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Abstract

An abstract argumentation framework may have many extensions.
Which extension should be adopted as the semantics depends on the
sceptical attitudes of the reasoners. Different degrees of scepticism
lead to different semantics ranging from the grounded extension as
the most sceptical semantics to preferred extensions as the least scep-
tical semantics. Extending abstract argumentation to allow attacks to
be attacked, subjects attacks to argumentation and hence gives rise to
a new dimension of scepticism for characterizing how sceptically at-
tacks are accepted. In this paper we present a semantics based on the
notion of inductive (grounded) defense of attacks which is sceptical to-
wards the acceptance of attacks but credulous towards the acceptance
of arguments. We show that the semantics preserves fundamental
properties of abstract argumentation including the monotonicity of
the characteristic function. We further show that any extension of
the semantics proposed by Gabbay; Baroni, Cerutti, Giacomin and
Guida1; and Modgil contains a sceptical part being an extension of
our semantics, and a credulous part resulted from its credulousness
towards the acceptance of attacks. We then introduce a stratified form
of extended argumentation which still allows an unbounded number
of levels of attacks against attacks while assuring that all proposed
semantics coincide. In this paper we also develop a sound and com-
plete dialectical proof procedure for the presented semantics following
a model of dispute that alternates between argumentation to accept
arguments and to accept attacks.

1Baroni at al for short.
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1 Introduction

Argumentation is a form of reasoning, that could be viewed as a dispute
resolution, in which the participants present their arguments to establish,
defend or attack certain propositions. Argumentation provides a basis for
understanding non-monotonic and defeasible reasoning [7, 6, 12, 13, 14, 21,
22, 23, 27, 28, 29, 38, 40], a promising platform for investigating decision
making, dialog, negotiation, legal reasoning, learning, and dispute resolution
[15, 16, 17, 19, 24, 20, 30, 31, 35, 37, 39, 41, 42].

Abstract argumentation [21] provides a bridge between argumentation
theory and application of argumentation models in various directions. An
abstract argumentation framework is defined by a set of arguments together
with a binary relation representing the attack relationship between argu-
ments. The semantics of abstract argumentation are based on a notion of
“acceptability” of arguments, namely an argument A is acceptable wrt a set
S of arguments iff S attacks every arguments attacking A. Several semantics
could be defined based on sceptical attitudes of reasoners. Different degrees
of scepticism lead to different semantics ranging from grounded extension as
the most sceptical semantics, to “ideal” extensions as an “ideally” sceptical
semantics, and to preferred extensions as the least sceptical semantics [21].

Abstract argumentation has been extended by a number of authors. Am-
goud and Cayrol in [3, 2] introduced a preference relation between argu-
ments, resulting in a preference-based argumentation framework in which an
attack (A,B) only succeeds if B is not preferred to A. Bench-Capon in [8, 9]
dealt with social values that arguments promote, resulting in value–based
argumentation which provides a natural basis for legal case-based reason-
ing [4, 10, 11]. Cayrol and Lagasquie-Schiex in [18], Amgoud et al. in [3]
dealt with a support relation between arguments in bipolar argumentation
frameworks. Nielsen and Parsons in [36] dealt with joint attacks of argu-
ments. Recently there are proposals for allowing attacks to be attacked
[33, 5, 7, 26]. In the latter line of work, Gabbay [26] and Baroni at al. [5]
have given semantics for the most general extension of abstract argumenta-
tion (until today), where not only attacks against attacks but also attacks
against attacks against attacks and so on are allowed.

Attacks against attacks could be viewed as a special kind of arguments,
posing a problem of defense for not only arguments but also associated at-
tacks. The acceptance of attacks under different sceptical attitudes gives rise
to a new dimension of scepticism. In this paper we explore this dimension,
with a semantics for the general extended argumentation frameworks of Gab-
bay [26], Baroni at al. [5], Modgil [33]. Our semantics, based on an inductive
defense relation, is sceptical and grounded towards the acceptability of at-
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tacks in a sense that an attack is “acceptable” wrt a set of arguments S only
if it is inductively (or groundedly) defended by S, but could be credulous to-
wards the acceptability of arguments. We show that our semantics preserves
the key properties of well established semantics for abstract argumentation,
like the Fundamental Lemma and the monotonicity of the characteristic func-
tion, addressing also an intriguing problem arising from its non-monotonicity
in Modgil’s semantics [33]. We also study relationships between our seman-
tics and other semantics including that of Gabbay [26], Baroni et al. [5], and
Modgil [33]. Specifically, generalising the idea in abstract argumentation that
every extension contains the unique grounded extension, we show that any
extension of other semantics contains a sceptical part being an extension of
our semantics, and a credulous part resulted from the credulousness towards
the acceptance of attacks.

For illustration consider a framework in Figure 1 consisting of attacks
α1 = (A,A) and αi+1 = (A, αi) for i ≥ 1.

Figure 1. A bizarre framework

It is rather hard to imagine any practical interpretation of this framework.
Hence, as a sceptical reasoner, one would not want to draw any conclusion,
i.e. does not accept A. An agent arguing for A has to rely on an infinite line
of defense α2, α4, . . . . The semantics of both Gabbay and Baroni et al. has a
unique preferred extension {A, α2, α4, . . . } while our semantics has the empty
set as the only extension. The example suggests that extended argumenta-
tion in a too literal form would allow counter-intuitive extensions. Thus there
arise two problems. The first is to identify from an arbitrary framework a
part that is mostly deemed sensible for acceptance, in other words to identify
a sceptical generalization to extended abstract argumentation of the seman-
tics for abstract argumentation. Our semantics is developed to address this
problem. The second problem is to identify classes of extended argumenta-
tion that are appealing for different kinds of well motivated interpretations.
To reason with preference among arguments, Modgil in [33] proposed a well-
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motivated form of extended argumentation frameworks with only one level
of attacks against attacks, generalizing earlier forms proposed by several au-
thors including Amgoud and Cayrol ([1]), Bench-Capon ([9]). Generalizing
Modgil’s work, we introduce a class of stratified frameworks where an un-
bounded number of levels of attacks against attacks against attacks etc, is
allowed. The class guarantees that all proposed semantics coincide. Thus,
analogous to stratified logic programs, stratified frameworks may be useful
for applications including but not limited to reasoning with preferences.

In this paper we also develop a dialectical proof procedure that is sound
and complete for our semantics following a model of dispute that alternates
between argumentation wrt arguments and argumentation wrt attacks. To
our best knowledge the only other proof procedure for extended argumen-
tation in the literature has been proposed by Modgil for his semantics of
extended argumentation [32].

At the end we discuss relevant representation issues of extended argu-
mentation, especially the issue of finding an appropriate representation for a
problem. We illustrate the issue by discussing intuitive and counter-intuitive
interpretations of an example used by Baroni et al. to motivate their seman-
tics.

The structure of the paper is as follows. In section 2, we recall the ex-
tended argumentation framework from [26]. In section 3, we introduce our
semantics. In section 4, we elaborate on the sceptical nature of our seman-
tics. In section 5, we develop a dialectical proof procedure for computing our
semantics. In section 6, we compare our semantics with other proposals. In
section 7 we introduce a class of stratified extended argumentation frame-
works and show that all proposed semantics coincide for this class. Finally
we conclude in section 8.

2 Extended Argumentation Framework

An abstract argumentation framework [21] is a pair AAF = (AR,Att), where
AR is a set of arguments, and Att is a binary relation over AR representing
the attack relation between the arguments (Att ⊆ AR × AR) with (A,B) ∈
Att meaning A attacks B. A set S of arguments attacks an argument A if
some argument in S attacks A; S attacks another set S ′ if S attacks some
argument in S ′.

A set S of arguments is conflict–free iff it does not attack itself. Argument
A is acceptable with respect to S iff S attacks each argument attacking A. S
is admissible iff S is conflict–free and each argument in S is acceptable with
respect to S. S is a preferred extension iff S is maximally (wrt set inclusion)
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admissible.
The semantics of argumentation could also be characterized by a fixpoint

theory of the characteristic function F (S) = {A ∈ A | A is acceptable wrt S}.
It is easy to see that S is admissible iff S is conflict free and S ⊆ F (S). As
F is monotonic, it follows that S is a preferred extension iff S is a maximal
(wrt set inclusion) fixed point of F . A complete extension is a fixed point of
F . The grounded extension is the least complete extension.

Which extension is accepted by a reasoner as the semantics of an argu-
mentation framework depends on her degree of scepticism with the grounded
extension represents the most sceptical semantics and preferred extensions
represent the least sceptical ones.

Among the most general (until today) extended forms of abstract argu-
mentation are the forms proposed in [5, 7, 26, 36] where not only attacks
against attacks but also attacks against attacks against attacks and so on
are allowed. An attack can come from an argument, or an attack (as in [7]),
or a set of them (as in [36]). We recall the following definition from [26]. 2

Definition 2.1 An Extended Argumentation Framework (EAF) is a pair
(AR,Att) where:

• AR is a set of arguments;

• Att is a set of attacks s.t. Att =
∞⋃
i=0

Atti, where

– Att0 ⊆ AR× AR,

– Atti+1 ⊆ AR× Atti

If (A, α) ∈ Att, we say that A attacks α.
Note that an AAF is an EAF with Att = Att0. An EAF in [33] has one

level of attacks against attacks, i.e. Att = Att0 ∪ Att1.
For illustration we borrow the following example from [33].

Example 2.1 Consider two persons P and Q arguing about weather fore-
cast:

P: “Today will be dry in London since the BBC forecast sunshine” (A).
Q: “Today will be wet in London since CNN forecast rain” (B).
P: “But the BBC are more trustworthy than CNN” (C).

2In this paper we consider only attacks coming from arguments.

5



Q: “However, statistically CNN are more accurate forecasters than the
BBC” (C ′).

Q: “And basing a comparison on statistics is more rigorous and rational
than basing a comparison on your instincts about their relative trustworthi-
ness” (E).

A and B claim contradictory conclusions and hence attack each other.
C and C ′ are arguments that express preferences for A over B and B over
A respectively. C hence attacks the attack from B against A. Similarly C ′

attacks the attack from A against B. These preferences are contradictory, so
C and C ′ attack each other. At last E states that C ′ is preferred to C. 3

Figure 2. EAF example

The above debate can be represented by the extended argumentation frame-
work in Figure 2 where:

• AR = {A,B,C, C ′, E}

• Att = Att0 ∪ Att1, where

– Att0 = {α, β, ǫ, ζ} with α = (A,B), β = (B,A), ǫ = (C ′, C) and
ζ = (C,C ′)

– Att1 = {γ, δ, η} with γ = (C ′, α), δ = (C, β) and η = (E, ζ).

An EAF (AR,Att) is bounded if each argument or attack has a finite
number of attacks against it, i.e. for each X ∈ AR ∪Att, the set AttackX =
{(A,X) | (A,X) ∈ Att} is finite.

From now on, for simplicity we restrict ourself to bounded EAFs

and we always refer to an arbitrary but fixed bounded EAF (AR,Att) if not
explicitly mentioned otherwise.4

3An attack (A,B), B ∈ AR is represented by an arrow from A to B. An attack (A,α),
α ∈ Att is represented by an arrow from C to the arrow representing α.

4The results in this paper could be easily generalized to the general case of unbounded
EAFs.
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3 Inductive Semantics of EAFs

Attacks against attacks pose a problem for defense of not only arguments
but also associated attacks. The notion of inductive defense below captures
a sceptical attitude of rational agents towards the acceptance of attacks.

Definition 3.1 Let S be a set of arguments and β ∈ Att. We say that

• S i–defends5 β within 0–steps iff there is no argument C ∈ AR s.t. C

attacks β.

• S i–defends β within (k+1)–steps iff S i–defends β within k–steps or
for each argument C if C attacks β then there is a D ∈ S s.t.

– D attacks C and S i–defends (D,C) within k–steps, or

– D attacks (C, β) and S i–defends (D, (C, β)) within k–steps.

• We say that S i–defends an attack β iff there is k such that S i–defends
β within k–steps.

Example 3.1 Consider the EAF in Figure 3 (borrowed from [5]) 6. Let
S = {A, P}.

α, ǫ, δ are i–defended by S within 0–steps.
γ is i–defended by S within 1–step.

Figure 3. EAF Example

If S i-defends α then we often say that α is i-defended by S.
Given a set S of arguments, let ∆(S) denote the set of attacks i–defended

by S, i.e.
∆(S) = {α ∈ Att |α is i–defended by S}

The following lemma establishes a monotonic property of the i–defense
relation.

5i-defends stands for inductively defends.
6We provide an elaborated discussion of intuitive interpretations and counter-intuitive

interpretations of this framework in section 8
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Lemma 3.1 Given S, S ′ ⊆ AR. If S ⊆ S ′ then ∆(S) ⊆ ∆(S ′).

Proof: See Appendix A.1 �

The following definitions generalize the notions of conflict-freeness and
acceptability of abstract argumentation.

Definition 3.2 A set S of arguments is i-conflict free iff there is no
A,B ∈ S s.t. A attacks B and S i-defends (A,B).

Definition 3.3 An argument A is i–acceptable wrt a set of arguments S

iff for each argument B attacking A, there exists C ∈ S such that:

1. C attacks (B,A) and S i–defends (C, (B,A)) or

2. C attacks B and S i–defends (C,B).

Example 3.2 (Continue Example 3.1) In Figure 3, G is i–acceptable wrt
S = {A, P} because C attacks G but P attacks (C,G) and S i-defends γ =
(P, (C,G)) within 1-steps.

Definition 3.4 An i-conflict free set S ⊆ AR is i–admissible iff every
argument in S is i–acceptable wrt S.

The following lemma will be useful in relating our notion of i-admissibility
to the conflict-freeness of Modgil [33].

Lemma 3.2 Let S be an i-admissible set of arguments and A,B ∈ S. If
A attacks B then there exists C ∈ S s.t. C attacks (A,B) and S i-defends
(C, (A,B)).

Proof: See Appendix A.2 �

The characteristic function based on the inductive defense is defined as
follows:

FI : 2
AR → 2AR

FI(S) = {A ∈ AR |A is i–acceptable wrt S}

Note that FI is defined on every set of arguments including the conflicting
ones.

Example 3.3 For the EAF in Figure 3: FI(∅) = {A, P}, F i
I (∅) = {A, P,G}

for i ≥ 2.
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Our semantics preserves key properties of well established semantics for
abstract argumentation.

Lemma 3.3 FI is monotonic (wrt set inclusion).

Proof: See Appendix A.3. �

The Fundamental Lemma ([21]) also holds for EAFs.

Lemma 3.4 Let S be an i-admissible set of arguments and A and A′ be
arguments which are i–acceptable wrt S. Then

1. S ′ = S ∪ {A} is i–admissible.

2. A′ is i–acceptable wrt S ′.

Proof: See Appendix A.4. �

Now we define extensions wrt inductive defense relation.

Definition 3.5 Let S ⊆ AR be an i-conflict free set of arguments.

• S is an i–preferred extension iff it is a maximally i–admissible (wrt
set inclusion) set.

• S is an i–complete extension iff S is i-admissible and each argument
which is i–acceptable wrt S belongs to S.

• A set S is the i–grounded extension iff it is the least fixed point of
FI .

