasible derivation of . This contradicts our assumption that ds, ..., d,, is a shortest
defeasible derivation of /.

Thuswe have provedthat E||; U B||; Fgy, [. O

The following lemma follows immediately from LemmaA.1.

LemmaA.2. Let T bea stratified default theory, S € D, and d € D|;. Then,
(1) Sattacksd by conflictin T iff S||; attacksd by conflictin 7;, and
(2) Sattacksd by specificity in T iff S||; attacksd by specificity in T;.

LemmaA.2 impliesthe following lemma.

Lemma A.3. Let T be a stratified default theory. S € D is an extension of T iff for each
i>1,S|; isan extension of 7;.

In the following lemma, we give an algorithm to construct an extension of 7; from an
extension of T;_1.

LemmaA.4. Let T bea dtratified default theory. Let K € Dl|;—1.
e Let C denotethe set of all defaultsin D|; which are not attacked by specificity by K.
e Let Cp, C1 C C suchthat

Ci={ceC|EUBFgbd(c)} and Co=C\Ci.
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e Let H beamaximal (with respect to set-inclusion) set of defaults such that H C C1,
and K U H isconsistentin T (or equivalentlyin T;).

o Let G ={ceCo| EUBWyuk —hd(c)},i.e., G consstsof those defaultsin Co which
are not attacked by K U H by conflict.

Then K U H U G isan extension of 7; iff K isan extension of T;_1.

Proof. Let S=KUHUG.

e Only-If-direction. It is obviousthat S||;—1 = K. Because S isan extension of T7;, it is
clear fromLemmaA.3, that K isan extension of 7;_1.

o If-direction. From LemmaA.1, it follows that

foreachd € D|;, EU Btk bd(d) iff EU B Fgun bd(d) iff EUBFgbd(d). (%)

We provefirst that S attacks every defaultd € DJj; \ S. If rank(d) < i thenitisclear that
K attacksd. Hence LemmaA.2 impliesthat S attacksd. Let now rank(d) = i. Then there
are two cases:

e d ¢ C. Thend isattacked by K by specificity. Hence d is attacked by S by specificity.

ed e C.Thereforeeitherd e C1\ Hord e Co\ G.Letd e C1\ H. Then K U H U {d}
isinconsistent in T. Since E U B -k bd(d), E U B Fgug —hd(d). Hence S attacks d by
conflict.

Letd € Co\ G. Then from the definition of G, it followsthat S attacks d by conflict.

Now we want to prove that S does not attack itself. Assume the contrary. Lemma
A.2 implies that S attacks some ¢ € D|;. Suppose that S attacks ¢ by specificity, i.e.,
there exists ¢’ such that ¢’ <g ¢, E U B 5 bd(c’). Further, from LemmaA.2, E|;_1 U
Blli—1 Fsy,_, bd(c¢’). Lemma A.2 aso implies that bd(¢’) U B|l;—1 Fsj,_, bd(c). Hence
¢’ <k c. Therefore K attacks ¢ by specificity. This contradicts the construction of H and
G. Hence S must attack ¢ by conflict. That means E U B g —hd(c). From the construction
of S, we can seethat S isconsistent. Therefore, ¢ € G. But then from the assertion (x), we
have E U B xug —hd(c). Again, this contradicts the construction of G. Thus S cannot
attack itself. O

We now prove Theorem 4.1.
Theorem 4.1. Every stratified default theory T = (E, B, D) has at least one extension
Proof. Since rank(d) > O for every d € D, we have that To = (Eo, Bo, ¥). Furthermore,
E U B isconsistent impliesthat Eq U Bg is consistent. Thus, So = ¢ is an extension of Tp.
This, together with Lemma A .4, provesthat T hasan extension. O
A.2. Stratification guarantees cumulativity

Thefollowing lemmais akey step in our proof of the cumulativity property.

Lemma A5. Let T = (E, B, D) be a stratified default theory, | be a literal I such that
T ~1,and S € D beanextensionof T + /. Then S isalso an extension of T'.
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Proof. Let rank(/) = i. We want to show that for each j, S||; isan extension of T;. There
arethree cases:

(1) j <i.Obviously because T; = (T +1);.

(2) j=i.Let K = S|;—1and C, Co, C1, H, G bedefined asin LemmaA.4 with respect
to 7 + 1. Further let C’, C, C be defined as in Lemma A.4 with respect to 7'. It is not
difficult to see that C = C’, C1 = Cy, and Co = Cy,. It is also obvious that K U H is
consistent in 7. Let H' be a maximal (with respect to set-inclusion) set of defaults such
that

e HCH C(Cp,and

e KUH’isconsistentinT.

