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Abstract. We give some design guidelines for argumentation systems. These guide-
lines are meant to indicate essential features of argumentation when used to sup-
port “practical reasoning”. We express the guidelines in terms of postulates. We
use a notion of redundancy to provide a formal counterpart of these postulates. We
study the satisfaction of these postulates in two existing argumentation frameworks:
assumption-based argumentation and argumentation in classical logic.
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Introduction

Argumentation is widely recognised as an important mechanism to support “practical
reasoning”, e.g. in support of debate [6,3] and for legal reasoning [1]. As an example of
the kind of “practical reasoning” we have in mind, consider the following situation: You
are presenting your case of why you should become the president of your country to your
voters. These will form a mixed audience, in that some may be of basic education and
simple professions, others will be educated or highly-educated. You will have to face one
or more opponents, who would also like to become president and will attack your case.
How should you conduct and participate in such a debate so as to have a chance to win
it? We believe that the answer lies in the following cardinal principles:

Principle 1 : Your arguments must be simple so that people of all backgrounds can fol-
low them easily. It does not make sense to deliver some sophisticated arguments
that only experts can understand, possibly after spending considerable effort. You
should make clear the contrast between you and your opponents by attacking their
arguments in a simple, transparent way, immediately obvious to the audience.

Principle 2 : Deliver your arguments in full to make your points explicitly, but avoid
repetitions and irrelevant details that could be a distraction and a point of attack by
your opponents.

Principle 3 : Do not disregard or dismiss any arguments by your opponents, unless you
are certain that you can rebate them at any time. Do not disregard or dismiss any
argument against the opponents, to avoid losing your edge and be perceived as the
loser.
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We explore how these principles can be formalised as guidelines for generic argumenta-
tion systems, in the form of postulates. These systems are given in terms of arguments,
viewed as defeasible proofs in some (unspecified) logic, and an attack relation, meant
to be used to capture those defeasible proofs that can be deemed acceptable by parties
engaged in practical reasoning. We do not prescribe any notion of acceptability of argu-
ments. We allow for some defeasible proofs not to be deployed as arguments in practical
reasoning tasks. Thus, not every defeasible proof is an argument in general.

Several well-known argumentation frameworks can be seen as instances of our
generic argumentation systems. We analyse the fulfilment of these postulates in the con-
text of some existing logic-based argumentation systems, focusing on assumption-based
argumentation (ABA) [8] and argumentation in classical logic (ArCL) [3]. This analysis
relies upon a formal understanding of the postulates in terms of a notion of redundancy
of arguments, that we provide, in part, in the context of abstract argumentation [6].

The paper is organised as follows. In section 1 we give some background on abstract
argumentation, ABA and ArCL. In section 2 we give our postulates for generic argumen-
tation frameworks. In section 3 we reformulate (two of) these postulates in terms of a
“less redundant” relation. In sections 4 and 5 we analyse these postulates in ArCL and
ABA, respectively. In section 6 we conclude.

1. Background

Abstract argumentation [6]
An abstract argumentation framework is a pair 〈Arg, att〉 where Arg is a finite set,
whose elements are referred to as arguments, and att ⊆ Arg × Arg is a binary relation
over Arg. Given α, β ∈ Arg, α attacks β iff (α, β) ∈ att. Given sets X,Y ⊆ Arg of
arguments, X attacks Y iff there exists x ∈ X and y ∈ Y such that (x, y) ∈ att. A set
of arguments is referred to as extension. An extension X ⊆ Arg is

• acceptable wrt a set Y ⊆ Arg of arguments iff for each β that attacks an argu-
ment in X , there exists α ∈ Y such that α attacks β;

• admissible iff X does not attack itself and X is acceptable wrt itself;
• preferred iff X is (subset) maximally admissible;
• complete iff X is admissible and X contains all arguments x such that {x} is

acceptable wrt X;
• grounded iff X is (subset) minimally complete;
• ideal iff X is admissible and it is contained in every preferred set of arguments.

For AF = 〈Arg, att〉, the characteristic function FAF is such that FAF (X) is the set
of all acceptable arguments wrt X . Then X that does not attack itself is 1) an admissible
extension iff X ⊆ FAF (X), 2) a complete extension iff it is a fix-point of FAF , and 3)
a grounded extension iff X is the least fix-point of FAF .