Note that due to monotonicity of FI , the i–grounded extension always
exists and is the least (wrt set inclusion) i–complete extension.

Example 3.4 For the EAF in Figure 3, {A, P,G} is the unique i–preferred,
i–complete and i–grounded extension.

The relations between extensions are given in the following theorem.

Theorem 3.1
Each i–preferred extension is an i–complete extension, but not vice versa.

Proof: See Appendix A.5. �
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4 Inductive Semantics as Sceptical Semantics

of EAFs

As for abstract argumentation, different semantics for extended argumenta-
tion can be defined to capture different degrees of scepticism. Attacks against
attacks introduce an extra dimension of scepticism towards the acceptance
of attacks. In this section and section 6, we compare the inductive semantics
with other proposals, and show that any extension of other semantics consists
of a sceptical part being an extension of the inductive defense semantics, and
a credulous part resulted from the credulousness towards the acceptance of
attacks.

Introduction to Semantics of Gabbay

Partly inspired by the earlier version of this paper, Gabbay in [26] has in-
troduced a general semantics for extended argumentation. To facilitate the
comparison, we first recall it here with some modifications.

A set of arguments/attacks is conflict free in [26] if it does not contain an
attack together with both its source and target, i.e.:

Definition 4.1 [26] A set S ⊆ AR ∪ Att is g–conflict–free iff there are
no A,X such that A, (A,X), X are all in S.

Example 4.1 In Figure 3, {A,N, P} is g–conflict free, but {A,N, ǫ, P} is
not g–conflict–free because of triple A, ǫ = (A,N) and N .

Definition 4.2 An argument/attack X ∈ AR ∪ Att is g–acceptable wrt a
set S ⊆ AR ∪ Att iff for each argument A attacking X (i.e. (A,X) ∈ Att),
there exists B ∈ S such that:7

1. (B, (A,X)) ∈ S or

2. (B,A) ∈ S.

Since g-acceptability (and as will be shown later, bcgg-acceptability of
Baroni at al. as well) does not distinguish between arguments and attacks,
the insight that attacks could be given a degree of scepticism different to that
of arguments, is hidden.

7In [26] X is acceptable wrt S if for any A ∈ AR s.t. (A,X) ∈ Att there is a B ∈ S

s.t. (B,A) ∈ S and B ∈ S. We believe that our definition here is what the author means.
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Example 4.2 In Figure 3, attack γ is g–acceptable wrt {A, ǫ} but not g–
acceptable wrt {A}.

Note that even though N is not g–acceptable wrt {A, ǫ}, but attack δ is
g–acceptable wrt {A, ǫ}. In other words, rejection of an argument does not
mean rejection of attacks emanating from it. Like our semantics, Gabbay’s
semantics is therefore different from that of Baroni et al. in [5] (See more
in a later discussion).

Extensions wrt g–acceptability is defined as follows.

Definition 4.3 Let S ⊆ AR∪Att be a g–conflict free set of arguments/attacks.

• S is g–admissible iff every argument/attack in S is g–acceptable wrt
S.

• S is an g–preferred extension iff it is a maximally g–admissible (wrt
set inclusion) set.

• S is an g–complete extension iff S is g-admissible and each argu-
ment/attack which is g–acceptable wrt S belongs to S.

• S is the g–grounded extension iff it is the least complete extension
wrt set inclusion.

Example 4.3 {A, P, ǫ, δ, α, γ, G} is the only g–preferred, g–complete, g–grounded
extension of the EAF in Figure 3.

In [26], Gabbay did not provide technical results on the relationships of
the different extensions of his semantics. In the following section we prove a
few key results and compare Gabbay’s semantics to ours.

Relationships between Inductive Defense and Gabbay’s

Semantics

We now define the characteristic function based on g–acceptability and show
its key properties.

FG : 2AR∪Att → 2AR∪Att

FG(S) = {X ∈ AR ∪Att |X is g–acceptable wrt S}

Example 4.4 Consider the EAF in Figure 3.
FG(∅) = {A, P, ǫ, δ, α}.
F 2
G(∅) = {A, P, ǫ, δ, α, γ}.

F 3
G(∅) = {A, P, ǫ, δ, α, γ, G}.

F 4
G(∅) = F 3

G(∅).
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Lemma 4.1 FG is monotonic (wrt set inclusion).

Proof: See Appendix B.1. �

The Fundamental Lemma also holds for general semantics of EAFs.

Lemma 4.2 Let S be a g-admissible set of arguments/attacks and X and
X ′ be arguments/attacks which are g–acceptable wrt S. Then

1. S ′ = S ∪ {X} is g–admissible.

2. X ′ is g–acceptable wrt S ′.

Proof: See Appendix B.2 �

The following lemma shows the relationship between i–admissibility and
g–admissibility.

Lemma 4.3 A set S ⊆ AR of arguments is i–admissible iff S ∪ ∆(S) is
g–admissible.

Proof: See Appendix B.3. �

Theorem 4.1 For each S ⊆ AR, S is an i–complete extension iff S ∪∆(S)
is a g–complete extension.

Proof: See Appendix B.4. �

Note that there may exist R ⊆ AR ∪ Att that is a g–complete extension
but the restriction of R ∩ AR is not an i–complete extension, as illustrated
by extension S3 in the following example.

Example 4.5 Consider the EAF in Figure 4 (borrowed from [33]).

Figure 4. EAF in Example 4.5

The EAF in Figure 4 has the following g–complete extensions:
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• S1 = {C,C1, α, ǫ, δ}.

• S2 = {C,C1, B, B1, α, ǫ, δ}.

• S3 = {C,C1, A, α, β, γ, ǫ, δ}.

S1 is the g–grounded extension, S2 and S3 are g–preferred extensions.
There are two i–complete extensions:

• R1 = {C,C1}.

• R2 = {C,C1, B, B1}

R1 is the i–grounded extension and R2 is the only i–preferred extension.
It is easy to see that S1 = R1 ∪∆(R1) and S2 = R2 ∪∆(R2). S3 ∩AR =

{C,C1, A} is not an i–complete extension.

Inductive defense semantics could be viewed as a sceptical approach to
the semantics of EAFs. This could be seen by the following theorems.

Theorem 4.2 Let S ⊆ AR be a set of arguments. S is the i–grounded
extension iff S ∪∆(S) is the g–grounded extension.

Proof: See Appendix B.5. �

The following theorem states that the truly sceptical part of any g–
complete extension can be characterized by an i–complete extension.

Theorem 4.3 Any g-complete extension R contains a greatest (wrt set in-
clusion) i-complete extension S, i.e. S ⊆ R and for any i-complete extension
S ′, if S ′ ⊆ R then S ′ ⊆ S.

Proof: See Appendix B.6. �

Example 4.6 (Continuation of Example 4.5) In Example 4.5, greatest
i–complete extensions for g–complete extensions S1, S2 and S3 are R1, R2

and R1 respectively.

The difference R \ S is clearly resulted from the credulousness wrt the
acceptance of attacks. Its elements are not always sensible, as shown by the
example below.

Example 4.7 For the framework in Figure 1, R = {A, α2, α4, . . . } is a
unique g-preferred extension. The i-complete subset of R is ∅.

Note that in section 6 we show that the relationship between our seman-
tics and that of Baroni at al. and Modgil can be characterized by analogous
theorems.
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5 A Proof Procedure for i–defense Semantics

of EAFs

We present in this section a dialectical proof procedure for i-defense seman-
tics. To our best knowledge the only other proof procedure for extended
argumentation in the literature has been proposed by Modgil for his seman-
tics. However there is an extensive research on dialectical proof procedures
for abstract argumentation(Vreeswijk and Prakken [41], Cayrol et al. [17],
Dung et al. [23, 22], Modgil and Caminada [34], Thang et al. [40], Dung [25],
etc.). Our proof procedure is based on two unified frameworks of dialectical
proof procedures, respectively of Dung and Thang in [25] for representation
and verification of soundness and completeness, and of Thang, Dung and
Hung in [40] for development and implementation.

The acceptability of arguments is evaluated by resolving disputes between
two fictitious players, a proponent and an opponent. The proponent starts
a dispute by putting forward an initial argument, then the proponent and
the opponent alternate in attacking each other’s previous arguments and
the associated attacks. The proponent wins if the opponent runs out of
arguments to make a move. A dispute is represented by a dispute derivation
in which tuples ti = 〈Pi, Oi, SPi, SOi〉 summarizing the history of the dispute
up to step i are successively constructed by expanding the previous one.
Pi ⊆ AR∪Att is a set of arguments and attacks presented by the proponent
that have not been defended by the proponent and hence are open to attacks
by the opponent. SPi ⊆ AR is the set of all arguments presented by the
proponent. Hence the proponent does not need to re-defend arguments in
SPi \ Pi. Oi ⊆ Att is a set of attacks of the opponent against arguments
presented by the proponent in previous steps that are not counter-attacked
yet by the proponent. Thus an attack (B,C) ∈ Oi needs to be counter-
attacked by the proponent on either B or (B,C). SOi contains attacks by
the opponent that have been counter-attacked by the proponent.

In a framework EAF = (AR,Att), forX ∈ AR∪Att, note that AttackX =
{(A,X) | (A,X) ∈ Att}.

Definition 5.1 Given a selection function, a dispute derivation for an ar-
gument A is a sequence of tuples:

〈P0, O0, SP0, SO0〉 . . . 〈Pn, On, SPn, SOn〉

where

1. Pi ⊆ AR ∪ Att; SPi ⊆ AR, and Oi, SOi ⊆ Att.
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2. P0 = SP0 = {A} and O0 = SO0 = Pn = On = ∅.

3. At step i, let X be an element selected from either Pi or Oi

(a) If X ∈ Pi then:

Pi+1 = Pi \ {X}

Oi+1 = Oi ∪AttackX

SPi+1 = SPi

SOi+1 = SOi

(b) If X = (B, α) ∈ Oi, then there exists some attack (D, Y ) ∈ Att

such that

• If B 6∈ SPi then (D, Y ) ∈ (AttackB∪Attack(B,α))\(SOi∪Oi)
8

• If B ∈ SPi then (D, Y ) ∈ Attack(B,α) \ (SOi ∪Oi)

and:

Pi+1 = Pi ∪ {D, (D, Y )} if D 6∈ SPi, otherwise Pi+1 = Pi ∪
{(D, Y )}

Oi+1 = Oi \ {X}

SPi+1 = SPi ∪ {D}

SOi+1 = SOi ∪ {X}

Example 5.1 (Continue example 4.5) A dispute derivation for B is con-
structed in Figure 5, where the notation X means that X is selected. It
shows that B is i-acceptable wrt its constructed i-admissible set {B,B1}.

The following theorem states that dispute derivations represent sound
and complete proofs for i-admissibility.

Theorem 5.1 (Soundness and Completeness)

1. Soundness: If 〈P0, O0, SP0, SO0〉 . . . 〈Pn, On, SPn, SOn〉 is a dispute deriva-
tion for argument A, then SPn is i-admissible and contains A.

2. Completeness: Let EAF be a finite argumentation framework, and let
A be an argument of EAF . If A belongs to an i-admissible set S of
arguments, then for any selection function there is a dispute derivation
for A, whose component SPn of the final tuple is a subset of S.

8It follows that Y = B or Y = (B,α).
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Figure 5. A dispute derivation for B

Proof: See Appendix C.1. �

Thus a proof procedure for i-defense semantics can be reduced to a proce-
dure searching for dispute derivations, which could be directly implemented
by means of, for example, base derivations defined in [40]. As analysed
in [25], in general dispute derivations can be equipped with different filter-
ing mechanisms for two distinct purposes: to guarantee the soundness and
completeness of the proof procedure or to improve its efficiency. A proof pro-
cedure searching for dispute derivations of Definition 5.1 serves our purpose
of having a simple yet correct proof procedure, but it could be inefficient and
even may not terminate because it lacks filtering mechanisms for efficiency
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(for example, the proof does not terminate for argument A in Fig. 59). These
mechanisms can mirror those for abstract argumentation developed in [40]
and remain a future work.

6 Relationships to other Semantics

Apart from the approach of Gabbay, there are the proposals of Baroni et
al. [5] and Modgil [33]. In this section we show how they agree and differ.
We believe it may not be the right question to ask which proposal is the
best. It would be more appropriate to identify situations where a proposed
semantics is useful/appropriate. We will further the argument put forwards
in section 4, that our inductive semantics is an appropriate representation
of a sceptical reasoner of an EAF, generalizing naturally the idea of the
grounded acceptance in abstract argumentation to the acceptance of attacks
in EAFs.

Relationships to Semantics of Baroni, Cerutti, Giacomin

and Guida.

In [5] Baroni et al. independently introduced an elegant semantics which
differs subtly from that of Gabbay. In [5]:

• If (A, α) ∈ Att then (A, α) directly defeats α.

• If (A,B), (B, β) ∈ Att then (A,B) indirectly defeats (B, β).

• α ∈ Att defeats β ∈ AR ∪Att if α directly or indirectly defeats β.

• A set S ⊆ AR ∪ Att is bcgg–conflict–free iff there are no α, β ∈ S s.t.
α defeats β.

• X ∈ AR∪Att is bcgg–acceptable wrt S ⊆ AR∪Att iff for each α ∈ Att

if α defeats X then there is β ∈ S s.t. β defeats α.

• A set S ⊆ AR ∪ Att is bcgg–admissible iff it is bcgg–conflict–free and
each element of S is bcgg–acceptable wrt S. A bcgg–preferred extension
is a maximal (wrt set inclusion) bcgg–admissible set.

Example 6.1 Consider the framework in Figure 6

9But it is not difficult to prove that for stratified EAF defined in section 7 the procedure
terminates
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Figure 6. A simple framework

• α (resp. β) defeats B (resp. A) directly but defeats β(resp. α) indi-
rectly.

• {α}, {β} are bcgg-admissible and {α,A}, {β,B} are bcgg-preferred ex-
tensions.

• {α, β} is not bcgg-conflict free, but {α, β} is g-conflict free.

The semantics of Baroni et al. is based on translating an EAF =
(AR,Att) into an AAF = (AR ∪ Att, defeat). The use of defeat leads in-
tuitively to a semantics that an attack is acceptable to a reasoner only if
both the attack and its source argument are defensible. This is different to
our and Gabbay’s semantics. Consider again the above simple framework, in
our and Gabbay’s semantics a reasoner can accept both α and β but in the
semantics of Baroni et al. it can not do so.

In [5], Baroni et al. do not explicitly define complete extensions for their
semantics. For comparison we introduce them here:

A bcgg–admissible set S ⊆ AR∪Att is a bcgg–complete extension if each
argument/attack which is bcgg–acceptable wrt S belongs to S.

The following lemmas shows how the semantics of Baroni et al. differs
from that of Gabbay about the notion of acceptability.

Lemma 6.1 Given R ⊆ AR ∪ Att and (A, α) ∈ Att and B ∈ AR.