Let G’ ={c € Co| EU B tHgun —hd(c)}.

From Lemma A 4, it followsthat R = K U H' U G’ is an extension of 7;. From the
assumption T p~ 1, it followsthat R isalso an extension of (T + [);. From the definition of
G',itiseasy to see that for each literal h, EU B ¢ h iff EU B gy h. Itisclear that
T, ~I1.Hence EUB g . Therefore EU B gy . Hence K U H' isconsistentin 7 + 1.
From the definition of H, it followsthat H = H'. That meansthat S|; = R. So S|; isalso
an extensionof T.

(3) j >i.From Case 2, it isclear that for each j > i, E||; U B||; gy, I. Therefore for
each literal h, E||; U {l/}U B, |_S\|j hiff E||; U B||; |_S\|j h.Henceit is obviousthat S| ;
isanextensionof 7;. O

We are now ready to prove Theorem 4.4.

Theorem 4.4. Let T = (E, B, D) be a dtratified default theory and «a, b be literals such
that T ta,and T ~b. ThenT +a t b.

Proof. Assume the contrary, T + a p* b. This means that there exists an extension S of
T +a suchthat b ¢ S. LemmaA.5 shows that S is an extension of T, which contradicts
the fact that T  b. So, our assumption isincorrect, i.e., for every extension S of T + «,
be S. Thismeansthat T +a ~b. O

Appendix B. Conditioning of well-defined default theories
Letcsq(K)={{| EUBFgl}.

Theorem 4.5. Let T = (E, B, D) be a well-defined default theory, d be a default in D,
and E = bd(d). Then, Tk hd(d).

Proof. Let S be an extension of 7. We need to prove that hd(d) € csq(S). Assume the
contrary that hd(d) ¢ csq(S). Sincebd(d) C csq(S), it followsthat d ¢ S. Hence S attacks
d. There are two cases.

(1) S attacks d by conflict, i.e., =hd(d) € csq(S). Hence bd(d) U B -sujqy L. Because
S is consistent, bd(d) U B Fsuiqy L, and T is well-defined, we can conclude that there
exists do € S such that d < dp. That means S attacks do by specificity. Hence S attacks
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itself (because dp € S). This contradictsthe assumption that S is an extension. So, this case
cannot occur.

(2) § attacks d by specificity, i.e., there exists a default 4’ such that d’ < d, bd(d") C
csq(S). Hence B U {hd(d), hd(d")} - L. Because bd(d") € csq(S), bd(d) U B I-s bd(d").
Itis clear that bd(d) U B t/s L. Therefore, d <5 d’. Hence, d <* d. This contradicts the
fact that D iswell-defined. That means this case cannot occur either.

Since both cases are impossible, hd(d) € csq(S). This holds for every extension of T'.
Hence, T ~~hd(d). O

Appendix C. Propertiesof default theories of inheritance networks

In this section by I" we denote an arbitrary but fixed, acyclic, and consistent network.
Let T be the default theory corresponding to I". For apath o in I", let d(0) and r(o)
denote the set of defaults and rules corresponding to defeasible and strict links belonging
to o, which do not begin from an individual node, respectively. In other words,

d(e) = {p(X) >q(X) | p¢Ir, p—q belongstoo} U
{pP(X) = —q(X) | p ¢ Ir, p+# qbelongstoo}.
r(o) = {p(X)=q(X)|p¢Ir, p=qbelongstoo}U
{p(X)=—q(X)|p¢Ir, p# qbelongstoo}.

By d(0)/a and r(o)/a we denote the set of ground defaults and ground rules obtained
fromd (o) and r (o) by instantiating the variable X with a.

Lemma C.1. For acyclic and consistent network I, T is stratified.

Proof. To provethelemma, we define arank function over ground literalsof 70 U{T, 1},
that satisfies the conditions of Definition 4.1, as follows.