Assumption-based argumentation (ABA) [4,7,9,8]
An ABA framework is a tuple 〈L, R, A, 〉 where

• (L,R) is a deductive system, with L a language andR a set of inference rules,
• A ⊆ L, referred to as the set of assumptions,
• is a (total) mapping from A into L, where x is referred to as the contrary of x.



We will assume that inference rules have the syntax s1,...sn
s0

(for n ≥ 0) where si ∈ L.
An argument in favour of a sentence c in L supported by a set of assumptions A is

a (defeasible) proof of c from A and (some of) the rules in R. We will provide a formal
definition of argument in section 5 (see definition 5.2). For the purposes of defining
semantics and computational mechanisms for ABA, the notation 〈A, c〉 is used, to stand
for an argument for c supported by A. This notation can be seen as a shorthand for
the notation 〈A,P, c〉, where P is the proof used to construct the argument. The (short)
notation does not distinguish arguments with the same support and conclusion but using
different proofs. E.g. 〈{a}, p〉 may represent an argument using inference rule a

p as well
as an argument using inference rules q

p , aq (see [9] for a discussion of this issue). The
short notation suffices to define semantics and computational mechanisms for ABA, as
the only form of defeasibility in ABA is given by assumptions.

All notions of extensions for abstract argumentation can be used in ABA, by using a
notion of “attack” amongst arguments whereby 〈X,x〉 attacks 〈Y, y〉 iff x = α for some
α ∈ Y . As shown in [9], theorem 2.2, there is a one-to-one correspondence between
semantics in terms of extensions (sets of arguments), as presented here, and semantics in
terms of sets of assumptions, as presented in the original definition of ABA in [4].

Argumentation based on classical logic (ArCL) [3]
In ArCL, given a (possibly inconsistent) set of (first-order) sentences ∆, an argument for
a (first-order) sentence c is a pair 〈S, c〉 such that

(i) S is consistent
(ii) S ` c, where ` is the classical consequence relation
(iii) S is a minimal subset of ∆ fulfilling conditions (i), (ii).

An argument 〈S1, c1〉 is a canonical undercut for an argument 〈S2, c2〉 iff
(a) c1 = ¬(s1 ∧ . . . ∧ sn), for S2 = {s1, . . . , sn}
(b) s1, . . . , sn is the canonical enumeration of S2 (according to some ordering of the
elements of ∆ given a-priori, without loss of generality).

An argument tree for a sentence s is a tree whose nodes are arguments such that
(I) the root is an argument for s
(II) for no node 〈S, c〉, S is a subset of the union of the supports of the node’s
ancestors
(III) the children of a node N are all canonical undercuts for N obeying (II).

Nodes of a tree can be marked as undefeated (U) or defeated (D) as follows: for all nodes
N , if there is a child of N marked U, then N is marked D; otherwise, N is marked U.
Then, an argument tree is warranted iff the root of the tree is marked U.

As for ABA, we will see an argument 〈S, c〉 in ArCL as a shorthand for 〈S, P, c〉
where P is a proof (e.g. using natural deduction) for c using the sentences in S.

2. Postulates for practical argumentation

In this section we consider generic argumentation frameworks, equipped with notions of

• legitimate arguments, as defeasible proofs in some (possibly implicit) underlying
logic; each legitimate argument consists of a support, a proof and a claim;

• “deployed” arguments, namely (legitimate) arguments that can be deployed in
practical argumentation;



• attack between arguments, as a binary relation that may be primitive or derived
(from primitive notions);

• “dialectical” semantics for accepting sets of legitimate arguments.

We will use the terminology “illegitimate” argument for any argument that is not le-
gitimate. Illegitimate arguments may be anything, e.g. unsupported claims or supported
claims with invalid or without proofs. They may be introduced by any parties involved
in the exchange of arguments, e.g., a witness with an incoherent account of past events.