1. If both A and (A, α) are g-acceptable wrt R, then (A, α) is bcgg-acceptable
wrt R.

2. If B is g-acceptable wrt R, then B is bcgg-acceptable wrt R.

Proof: See Appendix D.1. �

Given α = (A, β) ∈ Att, we say α is an attack on β and write source(α) =
A.
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Lemma 6.2 Let R be a bcgg-complete extension and α ∈ Att. The following
properties hold

1. If α ∈ R then source(α) ∈ R.

2. FG(R) \R ⊆ Att

3. If α ∈ FG(R) \R then source(α) 6∈ R.

Proof: See Appendix D.2. �

Given a set R ⊆ AR ∪ Att of arguments and attacks, let rd(R) denote
the subset of R that excludes attacks coming from arguments outside R, i.e.

rd(R) = R \ {α ∈ Att | source(α) 6∈ R}

The following theorem shows the relationship between a g-complete ex-
tension and a bcgg-complete extension.

Theorem 6.1 Given a set R ⊆ AR ∪Att of arguments and attacks.

1. If R is g-complete, then rd(R) is bcgg-complete.

2. If R is bcgg-complete, then FG(R) is g-complete.

Proof: See Appendix D.3. �

Given a set S ⊆ AR of arguments, let Π(S) denote the set of attacks
coming from arguments in S and i–defended by S, i.e.

Π(S) = {α ∈ ∆(S) | source(α) ∈ S}.

The following theorems show the relationship between an i-complete ex-
tension and a bcgg-complete extension.

Theorem 6.2 S is an i–complete extension iff S ∪Π(S) is a bcgg–complete
extension.

Proof: See Appendix D.4. �

Analogous to theorem 4.3, the following one states that the truly sceptical
part of any bcgg-complete extension can be characterized by an i-complete
extension.

19



Theorem 6.3 Any bcgg-complete extension R contains a greatest (wrt set
inclusion) i-complete extension S, i.e. S ⊆ R and for any i-complete exten-
sion S ′, if S ′ ⊆ R then S ′ ⊆ S.

Proof: See Appendix D.5. �

Relationships to Semantics of Modgil

Modgil’s extended argumentation framework ([33]) accommodates reasoning
with preference among arguments generalizing earlier extensions of the ab-
stract argumentation framework by Amgoud and Cayrol ([1]), Bench-Capon
([9]).

Definition 6.1 A Modgil’s Extended Argumentation Framework (MEAF) is
an EAF (AR,Att) with the following constraints:

1. Att = Att0 ∪ Att1 where Att0 ⊆ AR× AR and Att1 ⊆ AR× Att0;

2. If both (Z, (X, Y )) and (Z ′, (Y,X)) are in Att then both (Z,Z ′) and
(Z ′, Z) are in Att.

Though the Modgil’s extended argumentation could be viewed as a special
case of general extended frameworks (including BGW framework [7]10), its
semantics is based on the underlining intuition that attacks against attacks
represent preferences between conflicting arguments. Hence the condition 2
in Definition 6.1 is introduced11. This constraint plays a fundamental role
in the definition conflict-freeness and hence in Modgil’s semantics recalled
below. This insight suggests that different intuitions and applications could
lead to different classes and different semantics for the general extended ar-
gumentation of [7]12. This line of work [1, 9, 33], however, is important for
practical applications as too liberally defined argumentation networks may
not have any intuitive interpretation.

In the rest of this chapter whenever we refer to an EAF, we mean an
Modgil’s extended argumentation framework.

Modgil’s semantics ([33]) is also based on a notion of acceptability of
arguments wrt a set of arguments. Intuitively, an argument A is acceptable

10A BGW framework is even more general than the general extended framework studied
in this paper as BGW framework allows attacks to come from not only arguments but
also attacks.

11An attack (Z, (X,Y )) represents the preference Z for Y over X . Contradictory pref-
erences Z and Z ′ must attack each other.

12This view is also shared by Gabbay in [26]
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wrt a set of arguments S if S attacks each argument attacking A and there
exist reinstatement sets for those attacks from S against attackers of A to
ensure that they are reinstated if attacked. We recall the important notions
of defeat and reinstatement in [33] below.

Definition 6.2 Let (AR,Att) be a MEAF and S ⊆ AR.

• A defeatsS B denoted by A →S B iff A attacks B and there is no
C ∈ S s.t. C attacks (A,B).

• S is m–conflict free iff for all A,B ∈ S: if A attacks B then B does
not attack A and there is C ∈ S s.t. C attacks (A,B).

Definition 6.3 Let (AR,Att) be a MEAF and S ⊆ AR.

• RS = {X1 →
S Y1, . . . , Xn →S Yn} is a reinstatement set for C →S

B iff

1. C →S B ∈ RS.

2. For i = 1 . . . n: Xi ∈ S.

3. ∀X →S Y ∈ RS, ∀Y ′ s.t. (Y ′, (X, Y )) ∈ Att, there is some
X ′ →S Y ′ ∈ RS.

• A ∈ AR is m–acceptable wrt S iff for each B s.t. B →S A there is a
C ∈ S s.t. C →S B and there is a reinstatement set for C →S B.

Example 6.2 In Figure 4, A is m–acceptable wrt S = {C,C1}. The rein-
statement set for C →S B is {C →S B,C1 →

S B1}.

The semantics of MEAFs are defined by extensions based on Modgil’s
acceptability as follows.

Definition 6.4 Let S be a m–conflict–free set of arguments.

• S is m–admissible iff each argument in S is m–acceptable wrt S.

• S is a m–preferred extension iff S is a maximal (wrt set inclusion)
m–admissible set.

• S is a m–complete extension iff each argument which is m–acceptable
wrt S belongs to S.

Example 6.3 In Figure 4, {C,C1, A}, {C,C1, B, B1} are m–preferred ex-
tensions.
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A is acceptable wrt {C,C1} because of the reinstatement set {C →S

B,C1 →
S B1}. The meaning of reinstatement in this case is that B and B1

are defeated by C,C1, hence A is acceptable. In other words, the attacks
(C,B), (C1, B1) are necessary for the acceptability of A wrt {C,C1} because
employing them in a reinstatement allows {C,C1} to eliminate the “threats”
from B,B1 to the acceptability of A.

Definition 6.5 Let EAF = (AR,Att) be a MEAF. The Modgil’s charac-

teristic function of EAF denoted by FM is defined as follows:

• FM : ARC → 2AR where ARC is the set of all m–conflict free subsets
of AR.

• FM(S) = {A |A is m–acceptable wrt S}.

In general FM is not monotonic and the existence of a least fixed point
of FM is not guaranteed.

Example 6.4 In Figure 4 A is m–acceptable wrt S = {C,C1} but not m–
acceptable wrt S ′ = S ∪{B,B1}. It means that S ⊆ S ′ but FM(S) * FM(S ′).

Why FM is not monotonic? Coming back to the MEAF in Figure 4. A

is acceptable wrt {C,C1} but by adding B,B1 to {C,C1} the attacks (C,B)
and (C1, B1) are disregarded. Hence they can not be employed to defend
A wrt {C,C1, B, B1} anymore and it leads to the unacceptability of A wrt
{C,C1, B, B1} .

Modgil [33] defined the grounded extension of MEAF as the union
∞⋃
i=0

F i
M(∅).

Due to the non-monotonicity of FM , this grounded extension is not a least
complete extension, hence does not represent the most sceptical semantics.
It hence does not generalize the idea of the grounded extension as the most
sceptical semantics of abstract argumentation. The following example illus-
trates this point.

Example 6.5 For the framework in Figure 4. From FM(∅) = {C,C1},
F i
M (∅) = {C,C1, A} for i ≥ 2, the m-grounded extension is {C,C1, A}.

However, since A is not in the other m-preferred extension {C,C1, B, B1},
this m-grounded extension is not a subset of the preferred extension {C,C1, B, B1}.
In other words, the “m-grounded extension” of Modgil does not fully gener-
alize the notion of the grounded acceptance in abstract argumentation as the
semantics of the most sceptical reasoners.
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There are two different views to the grounded extension:

• as a least complete extension, i.e. it represents the most sceptical
semantics of entirely possible semantics acceptable by reasoners.

• as a result of the iterative computation process of the characteristic
function from the empty set to yield a fixed point.

In that sense, our grounded semantics captures the most sceptical part
of Modgil’s grounded semantics. 13

We believe that the monotonicity of the characteristic function is a fun-
damental property of abstract argumentation, establishing a semantics for
sceptical reasoners. Further the monotonicity makes it possible, or at least
much easier to develop efficient dialectical proof procedures for sceptical rea-
soners, which rely on the possibility to incrementally constructing proofs as
disputes, as illustrated in section 5. The non-monotonicity also runs against
the intuition that the more arguments one has, the more arguments one is
capable to defend.

The following lemma shows the relationship between i–acceptability and
Modgil’s m–acceptability.

Lemma 6.3 If an argument A is i–acceptable wrt a m–conflict free set S of
arguments then A is m–acceptable wrt S.

Proof: See Appendix D.6. �

Lemma 6.3 shows that i–admissibility implies m–admissibility wrt m–
conflict free sets. But the reverse is not true as the following example shows.
To address this issue we introduce the notion of mi-admissibility below.

Example 6.6 Consider the MEAF in Figure 4.
A is m–acceptable with S = {C,C1} (Example 6.2). Hence {C,C1, A} is

m–admissible.
A is not i–acceptable wrt {C,C1} because (C,B) is not i–defended by

{C,C1}. Hence {C,C1, A} is not i–admissible.

Example 6.7 Consider the MEAF in Figure 7.
The following table shows its extensions.

13In [33], Modgil has shown that the characteristic function of hierarchical and preference
symmetric frameworks is monotonic, where in the former case, the hierarchical restriction
essentially ensures that any defense of an attack is inductive.
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Figure 7. MEAF in Example 6.7

i– m–

Preferred {C,C1} {C,C1, A}
Complete {C,C1} {C,C1, A}

Example 6.7 shows that in general:

• An i–preferred extension is not necessary a m–preferred extension and
vice versa.

• An i–complete extension is not necessary a m–complete extension and
vice versa.

Modgil’s constraint in his notion of m-conflict freeness that there are
no two arguments of S attacking each others, is relevant in many practical
applications. In the following we incorporate this constraint into our i-defense
semantics.

Definition 6.6 An i-admissible set S ⊆ AR is mi-admissible iff there are
no arguments A,B ∈ S s.t. A and B attack each other, i.e. (A,B), (B,A) ∈
Att.

Lemma 6.4 Given S ⊆ AR. If S is mi-admissible, then S is m-admissible.

Proof: See Appendix D.7. �

The following theorem states that mi-admissibility could be viewed as a
sceptical part in the credulous semantics of Modgil.

Theorem 6.4 Any m-preferred extension R contains a greatest (wrt set in-
clusion) mi-admissible set S, i.e. S ⊆ R and for any mi-admissible set S ′, if
S ′ ⊆ R then S ′ ⊆ S.

Proof: See Appendix D.8. �
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7 Stratified EAFs

Generalizing hierarchical MEAFs [33], we introduce a class of stratified frame-
works where an unbounded number of levels of attacks against attacks against
attacks, etc, is allowed. We then argue that this class reduces the risk of infer-
ring insensibly in general extended argumentation as all proposed semantics
coincide.

For α = (A, β) ∈ Att, we define target(α) as follows:

1. If β ∈ AR then target(α) = β.

2. If β ∈ Att then target(α) = target(β).

An EAF = (AR,Att) is strongly bounded if for each argument A ∈ AR,
the set {α ∈ Att | target(α) = A} is finite14.

Definition 7.1 An Extended Argumentation Framework EAF = (AR,Att)
is stratified iff it is strongly bounded and there exists a partition

AR =
∞⋃

i=0

ARi

such that:

1. ARi are pairwise disjoint sets of arguments, where rank(A) = i states
that A ∈ ARi,

2. for each α ∈ Att:

(a) If α = (A,B) and A,B ∈ AR, then: rank(A) ≤ rank(B).

(b) If α = (A, β) and β ∈ Att then: rank(A) < rank(target(β)).

3. For any i, if ARi = ∅ then for any j ≥ i, ARj = ∅.

The intuition of stratification is that the acceptance of an argument A ∈
ARi does not depend on any level ARj with j > i. This property holds when
arguments can be ranked such that attacks against arguments come from
arguments with smaller or equal ranks, but attacks against attacks come
from arguments with strictly smaller ranks.

Example 7.1 For frameworks we have analysed:

14It is easy to see that a strongly bounded EAF is bounded but not vice versa
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Figure 8. EAF Partitions

• Figure 8a: The framework is stratified.

• Figure 8b: The framework is not stratified. Assume the contrary. Since
source(δ) = B and target(δ) = B1, rank(B) < rank(B1). Consider ǫ

analogously, rank(B) > rank(B1). Contradiction !

Note that a hierarchical framework of Modgil is a stratified framework
satisfying Att = Att0 ∪ Att1 and rank(source(α)) = rank(target(α)) if α ∈
Att0 in condition 2a.

Analogous to the class of stratified logic programs, the class of stratified
frameworks is useful for applications including but not limited to reasoning
with preferences, the motivation of hierarchical frameworks.

Lemma 7.1 Let EAF = (AR,Att) be a stratified framework and S ⊆ AR,
R ⊆ Att. If S ∪R is g-complete (resp. bcgg-complete), then R = ∆(S) (resp.
R = Π(S)).

Proof: See Appendix E.1. �

Theorem 7.1 Let EAF = (AR,Att) be a stratified framework and S ⊆ AR,
R ⊆ Att. S ∪R is g-complete (resp. bcgg-complete) iff S is i-complete.

Proof: See Appendix E.2. �

Theorem 7.2 Let EAF = (AR,Att) be a stratified MEAF and S ⊆ AR. S
is m-complete iff S is i-complete.

Proof: See Appendix E.3. �
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8 Discussions and Conclusions

This paper focuses on a research line of extending abstract argumentation.
Amgoud and Cayrol in [3, 2] introduced a preference relation between argu-
ments, resulting in a preference-based argumentation framework in which an
attack (A,B) only succeeds if B is not preferred to A. Bench-Capon in [8, 9]
dealt with social values that arguments promote, resulting in value–based
argumentation which provides a natural basis for legal case-based reason-
ing [4, 10, 11]. Cayrol and Lagasquie-Schiex in [18], Amgoud et al. in [3]
dealt with a support relation between arguments in bipolar argumentation
frameworks. Nielsen and Parsons in [36] dealt with joint attacks of argu-
ments. Recently there are proposals for allowing attacks to be attacked
[33, 5, 7, 26]. In the latter line of work, Gabbay [26] and Baroni at al. [5]
have given semantics for the most general extension of abstract argumenta-
tion (until today), where not only attacks against attacks but also attacks
against attacks against attacks and so on are allowed.

While it seems reasonable to expect that attacks can be attacked and so
should be subjected to argumentation, it is not always straightforward to
find intuitive interpretations for such networks. For illustration we recall an
example by Baroni at al. [5] illustrated in Figure 3, where Bob has to decide
whether to spend his Christmas holidays in Gstaad, a ski resort, or Cuba,
with below arguments:

”There is a last minute offer for Gstaad, so Bob should go to Gstaad”(G).
”There is a last minute offer for Cuba, so Bob should go to Cuba”(C).
”Bob likes skiing, so when it is possible, he prefers to go to a ski re-

sort”(P).
”The weather report informs that in Gstaad there were no snowfalls since

one month, so it is not possible to ski in Gstaad”(N).
”Thanks to a good amount of artificial snow in Gstaad, it is anyway

possible to ski there”(A).
Baroni et al. built a framework for Bob as follows. As two Bob’s choices

are incompatible, G and C attack each other. P represents a preference
for skiing and hence attacks the attack from C to G. N does not affect the
existence of last minute offers or Bob’s general preferences for ski. Rather,
N affects the ability of preference P to affect the choice between Gstaad and
Cuba and hence attacks the attack originated from P. However A attacks
N, thus reinstating the attack originating from P. The resulted framework
suggests that Bob should go to Gstaad.