(i) rank(T)=rank(L)=0;and

(ii) for each individual node ¢ and predicate node p, rank(p(a)) = rank(—p(a)) =

max{|d(c)/a| | o is a generdized path from a to p} where |d(o)/a| denotes the
cardinality of theset d(o)/a.
Since I' isacyclic, for every a € I and p € Pred, rank(p(a)) isdefined for every p and
a. In other words, rank is defined for every literal of T;. Furthermore, by its definition,
rank satisfies the first two conditions of Definition 4.1. Thus, to complete the proof, we
consider the following two cases.

e p(a) = g(a) isarulein Bp. Since for each generalized path o from a to p there
exists a generdized path o' = 0 = ¢ from a to g with |d(0)/a| = |d(c")/al,
by definition of rank, we conclude that rank(p(a)) < rank(g(a)). By definition
of generalized paths, we can also prove that rank(g(a)) < rank(p(a)). Hence,
rank(p(a)) = rank(g(a)). Similarly, we can provethat if p(a) = —g(a) € B, then
rank(p(a)) = rank(—q(a)).
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e p(a) — q(a).Sincefor each generalized path o froma to p thereexistsageneralized
path ¢’ = o — g from a to g with |d(0)/a| + 1 = |d(c")/a|, by definition of
rank, we conclude that rank(p(a)) < rank(q(a)). Similarly, we can prove that if
p(a) 4 q(a) € Dp, thenrank(p(a)) < rank(—g(a)).

The above two cases concludethelemma. O

The next two lemmas show the correspondence between the consequence relation - in
Tr and pathsin aconsistent and acyclic I".

Lemma C.2. Let a be a constant in the language of 7 and o = 7 (x, 8, u) be a positive
pathin I". Then, x(a) Ur (o) /a Faya u(a) and x(a) U Br Ka@)/a L.

Likewise, let a be a constant in the language of T and o = 7 (x, §, u) be a negative
path of I". Then, x(a) Ur(o)/a Fawy/a —~ula) and x(a) U Br Ka@)/a L.

Lemma C.3. Let x(a) and u(a) be ground literals of T and K be a minimal set of
defaults such that x(a) U B Fx u(a) (respectively x(a) U By Fg —u(a)). Then, there
exists a positive path o = 7 (x, 8, u) of I" (respectively a negative path o =7 (x, 8, u) of
I')suchthat d(o)/a =K.

The next lemma represents a relationship between the more specific relation in 7 and
pathsin I". We note that if d isadefault in D then the predicate symbol occurring in the
body of d isthelabel of anodein I". We will call it the start node of d.

LemmaC.4. For two ground defaultsd and d’ of Tr- if d <k d’ thenthere exists a positive
path from p to ¢ in I" where p and g are the begin nodes of d and d’ respectively.

We omitted here the proofs of these three lemmas as they are fairly simple and
straightforward.

Theorem 4.6. For every consistent and acyclic network I", the default theory correspond-
ingto I, Tr, iswell-defined and stratified.

Proof. By LemmaC.1, we havethat T is stratified. To provethat 7 iswell-defined, we
need to prove for each default d in D, the following conditions are satisfied.

(i) d £*d; and

(ii) for each set of defaults K in T such that bd(d) U Br Fxuiey L andbd(d) U Br

1 there existsadefault dg € K suchthat d <k do.

Let us begin with (i). Assume the contrary, there exists a sequence of default d < dp <
oo <dy<d.Let p,p1,..., pp bethebeginnodesof d, ds, ..., d, respectively. Then, by
Lemma C.4, there exists a path from p to p over p1, ..., p,. Thisviolates the acyclicity
of I". Thus, our assumptionisincorrect, i.e.,, d £* d, or (i) holds. 1)

We now prove (ii). Let H € K be aminimal set satisfying that bd(d) U Br Fgugey L
and bd(d) U By t/y L. We will provethat there existsadefault d' € K suchthatd <y d’,
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and hence, d <x d’. Assumethat d isadefault of the form u(c) — v(c) 18. If H = @, then
u € N(v) orve N(u). Inboth cases, we have that I" isinconsistent. Thus, H # ¢. Then,
from our assumption about d and H, we havethat u(c) U B =g —v(c). This, together with
LemmasC.3 and C.2, impliesthat thereexistsapatho =7 (u, 8, v) suchthatd(o)/c = H,
and for every d’ € H, u(c) U By g bd(d") and u(c) U By ¥y L. It is easy to check
that d <y d’ where d’ is the default in H such that rank(hd(d’)) = max{rank(hd(d")) |
d” € H}. This implies that (ii) holds for d. The proof for (ii) for default of the form
u(c) — —w(c) issimilar. Hence, we conclude that for every d € D, (ii) holds. 2
It followsfrom (1) and (2) that T iswell-defined. O

To prove Theorem 4.7, we need the following notation. For a set of paths A in I, let

csg_path(4) = {p(a)|a€Ir, 3n(a, ..., p) € A}U
{—|p(a) |aelr, 3n(a,...,p) € A},
Sa = {d € Dr| thereexistsaground pathin A containingd } U

|d € Dr| bd(d) Z csg_path(A) and —hd(d) ¢ csg_path(4)},
and for aset of defaults S,
path(S) = {n(a,a, p)ld(o)/aC S} U {f[(a,a, p)ld(o)/a C S}.
Itis easy to seethat the following lemmaholds.