Several existing argumentation frameworks could be seen as providing notions of
legitimate arguments in our generic sense, e.g. ABA, ArCL, DeLP [10], just to men-
tion some. These various concrete frameworks differ in the underlying logic (e.g. any
deductive system in ABA and standard notions of logical deduction in first-order logic
for ArCL), in how their choice of deployed arguments (e.g. ABA requires that deployed
arguments can be constructed backwards and ArCL requires minimality and consistency
of their support), and in how they define the attack relation as a derived notion (e.g. from
a primitive notion of contrary of assumptions in ABA). Finally, the concrete frameworks
differ in their choice of dialectical semantics (e.g. ABA uses notions of extensions, ArCL
uses a notion of warranted argument trees and DeLP uses a notion of warranted literals).

Our generic argumentation frameworks, for specific choices of “dialectical” seman-
tics, with the set of deployed arguments coinciding with the set of legitimate arguments,
can be seen as instances of abstract argumentation frameworks.

We give postulates, intended as design guidelines for generic argumentation systems
when these are used for practical reasoning (as understood in this paper).

Postulate 2.1 (Transparency) Deployed arguments and attacks should be transparent
in the sense of being computationally tractable, as follows:

1. the computational cost of verifying that deployed arguments are legitimate should
be AT MOST polynomial (in the size of the arguments);

2. the computational cost of verifying that an argument attacks another should be
AT MOST linear (in the size of the claim of the argument).

The size of an argument is the size of its support and proof. Intuitively, this postulate
guarantees that arguments can be understood by any parties, independently of their level
of sophistication (cf. principle 1 in the introduction). Note that the construction of de-
ployed arguments could be highly complex, as for example in the case of legal proceed-
ings. However, once these arguments are constructed, the verification that they are so,
e.g. by other parties, should be tractable (i.e. polynomial). Proofs in propositional logic,
using for example natural deduction or resolution, can be checked in polynomial time.
So arguments as proofs in propositional logic can be deemed to fulfil this postulate.

Also, this postulate forces attacks to be directly inspectable (linear time). This is
again in line with principle 1 in the introduction. As attacks need to be immediately
recognisable, without any “reasoning” by the spectators in a debate. Attacks defined in
terms of inconsistency (namely by sanctioning that the claim of the attacking argument is
inconsistent with the support of the attacked argument) would not satisfy this postulate.

Postulate 2.2 (Relevance) The support of deployed arguments should be relevant to the
claim of the arguments, to some degree.



Intuitively, this postulate amounts to forcing proponents and opponents of arguments to
focus and avoid digressions not contributing to the important points they want to make
and possibly opening up attacks from their counterparts (cf. principle 2 in the introduc-
tion). In the strongest sense this postulate 2.2 can be interpreted to mean that the support
should be necessary to establish the claim, in the sense that the removal of any part of
this support would render the arguments illegitimate. In a weaker sense this can be in-
terpreted to mean that the argument is a defeasible proof of its claim from its support,
without any obvious redundancy of any parts of the support.

The first two postulates focus on the inner workings of legitimate, deployed argu-
ments and attacks. The third and final postulate instead considers the use of arguments
in “debate”, namely in the context of “dialectical” semantics.

Postulate 2.3 (No dismissal) No legitimate argument should be dismissed without rea-
son. If, for any reason, some legitimate arguments are dismissed (not deployed), their
dismissal should not change the semantics of the given argumentation framework.

This postulate amounts to avoiding leaving any stone unturned (cf. principle 3).
In the remainder we will refer to legitimate arguments simply as arguments. An

argument with proof P from support S for a claim c will be represented as a triple
〈S, P, c〉 or simply as a pair 〈S, c〉, leaving the proof implicit, if clear from the context.

3. Redundancy

We can formally restate postulates 2.2 and 2.3 in terms of a notion of “redundancy” of
arguments, defined in terms of a “less redundant” preference relation:

Postulate 3.1 If a relation ≺ represents a less redundant relation between arguments,
then the following properties should be satisfied:

1. ≺ is transitive (i.e., for arguments α, β, γ, if α ≺ β and β ≺ γ, then α ≺ γ)
reflexive (i.e. for any argument α, α ≺ α) and antisymmetric (i.e. for arguments
α, β, if α ≺ β and β ≺ α, then α = β)

2. given arguments α, β, γ, if α ≺ β then

(a) if β attacks γ then α attacks γ;
(b) if γ attacks α then γ attacks β.

3. for each argument α there is an argument β such that

(a) there is no other argument γ such that γ ≺ β, and
(b) either α = β or β ≺ α.