Does this framework succinctly represent Bob’s dilemma? If the answer
is ”Yes”, let us twist it slightly.

Suppose there is no artificial snow. Hence A should be dropped from the
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framework. So the attack coming from P should be rejected. Thus for Bob,
Cuba and Gstaad are equally preferred. Consider that Gstaad is a ski resort
without snow, this conclusion is rather odd. So let us elaborate a bit deeper.

A last minute offer for Gstaad (G) or Cuba (C) is not in itself an argument
for Bob to go, but only its abbreviation. A last minute offer to a dangerous
place like Afghanistan, may not make sense for Bob. In the context that Bob
is deciding about his Christmas holidays, a more complete form of G could
be:

• Premise 1: Bob wants to go to places where he can ski.

• Premise 2: Bob can ski in Gstaad since it normally has a good amount
of snow.

• Premise 3: Bob could accept a last minute offer to Gstaad because he
can ski there.

• Conclusion: Bob should go to Gstaad.

Hence instead of attacking the attack originated from P, N attacks G on
its second premise, suggesting that Bob should go to Cuba, not Gstaad. This
situation is better represented by the framework in Figure 9.

Figure 9. An EAF for Bob’s Dilemma Example

That one can have completely different frameworks for the “same prob-
lem” exhibit the challenge of representing problems by extended argumen-
tation frameworks. In Bob’s dilemma, for example, the framework given by
Baroni et al. is appropriate in situations where Bob goes to Gstaad for sev-
eral amusements, for example skiing and social night life and the value of
social life is as good as the value of swimming in Cuba. As also pointed out
by Gabbay [26], in extended argumentation it is not easy to say which of
rival representations is correct.

Bob’s dilemma, and several examples in this paper, reveals that it is
a challenge to interpret an extended argumentation framework, especially
when it is in a too liberal form. Thus there arises several problems. The first
is to identify from an arbitrary framework a part that is deemed sensible
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for acceptance. As in abstract argumentation, several semantics could be
defined based on sceptical attitudes of reasoners, ranging from grounded ex-
tension as the most sceptical semantics, to “ideal” extensions as an “ideally”
sceptical semantics, to preferred extensions as the least sceptical semantics.
In extended argumentation where both arguments and attacks can be at-
tacked, there are two dimensions of scepticism: one towards the acceptance
of arguments, and one towards the acceptance of attacks. In this paper
we explore this space with an inductive defense semantics that is sceptical,
grounded towards the acceptance of attacks but could be credulous towards
the acceptance of arguments. We show that our semantics preserves the
key properties of semantics for abstract argumentation (which have only one
scepticism dimension), like the Fundamental Lemma and the monotonicity
of the characteristic function. These properties play important roles in, for
example, developing proof procedures. Demonstratively, we also develop a
sound and complete dialectical proof procedure following a model of dispute
that alternates between argumentation wrt arguments and argumentation
wrt attacks. To our best knowledge the only other proof procedure for ex-
tended argumentation in the literature has been proposed by Modgil for his
semantics of extended argumentation.

Several semantical systems for extended argumentation have been pro-
posed. Though clearly related, their formal and precise relationship remains
much unexplored. We address this problem by providing an unified approach
for comparing them based on dimensions of scepticism. We show that any ex-
tension of other semantics including that of Gabbay [26], Baroni et al. [5] and
Modgil [33] contains a sceptical part being an extension of our semantics, and
a credulous part resulted from the credulousness towards acceptance of at-
tacks. As there are two dimensions to scepticism in extended argumentation
frameworks, it is also possible to construct a semantics credulous towards the
acceptance of attacks while sceptical towards the acceptance of arguments.
We believe that this approach could be used to define a sceptical semantics
for other extended forms of argumentation like the bipolar argumentation
framework of Cayrol et al. [3, 18]. However, for general extended forms like
those of Gabbay [26], Baroni et al. [5], it seems prudent for us to start study-
ing with a sceptical approach to acceptance of attacks since we do not know
of any example with an intuitive and practical interpretation for credulous
acceptance of attacks.

The second problem arising from extending abstract argumentation is to
identify classes of extended argumentation frameworks that are appealing
to different kinds of well motivated interpretations. In Modgil’s extended
argumentation framework [33] which generalizes the work of several authors
including Amgoud and Cayrol ([1]), Bench-Capon ([9]), attacks against at-
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tacks represent preferences between conflicting arguments. This intuition
leads to a constraint that two arguments attacking each other should not be
accepted together. The constraint could be imposed directly on the notion
of conflict-freeness as in [33] or equivalently on the notion of admissibility as
our mi-admissibility15. We believe that a study of appropriate constraints
is important as extended argumentation in a too general form could lead to
awkward frameworks with no intuitive meaning. Generalizing Modgil’s work,
we introduce a class of stratified frameworks where an unbounded number of
levels of attacks against attacks against attacks etc, is allowed, guaranteeing
that all proposed semantics coincide. Stratified frameworks may be useful
for applications including but not limited to reasoning with preferences.

It is a challenging problem to classify extended argumentation frameworks
that are sensible for both sceptical and credulous reasoning. Many ideas for
semantics of extended argumentation have been studied in [5, 7, 26, 33] and
in this paper. We believe that sensible combination of these ideas could
provide sensible semantics for diverse application.

Our contributions can be extended in several directions. The inductive
defense semantics can be extended easily for unbounded EAFs (frameworks
that against an element there is possibly an infinite number of attacks). By
the same proof given in this paper, our proof procedure can be shown to be
sound and complete for a general class of finitary frameworks, which require
that for an argument/attack, the set of arguments/attacks reachable to it, is
finite. Conforming to the framework in [25], our proof procedure is equipped
with filtering mechanisms essential for its soundness and completeness. It can
also be equipped with other filtering mechanisms for efficiency, for example in
its step 3.a, Oi+1 = Oi∪AttackX could be replaced by Oi+1 = Oi∪(AttackX \
(SOi ∪ Oi)) if X ∈ AR, to prevent the opponent from repeating attacks
against the proponent’s arguments that are already attacked. Complexity
analysis of the procedure is beyond the scope of this paper. A comparison
between our proof procedure and that of Modgil for his semantics [32] remains
a future work.

15We could say that a key question in a semantics for general extended argumentation
(including BGW framework) is how the notion of conflict-free should be generalized and
what does it mean for an argument to be acceptable? It would be interesting to see how
works on logical modes of attacks [27] as well as interpretations in [7] could be applied to
provide a formal framework here. This view, first raised in the earlier version of this paper,
is also shared by Gabbay in [26]. Note that BGW framework [7] is even more general than
the general extended framework studied in this paper as BGW framework allows attacks
to come from not only arguments but also attacks.

30



9 Acknowledgements

We thank the referees for constructive comments and criticisms. This work
was partially funded by the Sixth Framework IST program of the European
Commission under the 035200 ARGUGRID project.

References

[1] Leila Amgoud and Claudette Cayrol. Inferring from inconsistency in
preference-based argumentation frameworks. Journal of Automated Rea-
soning, 29(2):125–169, 2002.

[2] Leila Amgoud and Claudette Cayrol. A reasoning model based on the
production of acceptable arguments. Annals of Mathematics and Arti-
ficial Intelligence, 34(1-3):197–215, 2002.

[3] Leila Amgoud, Claudette Cayrol, Marie-Christine Lagasquie-Schiex, and
P. Livet. On bipolarity in argumentation frameworks. Int. J. Intell.
Syst., 23(10):1062–1093, 2008.

[4] Katie Atkinson and Trevor J. M. Bench-Capon. Legal case-based rea-
soning as practical reasoning. Artif. Intell. Law, 13(1):93–131, 2005.

[5] Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Giovanni
Guida. Encompassing attacks to attacks in abstract argumentation
frameworks. In ECSQARU, pages 83–94, 2009.

[6] Pietro Baroni and Massimiliano Giacomin. On principle-based evalua-
tion of extension-based argumentation semantics. Artificial Intelligence,
171(10-15):675–700, 2007.

[7] Howard Barringer, Dov M. Gabbay, and John Woods. Temporal dynam-
ics of support and attack networks: From argumentation to zoology. In
Mechanizing Mathematical Reasoning, pages 59–98, 2005.

[8] Trevor J. M. Bench-Capon. Agreeing to differ: modelling persuasive
dialogue between parties with different values. Informal Logic, 22:2002,
2003.

[9] Trevor J. M. Bench-Capon. Persuasion in practical argument using
value-based argumentation frameworks. Journal of Logic and Compu-
tation, 13(3):429–448, 2003.

31



[10] Trevor J. M. Bench-Capon, Katie Atkinson, and Alison Chorley. Per-
suasion and value in legal argument. J. Log. Comput, 15(6):1075–1097,
2005.

[11] Trevor J. M. Bench-Capon and Giovanni Sartor. A model of legal reason-
ing with cases incorporating theories and values. Artificial Intelligence,
150(1-2):97–143, 2003.

[12] Andrei Bondarenko, Phan Minh Dung, Robert A. Kowalski, and
Francesca Toni. An abstract, argumentation-theoretic approach to de-
fault reasoning. Artificial Intelligence, 93:63–101, 1997.

[13] Gerhard Brewka. Reasoning about priorities in default logic. In AAAI,
pages 940–945, 1994.

[14] Gerhard Brewka and Thomas Eiter. Argumentation context systems:
A framework for abstract group argumentation. In LPNMR. Springer
Verlag, 2009. To appear.

[15] Martin Caminada and Leila Amgoud. On the evaluation of argumenta-
tion formalisms. Artificial Intelligence, 171(5-6):286–310, 2007.

[16] Marcela Capobianco, Carlos I. Ches nevar, and Guillermo R. Simari.
Argumentation and the dynamics of warranted beliefs in changing envi-
ronments. Autonomous Agents and Multi-Agent Systems, 11(2):127–151,
2005.

[17] Claudette Cayrol, Sylvie Doutre, and Jérôme Mengin. On decision prob-
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A Proofs of Lemmas and Theorems in Sec-

tion 3

Lemma A.1 is needed to prove other Lemmas and Theorems.

Lemma A.1 Let S ⊆ AR be an i–conflict free set of arguments. There are
no attacks β = (A, α), α ∈ Att s.t. A ∈ S and both β and α are i-defended
by S.

Proof:

Let S ⊆ AR be an i–conflict free set of arguments.
It is sufficient to prove that for every k ≥ 0, there are no α, β satisfying

the following conditions:

1. β = (A, α), A ∈ S.

2. S i–defends α within kα–steps, S i–defends β within kβ–steps, and
k = min(kα, kβ).

We prove by induction on k.

• Base case: k = 0. Suppose there are α, β satisfying the above con-
ditions with k = 0. As A attacks α, α could not be i–defended by S

within 0–steps. Hence β is i–defended by S within 0–steps, i.e. there
is no attack against β in Att. But as α is i–defended by S, there must
exist B ∈ S s.t. B attacks A and S i–defends (B,A). Contradiction to
the conflict freeness of S.

• Inductive case: Suppose there are no α, β satisfying the above con-
ditions with k = n.

Assume the contrary that there are α, β satisfying the above conditions
with k = n+ 1.

As α is i–defended by S within kα-steps, A attacks α, and A ∈ S, there
must exist B ∈ S such that one of the following cases holds:

– B attacks A and S i–defends (B,A). Contradiction to the conflict
freeness of S and this case is not possible.
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– B attacks β and S i–defends γ = (B, β) within (kα − 1)–steps.

Similarly, as β is i–defended by S within kβ-steps, B attacks β, and
B ∈ S, there must exist C ∈ S such that C attacks γ and S i–defends
δ = (C, γ) within (kβ − 1)–steps.

Obviously, n = min(kα − 1, kβ − 1). By the inductive hypothesis, such
γ, δ do not exist. Contradiction!

�

A.1 Proof of Lemma 3.1

Let S and S ′ be sets of arguments s.t. S ⊆ S ′. We prove by induction on k

that if S i–defends an attack β within k–steps then so does S ′.

Base case: k = 0. Obviously.

Inductive case: Suppose for every β ∈ Att, if S i–defends β within k–steps
(k ≥ 0) then so does S ′. We need to prove that it also holds for k + 1.

Let β be an arbitrary attack that is i–defended by S within (k+1)–
steps. There could be two cases:

• S i–defends β within k–steps. By the inductive hypothesis, S ′ also
i–defends β within k–steps.

• For each argument C attacking β there is a D ∈ S (and hence
D ∈ S ′) s.t. one of the following cases holds:

1. D attacks C and S i–defends (D,C) within k–steps. By the
inductive hypothesis S ′ also i–defends (D,C) within k–steps.

2. D attacks (C, β) and S i–defends (D, (C, β)) within k–steps.
By the inductive hypothesis S ′ also i–defends (D, (C, β)) within
k–steps.

Therefore β is also i–defended by S ′ within (k+1)–steps.

A.2 Proof of Lemma 3.2

Let S be an i-admissible set of arguments.
Suppose A,B ∈ S and A attacks B. From the i–acceptability of B wrt

S, there is C ∈ S such that one the following cases holds:
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• C attacks A and S i–defends (C,A). Contradiction to the conflict
freeness of S. This case is not possible.

• C attacks (A,B) and S i-defends (C, (A,B)).

So there is C ∈ S s.t. C attacks (A,B) and S i-defends (C, (A,B)).

A.3 Proof of Lemma 3.3

Let S and S ′ be sets of arguments such that S ⊆ S ′.
Let A be an argument in FI(S), i.e. A is i–acceptable wrt S. Let B be

an argument attacking A. There must be C ∈ S (hence C ∈ S ′) s.t. one of
the following cases holds:

• C attacks (B,A) and S i–defends (C, (B,A)). By Lemma 3.1, S ′ also
i–defends (C, (B,A)).

• C attacks B and S i–defends (C,B). By Lemma 3.1, S ′ also i–defends
(C,B).

As C ∈ S ′, A is i–acceptable wrt S ′, i.e. A ∈ FI(S
′). Therefore FI(S) ⊆

FI(S
′) and FI is monotonic.

A.4 Proof of Lemma 3.4

It follows from Lemma A.1 that:

Corollary A.1 Let S be an i–conflict free set of arguments. Suppose A ∈ S,
B 6∈ S, (A,B) ∈ Att, and S i–defends (A,B). Then B is not i–acceptable
wrt S.

Proof: Assume the contrary that B is i–acceptable wrt S. There are two
cases:

• There is C ∈ S s.t. C attacks A and S i–defends (C,A). Contradiction
to the i–conflict freeness of S!

• There is C ∈ S attacking (A,B) and S i-defends (C, (A,B)). Contra-
diction to Lemma A.1.