Lemma C.5. For every credulous extension A of I', csgq path(A) is consistent and
csq_path(4) = csg(Sa).

Thisleads usto the following lemma.
LemmaC.6. Let A beacredulousextension of I". Then, S, isan extension of 7.

Proof. First, weshow that S, doesnot attack itself. Assumethe contrary, S, attacksitself.
We consider two cases:

e S, attacksadefaultd € S, by conflict. Assumethat d = u(c) — v(c). That meansthat
—v(c) € cg(Sa) = csq_path(A). By definition of Sa, u(c) € csq_path(A). Thus, from
d € Sp and u(c) € csq_path(A), we conclude that there exists apath o containing d in A.
Due to the constructivity of A, we havethat v(c) € csq_path(A). This contradicts the fact
that csq_path(A) is consistent. So, this case cannot occur.

e S, atacksadefault d € Sa by specificity. Assumethat d = u(c) — v(c). Thismeans
that there exists a default d’ in Dy and a set of defaults K € S, such that d' <k d,
p(c) € csg(Sa) where p isthe start node of the link d’. Again, there are two cases:

(@) d’ hasthe form p(c) — —g(c). From the definition of the more specific relation,
we can easily verify that u(c) € csq(Sa). Therefore, by construction of S4, we
conclude that there exists a path o1 = 7 (c, 71, p, 12, u, v) € A. Sinced’ <k d, we
havethat B U{—¢(c), v(c)}isinconsistent. Thisimpliesthat v € P(g) or g € P(v).
Furthermore, o2 = (¢, n1, p) € A. Thus, o1 is preempted in A (because of o2 and

16 Recall that we assume that defailts are grounded.
17 Recall that for aset of defaults X of atheory (E, B, D), csq(X) ={I | EU By I}.
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p # q). Thiscontradicts the fact that A isacredulous extension of I". So, this case
cannot occur. (D]
(b) d’ hastheform p(c) — g(c). Similar to the above case, we can show that A contains
apath whichis preemptedin A, and hence, we conclude that this case cannot occur

too. ()
The second caseis proved by (1) and (2).
The above two cases show that S, does not attack itself. 3

To complete the proof, we need to show that S, attacks every d ¢ Sa. From the
construction of S, there are two cases:
e bd(d) Z csq_path(A). Then, by definition of S4, —=hd(d) € csq_path(A) = ¢csg(Sa).
Hence, S, attacks d by conflict. 4
e bd(d) C csg_path(A). Assume that d = p(c) — g(c) for some individua node c.
This implies that there exists a path o1 = 7(c, n, p) in A. Thus, the path o7 =
7 (c,n, p) — g iscongructiblein A. Sinced ¢ Sa, o2 ¢ A. If o2 isconflict in A,
then —=hd(d) € ¢sq(S4), and hence, o7 is attacked by conflict by S4. Otherwise, o2
is preempted in A, then we can easily check that 4 is attacked by S, by specifi-
city. (5)
From (4)—(5) we concludethat S, attacksevery d ¢ S. Together with (3), we have proved
that S, isanextensionof Tr. O

We now prove the reverse of LemmaC.6.

Lemma C.7. Let S be a consistent extension of 7. Then, path(S) = {o | ¢ is a ground
path and path(S) ~ o}.

Proof. Consider apatho = 7 (a, §, p) inpath(S). We provethat path(S) r o by induction
over |d(o)/al.

Basecase: |d(0)/a| =0. That is, o isadirect link or astrict path. Thus, d(o)/a C S.
By construction of path(S), we have that o € path(S). The base case is proved.