Intuitively, condition 2a says that α has a stronger conclusive force than β, and condi-
tion 2b says that α is less exposed to attacks than β (e.g. because its support is narrower).
Condition 3 says that each argument has a “non-redundant” version (possibly itself). De-
pending on the context, different instances of the “less redundant” relation could be in-
troduced. For example, one could define an argument α as “less redundant than” an ar-
gument β (with both arguments supporting the same claim) if the support of α is a subset
of the support of β, namely, for α = 〈Sα, c〉 and β = 〈Sβ , c〉: α ≺ β iff Sα ⊆ Sβ Below,
we will refer to this notion of ≺ as ≺⊆.



We will see, in section 5, another notion of ≺ where arguments with proof that can
be arranged as trees are “less redundant” than arguments with proofs that cannot.

An example of a relation over pairs of arguments that is not a suitable notion of “less
redundant” is ≺ such that α ≺ β iff the cardinality of the support of α is strictly smaller
than that of the support of β. Indeed, this notion will typically not fulfil condition 2b.

3.1. Redundancy and relevance postulate

Definition 3.1 Given a “less redundant” relation ≺, the support of an argument α is
relevant if α is minimal wrt ≺.

For example, given ≺⊆ given earlier, relevant arguments are arguments with a subset-
minimal support. In the context of the presidential debate considered in the introduc-
tion, this subset-minimality-based definition of relevance does not seem to be useful. In-
deed, its adoption may violate postulate 2.1 in that, for example, the cost of verifying
that arguments as proofs in propositional logic have a subset-minimal support may be
non-polynomial. Instead, if arguments are proofs built from Horn clauses, then subset-
minimality is acceptable, in that the cost of verifying that arguments in Horn logic have
a subset-minimal support is polynomial [2].

3.2. Redundancy and no dismissal postulate

Arguments can be deemed to be redundant if there exist other arguments that are “less
redundant” than them.

Definition 3.2 Given a “less redundant” relation ≺, an argument α is redundant (wrt ≺)
if THERE EXISTS AN ARGUMENT β 6= α SUCH THAT β ≺ α. The set NR of all non-
redundant arguments (wrt ≺) is such that for each argument α there is β ∈ NR such
that β ≺ α.

Theorem 3.1 below states that redundant arguments can be dismissed without affecting
(some) “dialectical” semantics. Thus, non-redundant arguments, in the sense of defini-
tion 3.2, can be seen as fulfilling postulate 2.3 (for these semantics).

Theorem 3.1 considers (some of) the semantics that have been studied for abstract
argumentation frameworks [6,9]. Thus, for the purposes of this theorem, we treat (legiti-
mate) arguments as abstract and assume an abstract argumentation framework 〈Arg, att〉
where att is the attack relation. The theorem is formulated using the following notion of
“≺-trimmed” versions of abstract argumentation framework:

Definition 3.3 Let 〈Arg, att〉 be an abstract argumentation framework. Let ≺ be a “less
redundant” relation between arguments in Arg and NR ⊆ Arg the set of all non-
redundant arguments (wrt ≺). Further, let attNR be the restriction of att on NR, i.e.
attNR = att∩NR×NR. The argumentation framework 〈NR, attNR〉 is referred to
as the ≺-trimmed version of 〈Arg, att〉.

Theorem 3.1 follows directly from the following lemmas (see appendix A for all proofs):

Lemma 3.1 Let 〈NR, attNR〉 be the ≺-trimmed version of 〈Arg, att〉. Then



1. If β ∈ NR is acceptable wrt B ⊆ NR in 〈NR, attNR〉 then β is acceptable
wrt B in 〈Arg, att〉

2. Each admissible set of arguments in 〈NR, attNR〉 is also admissible in
〈Arg, att〉.

3. If α ∈ Arg is acceptable wrt B ⊆ Arg in 〈Arg, att〉 then each β ∈ Arg such
that β ≺ α is acceptable wrt B in 〈Arg, att〉.

4. If α ∈ Arg is acceptable wrt B ⊆ NR in 〈Arg, att〉 then each β ∈ NR such
that β ≺ α is acceptable wrt B in 〈NR, attNR〉.