So B is not i–acceptable wrt S. �

Let S be an i–admissible set of arguments and A and A′ be arguments
which are i–acceptable wrt S. Let S ′ = S ∪ {A}.
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1. We prove that S ′ is i–admissible.

From Lemma 3.3, each argument in S is i–acceptable wrt S ′. A is
i–acceptable wrt S and so is wrt S ′. It means that each argument
in S ′ is i–acceptable to S ′. Hence we need only to prove that S ′ is
i–conflict–free.

The following property holds:

Property 1: There are no C ∈ S and X ∈ S ′ s.t. (C,X) ∈ Att and S

i–defends (C,X).

Proof: Assume the contrary and there are C ∈ S and X ∈ S ′ s.t.
(C,X) ∈ Att and S i–defends (C,X). There are two cases:

• X ∈ S. Contradiction with the i–conflict freeness of S!

• X 6∈ S. By Corollary A.1, X is not i–acceptable wrt S. Contra-
diction!

�

Property 2: Suppose α ∈ Att is i–defended by S within (k+1) steps
and there is X ∈ S ′ s.t. β = (X,α) ∈ Att.

Then there is C ∈ S s.t. C attacks β and (C, β) is i–defended by S

within k–steps.

Proof: As α is i–defended by S within (k+1)–steps, there must exist
C ∈ S s.t. one of the following cases holds:

• C attacksX and S i–defends (C,X). Contradiction with Property
1! This case is impossible.

• C attacks β and (C, β) is i–defended by S within k–steps.

�

It is sufficient to prove by induction on k that there are no X, Y ∈ S ′

s.t. (X, Y ) ∈ Att and S ′ i–defends (X, Y ) within k–steps.

• Base case: k = 0. Suppose there are X, Y ∈ S ′ s.t. (X, Y ) ∈ Att

and S ′ i–defends (X, Y ) within 0–steps, i.e. there is no attack
against (X, Y ). From the i–acceptability of Y wrt S, there is
C ∈ S s.t. C attacks X and S i–defends (C,X). Contradiction to
Property 1!
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• Inductive case: Suppose there are no X ′, Y ′ ∈ S ′ s.t. (X ′, Y ′) ∈
Att and S ′ i–defends (X ′, Y ′) within k–steps.

The following property holds.

Property 3: Suppose α ∈ Att is i–defended by S ′ within (m+1)–
steps, m ≤ k, and there is C ∈ S s.t. β = (C, α) ∈ Att.

Then there is X ∈ S ′ s.t. γ = (X, β) ∈ Att and γ is i–defended
by S ′ within m–steps.

Proof: As α is i–defended by S ′ within (m+1)–steps, there must
exist X ∈ S ′ s.t. one of the following cases holds:

– X attacks C and S ′ i–defends (X,C) within m–steps. Contra-
diction to the inductive hypothesis! This case is impossible.

– X attacks β and γ = (X, β) is i–defended by S ′ within m–
steps.

�

Suppose there are X, Y ∈ S ′ s.t. α = (X, Y ) ∈ Att and S ′ i–
defends α within (k+1)–steps.

From the i–acceptability of Y wrt S, there is C ∈ S s.t. one of
the following cases holds:

– C attacks X and S i–defends (C,X). Contradiction to Prop-
erty 1!

– C attacks α and β = (C, α) is i–defended by S.

Suppose S i–defends β within m–steps.

By Property 3, there is X1 ∈ S ′ s.t. α1 = (X1, β) ∈ Att is i–
defended by S ′ within k–steps.

By Property 2, there is C1 ∈ S s.t. β1 = (C1, α1) ∈ Att is i–
defended by S within (m-1)–steps.

By Property 3, there is X2 ∈ S ′ s.t. α2 = (X2, β1) ∈ Att is
i–defended by S ′ within (k-1)–steps.

Continue this way and there should be one of the following cases:

– k ≥ m. There is Cm ∈ S s.t. βm = (Cm, αm) ∈ Att is
i–defended by S within 0–steps and αm is i–defended by S ′

within (k-m+1)–steps. Contradiction to Property 3!

– k < m. There is Xk+1 ∈ S ′ s.t. αk+1 = (Xk+1, βk) ∈ Att

is i–defended by S ′ within 0–steps and βk is i–defended by S

within (m-k)–steps. Contradiction to Property 2!
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2. As S ⊆ S ′, from Lemma 3.3, A′ is also i–acceptable wrt S ′.

A.5 Proof of Theorem 3.1

It is obvious from the fixed point definition of i–complete extensions that
each i–preferred extension is an i–complete extension.

Dung ([21]) showed that a complete extension of an AAF is not necessary
a preferred extension. So an i–complete extension of an EAF is not necessary
an i–preferred extension. 16

B Proofs of Lemmas and Theorems in Sec-

tion 4

Lemmas B.1 to B.6 provide the grounds for proving other results.

Lemma B.1 An argument A is i-acceptable wrt a set S ⊆ AR iff A is g–
acceptable wrt S ∪∆(S), i.e. FI(S) = FG(S ∪∆(S)) ∩AR.

Proof:
A is i-acceptable wrt S
⇔ for each argument B: if B attacks A then there is argument C ∈ S s.t.
one the following cases holds:

• C attacks (B,A) and (C, (B,A)) is i-defended by S, i.e. (C, (B,A)) ∈
∆(S). So (C, (B,A)) ∈ S ∪∆(S).

• C attacks B and (C,B) is i-defended by S, i.e. (C,B) ∈ ∆(S). So
(C,B) ∈ S ∪∆(S).

⇔ A is g-acceptable wrt S ∪∆(S). �

Lemma B.2 Given an attack α ∈ Att and a set S ⊆ AR of arguments in a
bounded EAF = (AR,Att). From the boundedness of EAF :

1. α is i–defended by S iff for each argument X attacking α, there is A ∈ S

s.t.

• A attacks X and (A,X) ∈ S ∪∆(S), or

16Note that each AAF = (AR,Att) could be treated as an EAF = (AR,Att) where
Att = Att0 ⊆ AR ×AR.
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• A attacks (X,α) and (A, (X,α)) ∈ S ∪∆(S)

2. α is g–acceptable wrt S∪∆(S), i.e. α ∈ FG(S∪∆(S)) iff α is i–defended
by S, i.e. α ∈ ∆(S).

Proof:

1. if part: it follows directly from the definition of i-defense that: α is
i–defended by S if for each argument X attacking α, there is A ∈ S

s.t.

• A attacks X and (A,X) is i–defended by S, i.e. (A,X) ∈ ∆(S) ⊆
S ∪∆(S), or

• A attacks (X,α) and (A, (X,α)) is i–defended by S, i.e. (A, (X,α)) ∈
∆(S) ⊆ S ∪∆(S)

Only if part: for an attack α ∈ Att, suppose that for each argument X
attacking α, there is A ∈ S s.t. either cases below occurs.

• A attacks X and β = (A,X) is i–defended by S within kX−steps.

• A attacks (X,α) and β = (A, (X,α)) is i–defended by S within
kX−steps.

Let k = max{kX | (X,α) ∈ Att} + 1. From the boundedness of the
given EAF, k is a finite number. Thus in both cases β is is i–defended
by S within k−steps. Thus α is i-defended by S.

2. This property follows from property 1 and the definition of g-acceptability:

α is g-acceptable wrt S ∪ ∆(S) iff for each argument X attacking α,
there is A ∈ S s.t.

• (A,X) ∈ S ∪∆(S), or

• (A, (X,α)) ∈ S ∪∆(S)

�

Lemma B.3 A set S ⊆ AR is i–conflict free iff R = S ∪∆(S) is g–conflict
free.

Proof: This lemma refers to Lemma A.1.
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⇒: Suppose S is i-conflict free. Assume the contrary, that R is not g–
conflict free. There exists A ∈ S, X ∈ R s.t. (A,X) ∈ ∆(S). There
are two cases:

• X ∈ S. Contradiction to the i-conflict freeness of S!

• X ∈ ∆(S). Contradiction to Lemma A.1!

⇐: Suppose R is g–conflict free. Assume the contrary, that S is not conflict
free. There are A,B ∈ S, s.t. (A,B) is i–defended by S, i.e. (A,B) ∈
∆(S) ⊆ R. Contradiction to the g–conflict freeness of R!

�

Lemma B.4 Let S ⊆ AR be a set of arguments and A be a set of attacks
s.t. A ⊆ ∆(S) and the set R = S ∪A is g–admissible. Then

S ∪∆(S) ⊆
∞⋃

k=0

F k
G(R).

Furthermore, the set
∞⋃
k=0

F k
G(R) is a g-complete extension.

Proof:
From Lemma 4.2, as R is g–admissible and each element in FG(R) is g–

acceptable to R, R ∪ FG(R) is g–admissible. As a consequence, for every k,

Rk =
k⋃

j=0

F
j
G(R) is g–admissible.

Let ∆k(S) denote the set of attacks in ∆(S) that are i–defended by S

within k–steps.
It is sufficient to prove that for every k ≥ 0, ∆k(S) ⊆ Rk+1.
We prove by induction on k.

• Base case: k = 0. Let α be an attack in ∆0(S), i.e. α is i–defended
by S within 0–steps. There is no argument attacking α, and hence α

is g–acceptable wrt R, i.e. α ∈ FG(R) ⊆ R1.

• Inductive case: Suppose ∆k(S) ⊆ Rk+1. We prove that ∆k+1(S) ⊆
Rk+2.

Let α be an attack i–defended by S within (k+1)–steps, i.e. α ∈
∆k+1(S). For each argument C attacking α there is D ∈ S (and hence
D ∈ Rk+1) s.t.
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– D attacks C and S i–defends (D,C) within k–steps or

– D attacks (C, α) and S i–defends (D, (C, α)) within k–steps.

By the inductive hypothesis, all such (D,C) or (D, (C, α)) are in Rk+1.
Therefore α is g–acceptable wrt Rk+1, i.e. α ∈ FG(Rk+1) ⊆ Rk+2.

So each attack in ∆k+1(S) is in Rk+2, and hence ∆k+1(S) ⊆ Rk+2.

Now we prove that the set E =
∞⋃
k=0

F k
G(R) =

∞⋃
k=0

Rk is a g-complete

extension.

• E is g-conflict-free.

Assume the contrary. There exist A,B, (A,B) ∈ E . Thus there exists
k1, k2, k3 st. A,B, (A,B) are respectively in Rk1 , Rk2, Rk3 . Let k =
max{k1, k2, k3}. Clearly A,B, (A,B) are all in Rk. So Rk is not g-
conflict-free. Contradiction !.

• If α ∈ E , then α is g-acceptable wrt E , i.e. E ⊆ FG(E).

α ∈ E implies there is k s.t. α ∈ Rk. Since Rk is g-admissible, α is
g-acceptable wrt Rk. Since Rk ⊆ E , α is also g-acceptable wrt E .

• If α ∈ AR ∪ Att is g-acceptable wrt E , then α ∈ E , i.e. FG(E) ⊆ E .

α being g-acceptable wrt E implies: for each argument B attacking α,
there exists C ∈ E s.t (C,B) ∈ E or (C, (B, α)) ∈ E , so there exists a
number kB s.t. (C,B) ∈ RkB or (C, (B, α)) ∈ RkB . Since the set of all
arguments attacking α is finite (we consider bounded frameworks), the
set {kB | (B, α) ∈ Att} is finite. Let m be the maximum of this set. It
is clear that α is g-acceptable wrt Rm. Thus α ∈ Rm+1 ⊆ E .

�

Lemma B.5 Let R ⊆ AR∪Att and S ⊆ AR. If R is g-complete and S ⊆ R,
then ∆(S) ⊆ R.

Proof: By induction.
For an attack β ∈ Att, if β is i-defended by S within 0-step, then it is

clear that β is g-acceptable wrt R. As R is g-complete, β ∈ R.
Suppose that any attack that is i-defended by S within k-step is in R.

Consider an attack β that is i-defended by S within (k + 1)-steps. For any
argument C attacking β, there exists D ∈ S s.t. either (1) D attacks C
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and S i-defends (D,C) within k-steps, or (2) D attacks (C, β) and S i-
defends (D, (C, β)) within k-steps. By the inductive hypothesis, In case (1),
(D,C) ∈ R and in case (2), (D, (C, β)) ∈ R. Thus β is g-acceptable wrt R.
As R is g-complete, β ∈ R.

�

Lemma B.6 Let S be an i-admissible set, R be a g-complete extension, and

Σ =
∞⋃
k=0

F k
I (S). If S ⊆ R then:

1. Σ ⊆ R.

2. Σ is an i-complete extension.

3. ∀Σ′ ⊆ AR ∪Att, if S ⊆ Σ′ ⊆ R and FI(Σ
′) = Σ′ then Σ ⊆ Σ′.

Remark 1 It follows that, if S is i-admissible subset of the i-grounded ex-
tension, then Σ is the i-grounded extension.

Proof:
Let Sk = F k

I (S) and by convention: S0 = S. From the i-admissibility of
S0 ⇒ S0 ⊆ S1. Together with the monotonicity of FI(Lemma 3.3): S0 ⊆
S1 ⊆ · · · ⊆ Sk ⊆ . . . . From Lemma 3.4, Sk is i-admissible for any k.

Proof of property 1:
By induction, we prove ∀k : Sk ⊆ R, as follows. Basic case: S ⊆ R was

given. Suppose Si−1 ⊆ R for some i. We have Si = FI(Si−1) = FG(Si−1 ∪
∆(Si−1)) ∩ AR (Lemma B.1). From Lemma B.5, ∆(Si−1) ⊆ R ⇒ Si−1 ∪
∆(Si−1) ⊆ R ⇒ FG(Si−1 ∪ ∆(Si−1)) ⊆ FG(R) = R. So Si ⊆ R. Thus

Σ =
∞⋃
k=0

Sk ⊆ R.

Proof of property 2: We prove via several observations.

1. Given α ∈ Att, if α ∈ ∆(Σ) then α ∈ ∆(Sk) for some k.

We prove by induction on the number of steps within which Σ i-defends
α.

Basic case: Σ i-defends α within 0-steps. Clearly α ∈ ∆(S0) since S0

also i-defends α (within 0-steps).
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Hypothesis: If α ∈ Att is i-defended by Σ within n−steps then α ∈
∆(Sk) for some k.

Consider α ∈ Att that is i-defended by Σ within (n + 1)−steps. Let
Attα = {β1, . . . , βN}. Note that Attα is a finite set (as the framework
is bounded).

By definition of i-defense, ∀j ∈ {1, . . . , N}, there exists αj that is i-
defended by Σ within n−steps s.t. αj attacks βj or source(βj) (note
that given β = (A,X) then source(β) = A).

By induction hypothesis, for each αj, there exists mj s.t. αj ∈ ∆(Smj
).

Let m = max{m1, . . . , mN}. Since ∀j : Smj
⊆ Sm, from Lemma 3.1,

∀j : αj ∈ ∆(Sm).

For each αj, since source(αj) ∈ Σ, there exists pj s.t. source(αj) ∈ Spj .
Let p = max{p1, . . . , pN}. Clearly ∀j : source(αj) ∈ Sp.