Inductive step: Assume that we have proved path(S) t o for o € path(S) with
|d(0)/al < n. We needto proveit for |d(o)/a| =n + 1. Firgt, let us prove the case where
o = Def(0). Assume that ¢ = 7(a,8,u) — p. Let T = m(a, §,u). By construction of
path(S) and inductive hypothesis, we have that T € path(S) and path(S) r . Thus, o is
constructiblein path(S). D

Since S is an extension of T~ and p(a) € csq(S) (because E; U Br F4(0)/a p(a)), We
havethat —p(a) ¢ csq(S). Thus, there existsno pathin path(S) supporting —p(a). In other
words, o isnot conflicted in path(S). 2

To provethat path(S) r o, we need to show that o isnot preempted in path(S). Assume

the contrary, then there are the following cases:

e Thereexistsalinka 4 tinI" and t € P(p). Inthis case, we have that —t(a) € Ep
and Ep U Br 4 —p(a). Hence, —p(a) € csq(S). This contradicts the fact that
p(a) € cq(S) and S isaconsistent extension of 7. Thus, this case cannot occur.

e Thereexistsalink a — ¢t in I and t € N(p). In this case, we have that t (a) € Ep
and Ep U Br 4 —p(a). Hence, —p(a) € csq(S). This contradicts the fact that
p(a) € cq(S) and S isaconsistent extension of 7. Thus, this case cannot occur.
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e There exists a path 7 (a,a, v, B,u) in path(S) and v A~ t e I', and t € P(p). Let
y =n(v, B,u). It is easy to see that we have v(a) — —t(a) <4(y)/a u(a) — p(a)
and d(y)/a € S. Thisimpliesthat d is attacked by S by specificity and d € S, i.e,
S attacks itself. This contradicts the fact that S is an extension of 7. Therefore, this
case cannot occur too.

e Thereexistsapath 7 (a, o, v, B, u) in path(S) andv —t € I" and r € N(p). Similar
to the third the case, we conclude that this case cannot occur.

The above four cases show that our assumption that o is preempted in path(S) is

incorrect. In other words, o is not preempted in path(S). 3
Similarly, we can prove (1)—(3) for defeasible negative paths in path(S) whose last link
isadefeasible link. (4

Now, consider the case the last link of o is a dtrict link, i.e., |d(c)] =n + 1 and
o # Def (o). From (3) and (4), we can show that path(S) ~ Def (o) is o € path(S).
Furthermore, by definition of path(S), we have that path(S) ~ Str(o). Hence, we have

that path(S) r o for this case too. (5)
The inductive step follows from (1)—(5) for pathsin path(S). So, we have proved that if
o € path(S) then path(S) o (6)

Similarly, we can show that if o ¢ path(S) then path(S) }* o. Together with (6), we
concludethelemma. O

The next lemmais the final step toward the proof of Theorem 4.6.

Lemma C.8. Let S be an extension of 7. Then, there exists a credulous extension A of
I' such that csg(S) = csg_path(A).

Proof. From Lemma C.7 and the definition of path(S), we have that csq(S) =
csg_path(path(S)). Thus, to prove the lemma we prove that there exists a credulous
extension A of I such that path(S) € A and every ground path o € A belongs to
path(S). (%)

Let I'’ be the network obtained from I" by removing from I" al individual nodes and
links going out from these nodes. Let @ be a credulous extension of I'’. It is easy to see
that A = path(S) U @ is a credulous extension of I" that satisfying (x). The lemma is
proved. O

We now prove the theorem about the relationship between the credul ous semantics of I”
and that of 7.

Theorem 4.7. For every acyclic and consistent inheritance network I, an individual node
a, and a predicate node p,

(1) I' b pla) iff Tr b p(a); and

(2 I'te—p@iff Tr b =p(a).

Proof. Assume that I" b, p(a). We prove that Tr ~ p(a). Assume the contrary, Tr *
p(a). This means that there exists an extension S of Tr such that p(a) ¢ csq(S). By
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LemmaC.8, there exists a credulous extension of I" which does not support p(a). In other
words, I [*,. p(a). This contradictsthe assumptionthat I" i, p(a). Thus, Tr b p(a).(1)
Similarly, using LemmaC.6, we can show that if T bt p(a) then I" b~ p(a). 2

Thefirst conclusion of the theorem follows from (1) and (2).
The second conclusion of the theorem can be proven similarly. O

Appendix D. Trandation into Reiter’sdefault logic

Let T = (E, B, D) be adefault theory. Recall that for K € D, csq(K) ={l| EU Btk
1'}. Further, for a set of first-order sentences X, Th(X) denotes the least logical closure
of X. For aliteral [ in £, let atom(l) denote the atom occurring in / and /; denote the
literal obtained from [ by replacing a = atom(/) with a, if a ¢ bd(d). For simplicity of
the presentation, we define £; = Ly U {a | a isan atom occurring in bd(d)}. For aliteral
lin Ly, let origin(/, d) denotethe literal i in £ such that h; = [. For aset of literas X in
L, let Xg={l;|1 e X}.Itiseasy to see that the construction of B; and D, satisfies the
following lemma.