Lemma 3.2 Let 〈NR, attNR〉 be the ≺-trimmed version of 〈Arg, att〉. Also, let C and
CNR be the sets of complete extensions of 〈Arg, att〉 and 〈NR, attNR〉 respectively.
Further, let AF = 〈Arg, att〉. Then, FAF (X) is a monotonic (wrt set inclusion) bijec-
tion from CNR onto C such that

1. For each X ∈ CNR: FAF (X) ∩NR = X .
2. For each X ∈ C: FAF (X ∩NR) = X .

Theorem 3.1 Let 〈NR, attNR〉 be the ≺-trimmed version of AF = 〈Arg, att〉. Then

1. Let X be a complete or preferred or grounded or ideal extension in 〈Arg, att〉.
Then X ∩NR is a complete or preferred or grounded or ideal extension, respec-
tively, in 〈NR, attNR〉.

2. LetX be a complete or preferred or grounded or ideal extension in 〈NR, attNR〉.
Then FAF (X) is a complete or preferred or grounded or ideal extension, respec-
tively, in 〈Arg, att〉.

This theorem shows that removing or adding redundant arguments (for any notion of ≺)
does not change the semantics (of complete, preferred, grounded, and ideal extensions
for abstract argumentation) of the underlying argumentation framework. Hence the is-
sue of whether to work with an argumentation framework with less or more redundant
arguments is purely of computational efficiency nature.

Consider instead dismissing arguments that are self-attacking. The dismissal of these
arguments would violate postulate 2.3 if, for example, the chosen dialectical semantics
is that of admissible extensions. Indeed, consider an argumentation framework with ar-
guments α, β such that α attacks β and α attacks itself. Then, {β} is not an admissible
extension in conventional abstract argumentation but would be an admissible extension
if self-attacking arguments were dismissed.

4. Postulates for practical argumentation in ArCL

ArCL can be seen as an instance of our generic argumentation frameworks where legit-
imate arguments are of the (abbreviated) form 〈S, c〉 such that S ` c, deployed argu-
ments are arguments in the sense of section 1, attacks are canonical undercuts, and the
“dialectical” semantics is given by the notion of warranted trees.

According to this understanding of ArCL, this fulfils the relevance postulate 2.2 in
the sense that it uses relevant arguments wrt ≺⊆ (see section 3).

As far as the transparency postulate 2.1 is concerned, in ArCL:

1. checking consistency of arguments’ support cannot be done in polynomial time;



2. both conditions (a) and (b) of the definition of attack (canonical undercut) can be
checked in linear time (in the size of the claim of the attacking argument).

Thus, overall, ArCL does not fulfil this postulate.
Finally, ArCL can be deemed not to fulfil the no dismissal postulate 2.3, in the sense

that, by disregarding legitimate arguments on the ground that their support is “not new”
within a given argument tree (namely, this support is a subset of the support of previously
used arguments), one obtains different warranted argument trees. For example, consider
∆ = {p, q,¬p ∨ ¬q} (with canonical enumeration 1 : p, 2 : q, 3 : ¬p ∨ ¬q). The only
argument tree for p has root 〈{p}, p〉 with a single child N=〈{q,¬p ∨ ¬q},¬p〉. The
argument tree is unwarranted. Here, the legitimate argument N ′=〈{p, q},¬(¬p ∨ ¬q)〉,
attacking N , is not allowed as a child of N as its support is “not new”. However, If N ′

had been considered, as a child of N , then the tree would have been warranted.

5. Postulates for practical argumentation in ABA

In this section, unless otherwise specified, we assume as given a generic 〈L, R, A, 〉.
Three kinds of arguments have been defined for ABA: forward arguments, as given

in definition 5.1 below (adapted from [4,7]); backward arguments, as given in defini-
tion 5.2 below (adapted from [7,9]); and tree-arguments, as given in definition 5.3 below
(adapted from [8]). As discussed in [8], backward arguments can be seen as construct-
ing, in a top-down manner, tree-arguments. All these kinds of arguments can be seen as
legitimate arguments in ABA, but the deployed arguments are backward arguments.

Definition 5.1 A forward argument for c ∈ L supported by A ⊆ A is a sequence
β1, . . . , βm, of sentences in L, wherem > 0 and c = βm, such that, for all i = 1, . . . ,m,

• βi ∈ A, or
• there exists s1,...,sn

βi
∈ R such that s1, . . . , sn ∈ {β1, . . . , βi−1}.