Now consider k = max{m, p}, by Lemma 3.1 αj ∈ ∆(Sk). Moreover
Sk contains source(αj). Thus Sk i-defends α.

2. Σ is i-conflict free: Assume the contrary. There exist A,B ∈ Σ s.t.
(A,B) ∈ ∆(Σ). From A,B ∈ Σ, there exist a, b s.t. A ∈ Sa and
B ∈ Sb. Let c = max{a, b} ⇒ A,B ∈ Sc. Use observation (1), let
(A,B) ∈ ∆(Sd). Let m = max{c, d}. So Sc, Sd ⊆ Sm. Thus A,B ∈ Sm

while (A,B) ∈ ∆(Sm) (Lemma 3.1). Thus Sm is not i-conflict free.
Contradiction.

3. Σ is i-admissible. Consider A ∈ Σ. So A ∈ Sa for some a. As Sa

is i-admissible, A ∈ FI(Sa). By the monotonicity of FI (Lemma 3.3),
A ∈ FI(Σ). Together with observation (2), Σ is i-admissible.

4. Σ is i-complete. Use observation (3), it is sufficient to show that
FI(Σ) ⊆ Σ.

Consider A ∈ FI(Σ). Let AttA = {B1, . . . BN}. Note that AttA is finite
due to the given framework is bounded. Since A is i-acceptable wrt Σ,
for each j ∈ {1, . . . , N} there exists Cj ∈ Σ s.t. Cj attacks Bj and Σ
i-defends (Cj, Bj), or Cj attacks (Bj , A) and Σ i-defends (Cj, (Bj, A)).
Let Yj = Bj in the former case, and Yj = (Bj , A) in the latter case.
From Cj ∈ Σ, there exists mj s.t. Cj ∈ Smj

. From (Cj, Yj) ∈ ∆(Σ)
and observation (1), there exists kj s.t. (Cj, Yj) ∈ ∆(Sj). Let m =
max{k1, . . . kN , m1, . . .mN}. It follows that ∀j ∈ {1, . . . , N} : Cj ∈ Sm

and Sm i-defends (Cj, Yj). Thus A ∈ FI(Sm). It follows that FI(Σ) ⊆
Σ.
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Proof of property 3:
Since S0 ⊆ Σ′, S1 ⊆ FI(Σ

′) = Σ′, and by induction Sk ⊆ Σ′. Hence
Σ ⊆ Σ′.

�

B.1 Proof of Lemma 4.1

Let R and R′ be sets of arguments/attacks such that R ⊆ R′.
Let X be an argument/attack in FG(R), i.e. X is g–acceptable wrt R.

Let A be an argument attacking X . There must be B ∈ R (hence B ∈ R′)s.t.
one of the following cases holds:

• (B, (A,X)) ∈ R. So (B, (A,X)) ∈ R′.

• (B,A) ∈ R. So (B,A) ∈ R′.

Hence X is i–acceptable wrt R′, i.e. A ∈ FG(R
′). Therefore FG(R) ⊆ FG(R

′)
and FG is monotonic.

B.2 Proof of Lemma 4.2

Let R ⊆ AR ∪ Att be a g–admissible set. Let X,X ′ ∈ AR ∪ Att s.t. X,X ′

are g–acceptable wrt R. Let R′ = R ∪ {X}.

1. We prove that R′ is g–admissible.

If X ∈ R then R′ = R and R′ is g–admissible.

Suppose X 6∈ R. From the monotonicity of FG (Lemma 4.1), X and
all elements in R are g–acceptable wrt R′. So we need only to prove
that R′ is g–conflict free.

Assume the contrary. There must be A, β such that A, (A, β), β are all
in R′. Since R is g–conflict free, one of the following cases holds:

• A = X . Hence (A, β) ∈ R. There are two cases:

– β 6= A. Hence β ∈ R. Because β is g–acceptable wrt R there
is C ∈ R s.t. either (C, (A, β)) ∈ R or (C,A) ∈ R.
If (C, (A, β)) ∈ R, then C, (C, (A, β)), (A, β) are all in R,
contradicting the g-conflict freeness of R.
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If (C,A) ∈ R, then from the g-acceptability of A(=X) wrt R,
there is D ∈ R s.t. (D,C) ∈ R or (D, (C,A)) ∈ R.
In the first case, D, (D,C), C ∈ R.
In the second case, D, (D, (C,A)), (C,A) ∈ R.
Thus both cases contradict with the g-conflict freeness of R.

– β = A (i.e. A self-attacks). Hence (A,A) ∈ R. It follows
from the g–acceptability of A wrt R that there is C ∈ R s.t.
(a) α = (C,A) ∈ R or (b) α′ = (C, (A,A)) ∈ R.
If (a) occurs: Because A is g–acceptable wrt R, there is D ∈ R

s.t. (D,α) ∈ R or (D,C) ∈ R. Hence D, (D,α), α are all in R

or D, (D,C), C are all in R. Contradiction with the g–conflict
freeness of R.
If (b) occurs: C, (C, (A,A)) and (A,A) are all in R. Contra-
diction with the g–conflict freeness of R.

Therefore this case is not possible.

• X = β. Hence (A, β) ∈ R.

As proved before, it is not possible that A = β.

Let β 6= A. Hence A ∈ R. Because β is g–acceptable wrt R, there
is C ∈ R s.t. (C,A) ∈ R or (C, (A, β)) ∈ R. Hence R is not
g–conflict free. Contradiction!

• X = (A, β). Hence A, β ∈ R. Because β is g–acceptable wrt R,
there is C ∈ R s.t. (C,A) ∈ R or (C, (A, β)) ∈ R. Because R is
g–conflict free, it follows that (C, (A, β)) ∈ R.

Because (A, β) is g–acceptable wrt R, there is D ∈ R s.t. (D,C) ∈
R or (D, (C, (A, β))) ∈ R. Hence R is not g–conflict free. Contra-
diction!

2. As R ⊆ R′, from Lemma 4.1, X ′ is also g–acceptable wrt R′.

B.3 Proof of Lemma 4.3

Let S ⊆ AR be a set of arguments. We prove that S is i–admissible iff
R = S ∪∆(S) is g–admissible.

⇒: Suppose S is i–admissible. By Lemma B.3, as S is i-conflict free, R is
g–conflict free. Let X be an element in R. There are two cases:

• X ∈ S. By Lemma B.1, X is g–acceptable wrt R.

• X ∈ ∆(S). By Lemma B.2, X is g–acceptable wrt R.
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Hence X is g–acceptable wrt R and R is g–admissible.

⇐: Suppose R is g–admissible. By Lemma B.3, as R is g–conflict free, S is
i–conflict free.

Let A be an argument in S. Let B be an argument attacking A. From
the g–acceptability of A wrt R, there is C ∈ R ∩AR = S s.t.

• (C,B) ∈ R, i.e. (C,B) ∈ ∆(S), or

• (C, (B,A)) ∈ R, i.e. (C, (B,A)) ∈ ∆(S).

Hence A is i–acceptable wrt S. Hence S is i–admissible.

B.4 Proof of Theorem 4.1

Let S ⊆ AR be a set of arguments. We prove that S is an i–complete
extension iff R = S ∪∆(S) is a g–complete extension.

By Lemma 4.3, S is i–admissible iff R is g–admissible.
Suppose S is an i–complete extension. Let X ∈ AR ∪ Att s.t. X is

g–acceptable wrt S ∪∆(S):

• If X ∈ AR then X is i–acceptable wrt S (By Lemma B.1) and hence
X ∈ S and so X ∈ R.

• If X ∈ Att then X is i–defended by S (By Lemma B.2) and hence
X ∈ ∆(S) and so X ∈ R.

It means that each argument/attack g–acceptable wrt R belongs to R and
hence R is a g–complete extension.

Suppose S ∪ ∆(S) is a g–complete extension. Let A ∈ AR s.t. A is
i–acceptable wrt S. By Lemma B.1, A is g–acceptable to S. Hence A ∈ S.
It means that each argument i–acceptable wrt S belongs to S and hence S

is an i–complete extension.

B.5 Proof of Theorem 4.2

Let Sk = F k
I (∅). First we prove by induction that given a g-complete exten-

sion R, for any k: Sk ⊆ R.
Basic case: S0 = ∅ ⊆ R. Suppose that for some n ≥ 0: Sn ⊆ R. From

Lemma B.1, FI(Sn) = FG(Sn∪∆(Sn))∩AR. From Lemma B.5, ∆(Sn) ⊆ R,
hence Sn ∪∆(Sn) ⊆ R. From the monotonicity of FG (Lemma 3.3 ) and R

being g-complete, FG(Sn ∪ ∆(Sn)) ⊆ FG(R) = R. Thus Sn+1 ⊆ R. Hence
∀k : Sk ⊆ R.
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Now consider S =
∞⋃
k=0

Sk. Because S ⊆ R, apply Lemma B.5 ⇒ S ∪

∆(S) ⊆ R.
Thus if S∪∆(S) is a g-complete extension, then it is also the g-grounded

extension. By theorem 4.1, if S is the i-grounded extension then S ∪∆(S) is
g-complete.

Hence it remains to show that S is the i-grounded extension. This follows
from Lemma B.6 as S0 = ∅ is i-admissible.

B.6 Proof of Theorem 4.3

The following lemmas hold.

Lemma B.7 Suppose S1, S2 are i-admissible and subsets of a g–complete
extension R. Then S = S1 ∪ S2 is i-admissible.

Proof: First we prove that S is conflict free. Assume the contrary. There
are A,B ∈ S s.t. (A,B) ∈ Att and S i–defends (A,B). Because S ⊆
R0 = R ∩ AR, R0 i-defends (A,B). From Lemma B.5, ∆(R0) ⊆ R. Hence
(A,B) ∈ R. So A, (A,B), B are all in R. Contradiction with the g-conflict
freeness of R.

Consider A ∈ S. Hence A in S1 or S2 ⇒ A is i–acceptable wrt S1 or S2

⇒ A is i–acceptable wrt S (by Lemma 4.1). Hence S is i–admissible. �

It follows immediately from Lemma B.7 that:

Lemma B.8 Let Σ be the union of all i–admissible sets that are subsets of
a g–complete extension R. Then Σ is i-admissible.

From Lemma B.5 it follows immediately:

Lemma B.9 Suppose S is an i–admissible set and a subset of a g-complete
extension R. Then FI(S) ∪∆(S) ⊆ R.

Now we prove theorem 4.3
Let R be a g–complete extension. Let Σ be the union of all i-admissible

subsets of R. Obviously Σ ⊆ R. Σ is i-admissible (By Lemma B.8). As
Σ ⊆ R, FI(Σ) ⊆ R (By Lemma B.9) and i–admissible. It follows that
FI(Σ) ⊆ Σ. As Σ is i–admissible, FI(Σ) ⊇ Σ. So FI(Σ) = Σ and Σ is an
i–complete extension.

Σ is also a greatest (wrt set inclusion) i–admissible subset of R and hence
Σ is also a greatest (wrt set inclusion) i–complete extension that is a subset
of R.
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C Proofs of Lemmas and Theorems in Sec-

tion 5

C.1 Proof of Theorem 5.1

Before giving the proof, we introduce an useful notion: for S ⊆ AR, Π(S) =
{α ∈ ∆(S) | source(α) ∈ S}.

1. A ∈ SP0. Since in step 3.a (definition 5.1), SPi = SPi+1 while in step
3.b, SPi ( SPi+1, SP0 ⊆ SP1 · · · ⊆ SPn. Thus A ∈ SPn.

Let P denote
n⋃

i=0

Pi. So P = SPn∪A with A = P ∩Att. To prove that

SPn is i-admissible, we first prove several observations below.

(a) For any attack α ∈ A: α ∈ Π(SPn).

Let i1, . . . , ik be the sequence of all steps at which an attack αj

(1 ≤ j ≤ k) is selected from Pij . It follows that αk is the last
attack selected from some Pi and for all m > ik, Pm ⊆ AR.

We prove by backward induction (from αk downto α1) that all of
them are i-defended by SPn.

• Basic case: Clearly Attackαk
= ∅, since Attackαk

6= ∅ would
give rise to elements of Attackαk

to be added to O component
by step 3.a. And later when these elements are selected by
step 3.b, attacks against them are added to P -component,
making αk not the last attack selected from P -component
any more. Thus αk is i-defended by SPn within 0-steps.

• Suppose αl+1, . . . , αk are all i-defended by SPn. We prove
that so is αl. Consider step il at which αl is selected from
Pil by step 3.a, elements of Attackαl

are added to Oil. Each
of them is selected later by step 3.b, resulting in elements
D, (D, Y ) added to P -component. This establishes that any
attack against αl is counter-attacked by an argument D ∈
SPn with an attack (D, Y ) ∈ {αl+1, . . . , αk}. By the induction
hypothesis, (D, Y ) is i-defended by SPn. Thus αl ∈ ∆(SPn).

(b) Any argument C ∈ SPn is i-acceptable wrt SPn.

Clearly when C is selected at step i by 3.a, all elements of AttackC
are added to O-component. When such an element (B,C) ∈
AttackC is selected at some later step by 3.b, D, (D, Y ) repre-
senting an attack against B or (B,C) are added to P -component.
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Since D ∈ SPn and (D, Y ) ∈ Π(SPn) by observation (a), C is
i-acceptable wrt SPn.

(c) If α is added to Pi at a step i and α ∈ Oj for some j, then i < j.

This result follows immediately from step 3.b: for any α ∈ Att

added to Pi, α 6∈ (SOi ∪ Oi).

(d) If α ∈ A, then source(α) ∈ SPn. This follows from step 3.b.

(e) A ∩ SOn = ∅

Assume DS = A∩ SOn 6= ∅. For α ∈ DS, let eject(α) = max{i |
α ∈ Oi}, i.e. α is selected from Oeject(α) and is not added to
any Oj for j > i. And let α0 = (B, β) ∈ DS s.t. eject(α0) =
max{eject(α) | α ∈ DS}. Because α0 ∈ A, it follows that B ∈
SPn (observation (d)).

Consider the step eject(α0) at which α0 is selected from Oeject(α0)

by step 3b, resulting in an attack α1 being added to Peject(α0).
There are two cases:

i. α1 = (D,α0). Since α0 ∈ DS and hence α0 ∈ P, α1 ∈
Om at some step m. Hence α1 ∈ DS. From observation
(c), eject(α0) < m. It follows that eject(α0) < eject(α1).
Contradiction.

ii. α1 = (D,B). The first bullet of step 3b says B 6∈ SPeject(α0).
So B 6∈ Peject(α0). But since B ∈ SPn, B must be added to
P -component at some step after eject(α0), so gets selected at
some step j > eject(α0). Here, α1 ∈ DS due to α1 ∈ Oj+1

and α1 ∈ Peject(α0)+1. However eject(α1) > j > eject(α0).
Contradiction.

(f) P is g-admissible.

i. P is g-conflict-free.
Assume the contrary. There exist A, (A, β), β ∈ P. When β

is selected from some Pi, (A, β) is added to Oi. Thus (A, β) ∈
SOn. This is impossible by observation (e).

ii. For any β ∈ P, β is g-acceptable wrt P.
Since β is selected from Pi at some step i, for any attack
(B, β) ∈ Att, (B, β) ∈ Oi+1 by step 3.a. Since On = ∅, any
such attack (B, β) is selected later at some step j by step 3.b,
giving rise to (D, Y ) and (possibly) D (if D 6∈ SPj) being
added to Pj. From the fact that Y = B or Y = (B, β) and
(D, Y ) ∈ P, β is g-acceptable wrt P.
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(g) SPn is i-conflict-free.