LemmaD.1. For asetof literals X and aliteral / of L, X UB [ iff X, U By - 1,.

Lemma D.2. For adefault d € D, a set of defaults K € D, aliteral [ in £, and a set of
literals X, if X U B -k [ then X4y U By g, I where Ky = {c/; | ¢ € K}.

Proof. Without the loss of generality, we can assume that K is a minimal set of defaults
(with respect to the set inclusion operator). We prove the lemmaby induction over | K |, the
cardinality of K. The inductive case, |K| = 0, istrivial because of Lemma D.1. Assume
that we have proved thelemmafor | K| = m. We need to provethelemmafor |K| = m + 1.
Assume that K = {c1,....¢", ¢t} and ¢, ..., ™, ¢™*1 is a defeasible derivation of
1. By Definition 3.2, we have that X U B b\ (u+1 bd(c™ ™) and X U BUY 1 where
Y = {hd(c1), ..., hd(c™*1)}. From the inductive hypothesis, we can conclude that X, U
Ba by ey bd(c’7 ™). Furthermore, by LemmaD.1, we have that X4 U By U Yy 1. It

follows from Definition 3.2 that X; U B, bk, 4. The inductive step is proved and hence
thelemmaisproved. O

LemmaD.3. For everyliteral [ € £; and a set of defaults K € D*, EU (B*\ B) g L iff
thereexistsa set X < bd(d) suchthat EU Btgnp X and X U By Fknp, I

Proof. It followsfrom the construction of B; and D, that
EU(B*\B) k!l
iff EUBU By Fknpub,) l
iff EUBFgnpYandY UBykknp, !
iff EUBFgap X and X U By FKdelfOI'XZbd(d)ﬁY.

Thelemmaisproved. O
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Lemma D.4. Let X be a set of literals of LU £, and [ be a literal in £; such that
X U By k[ for some set of defaults K € D;. Then X¢ U B g origin(l, d) where
X4 ={origin(l,d) |l e X}and K ={c|ce D andcy € K}.

Proof. Without the loss of generality, we can assume that K is a minimal set of defaults
(with respect to the set inclusion operator). We prove that X¢ U B .4 origin(,d) by
induction over |K|, the cardinality of K. The inductive case, |K| = 0 follows from

Lemma D.1. Assume that we have proved the lemma for |K| = m. We need to prove

thelemmafor |K| =m + 1. Assumethat K = {cj, ) ..,cZ”,cZ""‘l} and ci, s cl c2"+1 is

a defeasible derivation of /. By Definition 3.2, we have that X U By }_K\{CZ}’“} bd(cfinH)

and X U By U Yy H1 where Y = {hd(c)), ..., hd(¢™t1)}. From the inductive hypothesis,
we can concludethat X4 U B Fka\ jen+1y bd(cm+1) and X4 UBUY | origin(, d) (Lemma

D.1). Thisimplies that X U B 4. origin(/, d). The inductive step is proved and hence
thelemmais proved. O

To continue, we need some additional notations. Let S be aset of defaultsin 7', S C D.
Define Ab(S) = Ab1(S) U Aba(S) where
Ab1(S) ={aby | d ¢ S},
Ab2(S) = {aby, | aby € Ab1(S)),

Reduct(Dr, §) = {oz Sy ( % € Dr and —f ¢ (Ab1(S) U Ab(S)) }

and
Consequence(Dr, S) = {I | E U (B*\ B) FRreduct(py.s) L}-
Furthermore, let R}, = (Wr \ B’, D) where
D’y = regular(T) U equi(D) U
bd(d), bd :T o .
{% ‘ d,ce D, and B U {hd(d), hd(c)} |S|nconsstent}.
First, it iseasy to seethat Ry and R’ are equivalent in the following sense.

Lemma D.5. For every default theory T, S is an extension of R, iff Th(S" U B’) is an
extension of Ry = (Wr, Dr).

Proof. Itiseasy to seethat any default y € Dy \ D’ hastheform

bd(d), bd(cy), (B’ U (hd(d)) = —(hd(c))): T
ab.
and B U {hd(d), hd(c)} is consistent. Thisimplies that the prerequisite of y can never be
satisfied, and hence, y cannot be applied in any consistent set of formulas of Ry. This,
together with the fact that no default in Ry has its consequent in the language of B’,
concludesthelemma. O
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It follows from Lemma D.5 that to prove Theorem 5.1 it is sufficient to provethat 7 is
equivalentto R7.. Thisiswhat wewill doin the rest of this appendix. Thefollowinglemma
follows from the definition of Reduct(Dr, S).

LemmaD.6. For every set of defaults S, a default d € S, and a set of defaults K C S,

Kq={c, | ¢ € K} C Reduct(Dr, S).
LemmaD.7. For anextension S of T, Consequence(Dyr, S) N L = csq(S).

Lemma D.8. For an extension S of T and a default d € D*, ab,; € Consequence(Dr, S)
iff ab; € Ab(S).

Proof. First, we show that if ab; € Ab(S) then ab; € Consequence(Dr, S). Consider two
cases:

e d € D. Then, ab; € Ab1(S). Thus, d ¢ S. This implies that either (i) S attacks
d by conflict or (ii) S attacks d by specificity. (i) and Lemma D.8 imply that
—hd(d) € Consequence(Dr, S), and hence, ab; € Consequence(D7, S) because
—hd(d) — ab; € Reduct(Dr, S). (ii) impliesthat thereexistssomece Sand K C §
such that ¢ <x d and E U B kg bd(c). Again, from Lemma D.8, we have that
bd(c) € Consequence(Dr, S). Thisasoimpliesthat K € Reduct(Dr, S), and hence,
K.={d.|d € K} C Reduct(Dr, S) (LemmaD.7). Because bd(c) U B - bd(d), we
havethat bd(c) U B, Fk, bd(d.) (LemmaD.2). By definition of Consequence(Dr, S),
ab, € Consequence(Dr, S).

e disadefaultin D., say p.. ab,. € Ab(S) meansthat ab,. € Ab2(S). By definition
of Aby(S), we have that ab, € Ab1(S). From the above case, we have that ab,
Consequence(Dr, §), and hence, ab,,, € Consequence(Dr, ).

We now prove that if ab; € Consequence(Dr, S) then ab; € Ab(S). Consider two

cases:

e d € D. Then, ab; € Consegquence(Dr, S) if either (i) —hd(d) € Consequence(Dr, S)
or (ii) there exists some ¢ such that bd. U bd;, € Consequence(Dr, S). (i), together
with Lemma D.8, implies that —hd(d) € csq(S), and hence, d is attacked by conflict
by S. (ii), together with Lemmas D.3 and D.4, implies that there exists a set of
defaults K € S such that bd(c) U B g bd(d), and E U B g bd(c). Because
B U {hd(d), hd(¢)} is inconsistent, this implies that d is attacked by specificity by
S. In both case, we havethat d ¢ S which impliesthat ab; € Ab1(S).

e d isadefault in D, say p.. ab,. € Consequence(Dr, S) if either (i) —hd(p.) €
Consequence(Dr, S) or (ii) ab, € Consequence(Dr, S). From (i) and Lemma D.4
imply that —hd(p) € Consequence(D7, S), and hence, ab, € Consequence(Dr, S).
In both cases, we have that ab, € Consequence(Dr, S). It follows from the above
casethat ab,, € Ab2(S).

The conclusion of the lemmafollows from the abovetwo cases. O
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To prove the equivalence between R’ and 7 we will need the following notation. Let Y
be aset of first-order formulain the language of R’.. Define, Bt = B* \ B/,

appl(Y):{oz—n/‘#EDL*ﬁ?fY}
and
concl(Y) ={l| EUB™ bappir) 1}

Let I"(Y) be the smallest set of first-order sentences satisfying the following properties:
(c) EUBT Cr(y),
(c2) ' (Y) isdeductively closed; and
(c3) if % eDr,acl(Y),and—B ¢Y theny € I'(Y).

LemmaD.9. For every set of sentences Y, concl(Y) C I'(Y).

Proof. Let ! be an arbitrary literal in concl(Y). By definition, there exists a set of defaults
K C appl(Y) such that E U BT g [. Without the loss of generdlity, we can assume
that K is minimal (with respect to the set inclusion operator). We provethat I € I'(Y)
by induction over |K|, the cardinality of K. The inductive case, |K| = 0, is trivia since
EUB* CI'(Y)and I'(Y) isdeductively closed. Assume that we have proved the lemma
for |K| =n. Consider the case | K| = n + 1. Without the loss of generality, we can assume
that K ={ds,...,d,,dy,+1} and ds, ..., d,+1 isadefeasible derivation of I. By Definition
3.2 and the inductive step, we can conclude that bd(d;) C concl(Y) and bd(d;) C I'(Y)
for every i € {1,...,n + 1}. Thisimplies that hd(d;) € concl(Y) and hd(d;) € I"'(Y) for
every i € {1,...,n + 1}. Again, because I (Y) is deductively closed, we conclude that
l e I'(Y) because! € Th(EUBTU{hd(d1), . .., hd(d,+1)}). Theinductive step, and hence,
thelemmais proved. O

LemmaD.10. S isanextensionof R} iff § = Th(B™ U concl(S)).