Applying Lemma B.4 for the set P, we have SPn ∪ ∆(SPn) ⊆
∞⋃
k=0

F k
G(P). Since by the same lemma

∞⋃
k=0

F k
G(P) is g-admissible,

SPn ∪∆(SPn) is g-conflict-free. By Lemma B.3, SPn is i-conflict-
free.

From observations (b),(g) SPn is i-admissible.

2. Let A be an argument of an i-admissible set S. Given a selection sl, we
build a dispute derivation for A. At each step i, the constructed tuple
ti = 〈Pi, Oi, SPi, SOi〉 satisfies the following properties:

(a) Pi ⊆ S ∪Π(S) and SPi ⊆ S

(b) Oi and SOi consist of attacks (B, α) ∈ Att with α ∈ S ∪
i−1⋃
j=0

Pj.

The first tuple t0 = 〈{A}, ∅, {A}, ∅〉 clearly satisfies both properties.
Suppose we have constructed ti. Let X be the element selected by sl

at step i. We can construct ti+1 as follows:

• Case X ∈ Pi: Clearly ti+1 can be constructed by step 3.a. Ele-
ments added to Oi+1 are from AttackX with X ∈ Pi, hence both
properties (a),(b) hold for ti+1.

• CaseX = (B, α) ∈ Oi: Hence, α ∈ Pj for some j < i. Because of i-
admissibility of S, and Pj ⊆ S∪Π(S), it follows there is D ∈ S s.t.
(1) D attacks (B, α) and (D, (B, α)) is i-defended by S or (2) D
attacks B and (D,B) is i-defended by S. Let Y = (B, α) or Y = B

in cases (1) or (2). Note that due to the i-conflict-freeness of S,
(2) does not happen if B ∈ SPi ⊆ S. Further, if α ∈ Π(S), then
D is selected such that rank((D, Y )) < rank(α), where rank(γ)
for some γ ∈ Π(S) is a number s.t. S i-defends γ within rank(γ)
steps but not within rank(γ) − 1 steps. This selection of D is
always possible due to Definition 3.1 of i–defense. We will show
shortly below that the constraint rank((D, Y )) < rank(α) induces
a lexicographical order on tuples t0, t1, t2, . . . of the constructed
dispute derivation, making the derivation finite.

But first we need to prove that ti+1 satisfies both properties (a)
and (b). To show (D, Y ) 6∈ SOi ∪ Oi, assume the contrary. From
(D, Y ) ∈ SOi∪Oi, it follows that Y ∈ Pj for some j < i. From the
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property (a), Y ∈ S ∪Π(S). Y ∈ S contradicts with the conflict-
freeness of S since D, Y ∈ S while (D, Y ) ∈ Π(S). Y ∈ Π(S)
contradicts with the basic Lemma A.1 since (D, Y ) is an attack
on Y while both (D, Y ), Y ∈ Π(S). Hence we can construct ti+1

from ti by adding (D, Y ) and (possibly) D (if D 6∈ SPi) to Pi to
obtain Pi+1. It is easy now to see that ti+1 satisfies both properties
(a) and (b).

It remains to show that the constructed dispute derivation is finite.
Suppose it is infinite. Because an argument will not be re-defended,
there is a constant K s.t. for all k > K only attacks are selected from
Pk.

Given Pk with k > K, letA(Pk) denote a (finite) partition [A0, A1, . . . Ai . . . ]
on Pk ∩ Att such that for α ∈ Ai, rank(α) = i. Clearly if an attack is
selected from Pk, then it is an element of some Ai of this partition.

For β = (B, α) ∈ Ok, let rank(β) = rank(α) if α ∈ Π(S), and
rank(β) =⊥ otherwise. Because for all k > K only attacks are se-
lected from Pk, for any attack β added to O−component at steps after
K: rank(β) 6=⊥. Moreover since OK has a finite number of attacks β
s.t. rank(β) =⊥, there exists a constant M > K s.t. for any attack β

selected from Om at a step m > M : rank(β) 6=⊥.

Now, given Om with m > M , let B(Om) denote a (finite) partition
[B1, . . . Bj . . . ] on {β ∈ Om | rank(β) 6=⊥}, where Bj = {β | rank(β) =
j}. Clearly if an attack is selected from Om, then it is an element of
some Bj in this partition.

For a tuple t = 〈P,O, SP, SO〉 ∈ {tm | m > M}, let δ(t) denote
the sequence A0B1A1B2 . . . BlAl where [A0, A1, . . . Al] = A(P ) and
[B1, . . . , Bl] = B(O) (note that ∅ can be padded at the ends of two par-
titions to make them of equal length). Now we define a lexicographical
order ⊐ on the set {tm | m > M}, as follows.

Given t, t′ ∈ {tm | m > M}, let δ(t) = A0B1A1 . . . BqAq . . . BlAl and
δ(t′) = A′

0B
′

1A
′

1 . . . B
′

qA
′

q . . . B
′

lA
′

l. We define t ⊐ t′ iff there exists a
number q such that either conditions below hold.

• B′

q ( Bq and AqBq+1 . . . BlAl = A′

qB
′

q+1 . . . B
′

lA
′

l

• A′

q ( Aq and Bq+1Aq+2 . . . BlAl = B′

q+1A
′

q+2 . . . B
′

lA
′

l

That for i > M , ti ⊐ ti+1 can be seen from the following observations:
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• If at step i, α is selected from Pi, then α ∈ Aq for some Aq ∈ δ(ti)
with q = rank(α). Further, for each attack β added to Oi to
obtain Oi+1: rank(β) = rank(α)

• If at step i, α is selected from Oi, then α ∈ Bq for some Bq ∈ δ(ti)
with q = rank(α). Further, the attack β added to Pi to obtain
Pi+1 satisfies: rank(β) < rank(α).

Since we assume the process is infinite, we have an infinite sequence
tM ⊐ tM+1 ⊐ . . . . Thus the set {t | tM ⊐ t} is infinite. But since
any element of δ(tM) is a subset of Att which is finite, there is a finite
number of tuples t such that tM ⊐ t. Contradiction.

D Proofs of Lemmas and Theorems in Sec-

tion 6

D.1 Proof of Lemma 6.1

1. Suppose both (A, α) and A are g-acceptable wrt R. Consider β ∈ Att

that defeats (A, α). There are two cases:

• β defeats (A, α) directly, i.e. β = (B, (A, α)) for some B ∈ AR.
Now since (A, α) is g-acceptable wrt R, there exists C ∈ R s.t.:

– (C, β) ∈ R, hence (C, β) defeats β directly, or

– (C,B) ∈ R, hence (C,B) defeats β indirectly.

• β defeats (A, α) indirectly, i.e. β = (B,A) for some B ∈ AR. Now
since A is g-acceptable wrt R, there exists C ∈ R s.t.:

– (C, β) ∈ R, hence (C, β) defeats β directly, or

– (C,B) ∈ R, hence (C,B) defeats β indirectly.

So there is always some attack of R that defeats β. Hence α is bcgg-
acceptable wrt R.

2. Suppose B ∈ AR is g-acceptable wrt R. Consider an attack α = (C,B)
that defeats B (directly). So C attacks B and from the g-acceptability
of B wrt R, there exists D ∈ R s.t. either (D,C) ∈ R or (D,α) ∈ R,
i.e. α is defeated either by (D,C) or by (D,α). Hence B is also bcgg-
acceptable wrt R.
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D.2 Proof of Lemma 6.2

1. If α ∈ R then source(α) ∈ R.

Consider an attack β that defeats source(α), and hence defeats α indi-
rectly. Since α is bcgg-acceptable wrt R there exists an attack γ ∈ R

s.t. γ defeats β. Thus source(α) is also bcgg-acceptable wrt R. Since
R is bcgg-complete, source(α) ∈ R.

2. FG(R)\R ⊆ Att. It is sufficient to show that for any argument A ∈ AR

that is g-acceptable wrt R: A ∈ R.

Consider argument B attacking A, there exists C ∈ R s.t. either
(C,B) ∈ R (i.e. (C,B) defeats (B,A) indirectly) or (C, (B,A)) ∈ R

(i.e. (C, (B,A)) defeats (B,A) directly). Hence A is bcgg-acceptable
wrt R. Since R is bcgg-acceptable complete, A ∈ R.

3. If α ∈ FG(R) \ R then source(α) 6∈ R. Assume the contrary that
source(α) ∈ R. We show a contradiction that α ∈ R.

Consider an attack β that defeats α. Either of the following cases occur:

• β defeats α directly. Since α is g-acceptable wrt R, there exists
C ∈ R s.t. (C, β) ∈ R or (C, source(β)) ∈ R, i.e. β is defeated
directly by (C, β) or indirectly by (C, source(β)). Hence α is bcgg-
acceptable wrt R. Since R is bcgg-complete, α ∈ R.

• β defeats α indirectly. So β defeats source(A) directly. Since
source(A) ∈ R while R is bcgg-complete, source(A) is bcgg-
acceptable wrt R. Thus there exists σ ∈ R that defeats β. So
α is bcgg-acceptable wrt R. Hence α ∈ R.

Lemma D.1 below will be used to prove Theorems 6.1, 6.2, and 6.3.

Lemma D.1 Let R ⊆ AR ∪ Att. If R is a bcgg-complete extension, then
R ⊆ FG(R).

Proof: For X ∈ R, consider an argument A attacking X , i.e. (A,X) ∈ Att.
Since X is bcgg-acceptable wrt R, there exists an attack α ∈ R that de-
feats (A,X). By Lemma 6.2 property 1: source(α) ∈ R. Hence X is also
g-acceptable wrt R. Thus R ⊆ FG(R). �
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D.3 Proof of Theorem 6.1

1. If R is g-complete, then rd(R) is bcgg-complete because:

(a) rd(R) is bcgg-conflict-free. Assume the contrary. Either of the
following cases can occur:

• There exist (A, α), α ∈ rd(R), i.e. (A, α) directly defeats α.
(A, α) ∈ rd(R) implies A ∈ R. So R is not g-conflict-free as
A, (A, α), α are all in R. Contradiction !

• There exist (A,B), (B, β) ∈ rd(R), i.e. (A,B) indirectly de-
feat (B, β). (A,B) ∈ rd(R) implies A ∈ R; (B, β) ∈ rd(R)
implies B ∈ R. So R is not g-conflict-free as A, (A,B), B are
all in R.

(b) Each X ∈ rd(R) is bcgg-acceptable wrt rd(R).

Consider α ∈ Att that defeats X ∈ rd(R).

• If α defeats X directly, then α = (A,X) for some argument
A ∈ AR. Since X is also in R, X is g-acceptable wrt R. Thus
there exists B ∈ R s.t. either cases below occurs:

– (B, α) ∈ R. Hence (B, α) ∈ rd(R) defeats α directly.

– (B,A) ∈ R. Hence (B,A) ∈ rd(R) defeats α indirectly.

• If α defeats X indirectly, then α = (A,B) and X = (B, β) for
some A,B ∈ AR and β ∈ AR ∪ Att. (B, β) ∈ rd(R) implies
B ∈ R. Hence B is also g-acceptable wrt R. Since A attacks
B, there exists C ∈ R s.t. either cases below occurs.

– (C, α) ∈ R. Hence (C, α) ∈ rd(R) defeats α directly.

– (C,A) ∈ R. Hence (C,A) ∈ rd(R) defeats α indirectly.

So there is always an attack of rd(R) that defeats α. Thus X
is bcgg-acceptable wrt rd(R).

(c) If X is bcgg-acceptable wrt rd(R), then X ∈ rd(R).

Suppose X is bcgg-acceptable wrt rd(R). Consider two cases be-
low:

• X ∈ AR: Consider an attack α = (A,X) that defeats X .
There exists β ∈ rd(R) that defeats α. Since souce(β), the
source argument of β, is in R, X is g-acceptable wrt R. As R
is g-complete, X ∈ R. So X ∈ rd(R).

• X ∈ Att: We show that X is g-acceptable wrt R. Let
(B,X) ∈ Att, i.e. (B,X) defeats X directly. There exists
β ∈ rd(R) that defeats (B,X). Since source(β) ∈ R, X is
also g-acceptable wrt R. As R is g-complete, X ∈ R.
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Now we show that source(X) ∈ R. Consider an argument
C attacking source(X). Clearly (C, source(X)) defeats X

indirectly, thus there exists an attack γ ∈ rd(R) that defeats
(C, source(X)). As source(γ) ∈ R, source(X) is g-acceptable
wrt R. As R is g-complete, source(X) ∈ R.

Hence X ∈ rd(R).

2. If R is bcgg-complete, then FG(R) is g-complete because:

(a) FG(R) is g-conflict-free. Assume the contrary. There exist el-
ements A, (A,X), X ∈ FG(R). Since X is g-acceptable wrt R

while A attacks X , there exists B ∈ R such that either cases
below occur:

• (B,A) ∈ R. Now A is g-acceptable wrt R but is attacked by
B, hence there exists C ∈ R satisfying either conditions be-
low, both of which contradict with the bcgg-conflict-freeness
of R.

– (C,B) ∈ R. Here (C,B) defeats (B,A) indirectly while
both of them are in R.

– (C, (B,A)) ∈ R. Here (C, (B,A)) defeats (B,A) directly
while both of them are in R.

• (B, (A,X)) ∈ R. Now (A,X) is g-acceptable wrt R but is
attacked by B, hence there exists C ∈ R satisfying either
conditions below, both of which contradict with the bcgg-
conflict-freeness of R.

– (C,B) ∈ R. Here (C,B) defeats (B, (A,X)) indirectly
while both of them are in R.

– (C, (B, (A,X))) ∈ R. Here (C, (B, (A,X))) defeats (B, (A,X))
directly while both of them are in R.

Thus FG(R) is g-conflict-free.

(b) R ⊆ FG(R) by Lemma D.1.

(c) FG(R) = F 2
G(R). Consider X ∈ F 2

G(R) and (A,X) ∈ Att. There
exists B ∈ FG(R) s.t. (B, Y ) ∈ FG(R) for either Y = A or
Y = (A,X). For reasons below X is g-acceptable wrt R:

• (B, Y ) ∈ R: From Lemma 6.1 property 1: (B, Y ) is bcgg-
acceptable wrt R. As R is bcgg-complete, (B, Y ) ∈ R.

• B ∈ R: From (B, Y ) ∈ R and Lemma 6.2 property 1 ⇒
source((B, Y )) ∈ R ⇒ B ∈ R.
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Hence X ∈ FG(R) ⇒ F 2
G(R) ⊆ FG(R). Together with R ⊆

FG(R) ⇒ FG(R) = F 2
G(R).

D.4 Proof of Theorem 6.2

1. Let S be an i-complete extension. From Theorem 4.1, S ∪ ∆(S) is
g-complete. From Theorem 6.1, rd(S ∪ ∆(S)) = S ∪ Π(S) is bcgg-
complete.