Proof. (=) Let S bean extensionof R’.. Recall that S isan extension of R’ iff S = I"(S).
Itiseasy to seethat S = Th(B™ U concl(S)) satisfies the following properties:

(il) EU BT C S (because E U B+ C Th(concl(S))),

(i2) S’ isdeductively closed (because of its definition), and

(i3) if % eDr,acS, and—B ¢ Stheny € 5.

Thus, because of the minimality of I"(S), we have that I"(S) € Th(B™ U concl(S)).
On the other hand, because S is an extension of R, concl(S) € I'(S). This, together
with (c3), shows that B™ U concl(S) € I'(S). Because of (c2), we can conclude that
Th(B* U concl(S)) C I'(S). Hence, S = I"(S) = Th(B+ U concl(S)).

(&) Let S be aset of first-order sentencesin R/, such that § = Th(B* U concl($)). It
iseasy to seethat EU Bt C § and S is deductively closed. Furthermore, concl(S) C S,
and hence, I'(S) C S because of the minimality of I"(S). By LemmaD.9, we have that
concl(S) € I'(S). Because BT C I'(S) and I'(S) is deductively closed, we have that
S =Th(B* Uconcl(S)) € I'(S). Thisimpliesthat S = I'(S), i.e, S is an extension of
R,. O
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Lemma D.11. Let S be an extension of T. Then, A = Th(B™ U Consequence(Dr, S)) is
an extension of R’

Proof. Itiseasy to seethat ab; € A iff ab; € Consequence(D7, S). Thus, by LemmaD.8,
ab, € A iff aby € Ab(S). Hence, appl(A) = Reduct(Dr, S). Therefore,

concl(A) = Conseguence(Dr, S).

Thus, A = Th(B*Uconcl(A)). By LemmaD.10, we havethat A isan extension of R,.. O

LemmaD.12. Let A bea consistent extension of R’.. Then, S ={d |d € D and ab, ¢ A}
isan extension of S.

Proof. Itiseasy to seethat Ab(S) ={ab, | d € D* and ab; € A}. By construction of S, it
iseasy to seethat S C Reduct(Dr, S).

First, we prove that S does not attack itself. Assume the contrary, i.e., S attacks some
d € S. We consider two cases. S attacks d by conflict, that meansthat £ U B g —hd(d).
Thisimplies that —hd(d) € A, i.e,, ab; € A. This contradicts the assumption that d € S.
Hence, this case cannot occur. S attacks d by specificity. This means that there exists a
default ¢ € S suchthat ¢ <gd and E U B ¢ bd(c). So, bd(c) € A and bd(c,y) € A, which
implies that ab; € A. Again, this contradicts the fact that d € S, i.e., this case cannot
happen too. Thus, our assumption is incorrect, i.e., we have proved that S does not attack
itself.

For each d € D\ S, either (i) —hd(d) € A or (ii) there exists some ¢ € D such that
bd(c) € A and bd(cy) € A. (i) implies that S attacks d by conflict; (ii) implies that
bd(c) Fx bd(d) for some K € S and E U B kg bd(c), i.e., S attacks d by specificity.
Both cases prove that S attacks d, i.e., S attacks every default that does not belong to S.
Together with the fact that S does not attack itself, we conclude that S is an extension of
T.Thelemmaisproved. O

We now prove Theorem 5.1.

Theorem 5.1. Let T be a default theory and I be a ground £L-literal. Then, T [ iff [ is
contained in every extension of Ry.

Proof. Becauseof LemmaD.5, itissufficient to provethat T 1~ [ iff [ iscontainedin every
extension of R.

Let 7 i1, and A bean extensionof R}.. Wewant to provethat/ € A.Let S ={d |d € D
andaby ¢ A}. From LemmaD.11, it followsthat S isan extension of T. Hencel € ¢csq(S).
Because csq(S) C concl(W), it followsthat I € concl(A). Thus, [ € A.

Let 7 be a L-literal contained in every extension of R’.. We want to prove that 7'~ I.
Let S bean extension of T. Let A = Th(B+ U Consequence(Dr, S)). We havethat [ € A.
From the definition of csq(S), it followsthat I € csq(S). O
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