2. Let S be a set of arguments s.t. S∪Π(S) is a bcgg-complete extension.

By Lemma D.1, S ⊆ FG(S∪Π(S)). By Lemma 6.2 property 2: FG(S∪
Π(S)) \ (S ∪Π(S)) ⊆ Att. Hence we can write FG(S ∪Π(S)) = S ∪∆
where ∆ ⊆ Att. By theorem 6.1, S ∪ ∆ is g-complete. From Lemma
B.5, ∆(S) ⊆ ∆.

For β ∈ ∆, consider argument B attacking β. Since β is g-acceptable
wrt S ∪ Π(S), there exists C ∈ S s.t. either (C,B) ∈ Π(S) or
(C, (B, β)) ∈ Π(S). Together with the boundedness of the considered
EAF, S ∪ Π(S) i-defends β. So β ∈ ∆(S).

Thus S∪∆ = S∪∆(S) is g-complete. By Theorem 4.1, S is i-complete.

D.5 Proof of Theorem 6.3

Let R be a bcgg-complete extension. By theorem 6.1, FG(R) is a g-complete
extension. Let S be the greatest i-complete extension that FG(R) contains
according to theorem 4.3. We show that S is also a greatest i-complete
extension that R contains. From Lemma 6.2 property 2: FG(R) \ R ⊆ Att,
it follows that S ⊆ R. Now it remains to prove that there is no i-complete
subset S ′ of R s.t. S ( S ′. Assume the contrary. We would have S ( S ′ ⊆
R ⊆ FG(R) (Lemma D.1). Contradiction with the selection of S.

D.6 Proof of Lemma 6.3

We first prove:

Lemma D.2 Let S be a m–conflict free set of arguments. Suppose X ∈ S

attacks Y ∈ AR and S i–defends (X, Y ). Then X →S Y , i.e. there is no
Z ∈ S attacking (X, Y ).

Proof: Suppose the contrary and Y1 ∈ S is an argument attacking (X, Y ).
As S i–defends (X, Y ), there must exist X1 ∈ S, such that X1 attacks Y1

and (X1, Y1) is i–defended by S. Let k ≥ 0 be a number s.t. (X, Y ) is
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i–defended by S within k–steps but (X, Y ) is not i–defended by S within (k-
1)–steps. Then (X1, Y1) is i–defended by S within (k-1)–steps but (X1, Y1)
is not i–defended by S within (k-2)–steps.

As S is m–conflict free, (Y1, X1) 6∈ Att and there is Y2 ∈ S, s.t. Y2 attacks
(X1, Y1). As (X1, Y1) ∈ ∆(S), there must exist X2 ∈ S s.t. (X2, Y2) ∈ ∆(S).
(X2, Y2) is i–defended by S within (k-2)–steps but (X2, Y2) is not i–defended
by S within (k-3)–steps.

Continue this way and there are Xk, Yk ∈ S, (Xk, Yk) is i–defended by S

within 0–steps, i.e. there is no C ∈ S attacking (Xk, Yk). Contradiction to
the m–conflict freeness of S! �

From Lemma D.2, it follows:

Lemma D.3 In a bounded EAF , suppose that a m–conflict free set of ar-
guments S i–defends an attack (A,B) and A ∈ S. Then A →S B and there
is a reinstatement set for A →S B.

Proof: We prove by induction that if S i–defends (A,B) within k–steps,
k ≥ 0, then there is a reinstatement set for A →S B.

• Base case: k = 0. There is no argument attacking (A,B). The set
{A →S B} is a reinstatement set for A →S B.

• Inductive case: Suppose for each X , Y s.t. X ∈ S, X attacks Y and
S i–defends (X, Y ) within k–steps, k ≥ 0, there is a reinstatement set
for X →S Y .

Suppose S i–defends (A,B) within (k+1)–steps. There are two cases:

– S i–defends (A,B) within k–steps. By the inductive hypothesis
there is a restatement set for A →S B.

– For each argument C attacking (A,B) there is a D ∈ S s.t. D

attacks C and S i–defends (D,C) within k–steps. By Lemma D.2
D →S C. By the inductive hypothesis, there is a reinstatement
set RSC for D →S C. From the boundedness of the EAF , it
follows that A →S B together with the union of all such RSC

form a reinstatement set for A →S B.

So there always exists a restatement set for A →S B.

�
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Now we prove Lemma 6.3.
Let S be a m–conflict free set of arguments and A be an argument s.t. A

is i–acceptable wrt S. We need to prove that A is m–acceptable wrt S.
Let B be an argument s.t. B →S A, i.e. B attacks A and there is no

C ∈ S s.t. C attacking (B,A). Hence there must exist C ∈ S attacking B

and (C,B) is i–defended by S. By Lemma D.2, C →S B. By Lemma D.3
there is a reinstatement set for C →S B.

Therefore A is m–acceptable wrt S.

D.7 Proof of Lemma 6.4

1. Firstly we prove that S is m-conflict free. Assume the contrary. Hence
there exist A,B ∈ S s.t. (A,B) ∈ Att and there is no C ∈ S s.t.
(C, (A,B)) ∈ Att. Because B is i-acceptable wrt S, there exists D ∈ S

s.t. (D, (A,B)) ∈ Att or (D,A) ∈ Att. It follows that (D,A) is i-
defended by S, contradicting the i-conflict freeness of S.

2. Let A ∈ S. Hence A is i-acceptable wrt S. From Lemma 6.3, A is
m-acceptable wrt S.

D.8 Proof of Theorem 6.4

Lemma D.4 is needed to prove theorem 6.4.

Lemma D.4 Given S ⊆ AR. If S is m-conflict free, then S is i-conflict
free.

Proof: Let S be a m-conflict free set. Suppose S is not i-conflict free. There
exist A,B ∈ S s.t. (A,B) is i-defended by S within n-steps. We prove by
induction on n that such a case is not possible.

Basic case: n=0. Hence there is no argument C s.t. (C, (A,B)) ∈ Att.
Contradiction with the m-conflict freeness of S.

Suppose there are noX, Y ∈ S s.t. X attacks Y while (X, Y ) is i-defended
by S within n-steps.

Consider A,B ∈ S s.t. (A,B) ∈ Att is i-defended by S within (n + 1)−
steps. As S is m-conflict free, there exists C ∈ S s.t. (C, (A,B)) ∈ Att. As
(A,B) is i-defended within (n+1)−steps, there existsD ∈ S s.t. (D,C) ∈ Att

and (D,C) is i-defended within n−steps. Contradiction !

�
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Let R be a m-preferred extension. From Lemma D.4 above, R is i-conflict
free. Let S, S ′ be i-admissible sets s.t. S ∪ S ′ ⊆ R. Hence each argument
A ∈ S ∪ S ′ is i-acceptable wrt S ∪ S ′. Furthermore S ∪ S ′ is i-conflict
free because otherwise there exist arguments A,B ∈ S ∪ S ′ s.t. (A,B) ∈
∆(S ∪ S ′) ⊆ ∆(R) (Lemma 3.1), i.e. R is not i-conflict free. Let Σ be the
union of all i-admissible subsets of R (Note that since ∅ is always i-admissible,
Σ is always defined). Hence Σ is i-admissible. Because R is m-preferred, Σ is
mi-admissible. Σ is hence the greatest mi-admissible set of arguments that
is a subset of R.

E Proofs of Lemmas and Theorems in Sec-

tion 7

E.1 Proof of Lemma 7.1

We first prove the case: if S ∪ R is g-complete, then R = ∆(S).

1. ∆(S) ⊆ R. This property follows from Lemma B.5.

2. If α0 ∈ R, then α0 ∈ ∆(S).

We prove by induction on n = rank(target(α0)).

Basic case n = 0: Assume there is β = (B, α0) ∈ Att. It follows that
rank(B) < rank(target(α0)) = 0. This impossibility concludes that α
is not attacked by any attack. So α0 ∈ ∆(S).

Induction hypothesis: Suppose that ∀α ∈ R, if rank(target(α)) < n

then α ∈ ∆(S).

Consider α0 = (A0, Y0) ∈ R and assume that rank(target(α0)) = n

and α0 6∈ ∆(S). There exists β0 = (B0, α0) ∈ Att since otherwise S

i-defends α0 within 0-steps and hence α0 ∈ ∆(S). As α0 is g-acceptable
wrt S ∪R but not i-acceptable wrt S, by definitions of g-acceptability
and i-acceptability there exists an attack α1 = (A1, Y1) ∈ R for either
Y1 = B0 or Y1 = β0, however α1 6∈ ∆(S).

Y1 = B0 is not possible, since it leads to a contradiction: rank(target(α1)) =
rank(B0) < rank(target(α0)) = n and hence rank(target(α1)) < n,
concluding that α1 ∈ ∆(S) by the induction hypothesis.

Consider α1 analogously to α0, there exists β1 = (B1, α1) ∈ Att and
α2 = (A2, β1). Further, like α0 and α1, α2 ∈ R but α2 6∈ ∆(S).

Reasoning this way we find an infinite sequence α0, β0, α1, β1 . . . αi, βi . . . ,
where: αi = (Ai, βi−1), βi = (Bi, αi), as illustrated the figure below.
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Let k be a number s.t. α0 ∈ Attk0 (see definition 2.1) . Hence αi ∈
Attk0+2i. Therefore the set {α ∈ Att | target(α) = target(α0)} ⊇ {αk |
k > 0} is infinite. Contradiction with the strongly bounded condition.

In conclusion, R = ∆(S).

Now we prove the case: if S ∪ R is bcgg-complete, then R = Π(S).
By Lemma D.1: S ∪R ⊆ FG(S ∪R). By Lemma 6.2 property 2: FG(S ∪

R) \ (S ∪ R) ⊆ Att. Thus we can write FG(S ∪ R) = S ∪ R ∪ R0 where
R0 ⊆ Att and R0 ∩ R = ∅.

By theorem 6.1, FG(S ∪ R) is g-complete. Hence by the above proof,
R0 ∪ R = ∆(S).

By Lemma 6.2, property 3: if α ∈ FG(S ∪ R) \ (S ∪ R) = R0 then
source(α) 6∈ S. It follows that Π(S) ⊆ R.

From Lemma 6.2, property 1: α ∈ R ⇒ source(α) ∈ S ⇒ R ⊆ Π(S).
Hence R = Π(S).

E.2 Proof of Theorem 7.1

The theorem follows directly from Lemma 7.1 and theorems 4.1 and 6.2.

E.3 Proof of Theorem 7.2

Let EAF be a stratified MEAF with a partition AR = AR0∪AR1∪AR2∪. . . .
First we prove the following lemmas.

Lemma E.1 An i–admissible set of arguments is m–conflict free.

Proof: Let S be an i–admissible set of arguments. Assume the contrary that
S is not m–conflict free. There exist A,B ∈ S such that (A,B) ∈ Att and
(B,A) ∈ Att or there is no C ∈ S attacking (A,B). If it is the latter case
then from the i–acceptability of B wrt S, there is C ∈ S s.t. C attacks A

and S i–defends (C,A). Contradicts to the i–conflict freeness of S.
Hence (B,A) ∈ Att. It follows that there is i such that A,B ∈ ARi.

Because S is i–admissible and A ∈ S, there exists A1 ∈ S s.t. (A1, B) ∈ Att
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is i–defended by S or A1 attacks (B,A). Because S is i–conflict free, the first
case is not possible. Therefore A1 attacks (B,A). Similarly, as B ∈ S, there
exist B1 ∈ S attacking (A,B). From Definition 2.1, A1 and B1 attack each
other and hence 0 ≤ rank(A1) = rank(B1) < i.

Analogously, there exist A2, B2 s.t. A2 attacks (B1, A1), B2 attacks
(A1, B1), A2, B2 attack each other, and 0 ≤ rank(A2) = rank(B2) < rank(A1) <
i.

Continue and there must exist infinitely many distinct ranks between 0
and i. Contradiction!

Therefore S is m–conflict free. �

Lemma E.2 Let S ⊆ AR be an i–conflict free and m–conflict free set of
arguments and A ∈ AR be an argument.

Then A is i–acceptable wrt S iff A is m–acceptable wrt S.

Proof:

⇒: Suppose A is i–acceptable wrt S. As S is m–conflict free, by Lemma
6.3, A is m–acceptable wrt S.

⇐: Suppose A is m–acceptable wrt S. We prove that A is i–acceptable wrt
S.

Let B be an argument attacking A. We need to prove that there is
C ∈ S such that

• C attacks B and S i–defends (C,B) or

• C attacks (B,A). Clearly S i-defends (C, (B,A)) within 0-steps.

If there is some C ∈ S attacking (B,A) then we are done. If this is
not the case, we show that there is C ∈ S attacking B and S i–defends
(C,B) as follows.

Clearly B →S A. Because A is m–acceptable to S, there must exist
C ∈ S s.t. C →S B and there is a reinstatement set RS for C →S B.
We prove that S i–defends (C,B).

From the definition of reinstatement set, C →S B ∈ RS and for each
X →S Y ∈ RS, if Y ′ attacks (X, Y ) then there is X ′ ∈ S s.t. X ′ →S

Y ′ ∈ RS. We partition attacks in RS as follows:

• RS0 is the set of all X →S Y ∈ RS such that there is no argument
attacking (X, Y ).
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• RSk+1 is the set of all X →S Y ∈ RS such that X →S Y 6∈
RS0∪ · · ·∪RSk and if (X, Y ) is attacked by an argument Y ′ then
there is X ′ ∈ S, X ′ →S Y ′ ∈ RS0 ∪ · · · ∪ RSk.

As EAF is hierarchical, for k 6= k′, RSk and RSk′ are disjoint. RS is
finite, so the partition is finite, i.e. there is k s.t. RS = RS0∪· · ·∪RSk,
RSk 6= ∅.

Clearly each attack (X, Y ) s.t. X →S Y ∈ RS0 is i–defended by S

within 0–steps, . . . , each attack (X, Y ) s.t. X →S Y ∈ RSk is i–
defended by S within k–steps. In other words, each (X, Y ) s.t. X →S

Y ∈ RS is i–defended by S and so is (C,B).

�

The following lemma holds.

Lemma E.3 Let S ⊆ AR be a set of arguments. Then S is m–admissible
iff S is i–admissible.

Proof:

⇒: Suppose S is i–admissible.

By Lemma E.1, S is m–conflict free.

Let A ∈ S. A is i–acceptable wrt S. By Lemma E.2, A is m–acceptable
wrt S. It means that S ⊆ FM(S), i.e. S is m–admissible.

⇐: Suppose S is m–admissible.

As S is m–conflict free, by Lemma D.4, S is i–conflict free.

Let A ∈ S. A is m–acceptable wrt S. By Lemma E.2, A is i–acceptable
wrt S. It means that S ⊆ FI(S), i.e. S is i–admissible.

�

Now we prove Theorem 7.2.
Let S ⊆ AR be a set of arguments.
S is an i–complete extension
iff S is i–admissible and S = FI(S)
iff S is i–admissible and A ∈ S ⇔ A is i–acceptable wrt S
iff S is m–admissible (by lemma E.3) and A ∈ S ⇔ A is m–acceptable

wrt S (by Lemma E.2)
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iff S is m–admissible and S = FM(S)
iff S is a m–complete extension.
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