We use the notation 〈A, [β1, . . . , βm], c〉f for a forward argument for c supported by A
with proof β1, . . . , βm. We use the shorthand 〈A, c〉f when the proof is irrelevant.

Definition 5.2 Given a selection function f 2, a backward argument for c ∈ L supported
by A ⊆ A is as sequence of multi-sets S1, . . . , Sm, where S1 = {c}, Sm = A, and for
every 1 ≤ i < m, where σ is the sentence occurrence in Si selected by f :

1. If σ 6∈ A then Si+1 = Si − {σ} ∪ S for some S
σ ∈ R.

2. If σ ∈ A then Si+1 = Si.

We use the notation 〈A, [S1, . . . , Sm], c〉 for a backward argument for c supported by A
with proof S1, . . . , Sm. We use the shorthand 〈A, c〉 when the proof is irrelevant.

Definition 5.3 A tree-argument for c ∈ L supported by A ⊆ A is a tree T with nodes
labelled by sentences in L or by τ , 3 such that

2A selection function takes in input a sequence of multi-sets and returns as output a sentence occurring in
the last multi-set in the sequence [7].

3The symbol τ intuitively stands for “true”. It allows to distinguish between facts, namely inference rules
with an empty set of premises, and assumptions.



• the root is labelled by c
• for every node N

∗ if N is a leaf then N is labelled either by an assumption or by τ ;
∗ if N is not a leaf and lN is the label of N , then there is an inference rule
lN ← b1, . . . , bm (m ≥ 0) and
either m = 0 and the child of N is τ
or m > 0 and N has m children, labelled by b1, . . . , bm (respectively)

• A is the set of all assumptions labelling the leaves.

We use the notation 〈A, T , c〉t for a tree-argument for c supported by A with proof T .
We use the shorthand 〈A, c〉t when the proof is irrelevant.

It is easy to see that

• there is a backward argument 〈A, c〉 iff there is a tree-argument 〈A, c〉t
Namely, the notions of backward argument and tree-argument are equivalent. Moreover,
by theorem 4.1 in [7]:

• for every backward argument 〈A, c〉 (or tree-argument 〈A, c〉t) there is a forward
argument 〈A, c〉f

• for every forward argument 〈A, c〉f there is a backward argument 〈A′, c〉 (and
tree-argument 〈A′, c〉t) for some A′ ⊆ A

In other words, forward arguments may have “redundancies” in their support. We can
thus define a notion ≺tree of “less redundant” as follows:

Definition 5.4 Given forward arguments 〈A1, c〉f and 〈A2, c〉f , 〈A1, c〉f ≺tree 〈A2, c〉f
iff EITHER THERE EXIST TREE ARGUMENTS 〈A1, c〉t AND 〈A2, c〉t OR there exists a
tree-argument 〈A1, c〉t but there exists no tree-argument 〈A2, c〉t.

Lemma 5.1 ≺tree is a “less redundant” relation, in the sense of postulate 3.1.

Note that it may be the case that 〈A1, c〉f ≺⊆ 〈A2, c〉f but 〈A1, c〉f 6≺tree 〈A2, c〉f .
For example, let R be {ap} and A = {a, b, e}. Then 〈{a, b}, p〉f ≺⊆ 〈{a, b, e}, p〉f
but 〈{a, b}, p〉f 6≺tree 〈{a, b, e}, p〉f . However, given a relevant (wrt ≺⊆) argument
〈A1, c〉f , if 〈A1, c〉f ≺⊆ 〈A2, c〉f then 〈A1, c〉f ≺tree 〈A2, c〉f . In the earlier example,
〈{a}, p〉f is (the only) relevant argument (wrt ≺⊆), 〈{a}, p〉f ≺⊆ 〈{a, b, e}, p〉f and
indeed 〈{a}, p〉f ≺tree 〈{a, b, e}, p〉f .

The relevance postulate 2.2 and no dismissal postulate 2.3 hold for all instances of
ABA, for the notion ≺tree of “less redundant”. In particular, postulate 2.2 holds since:

Property 5.1 Backward arguments are ARGUMENTS WITH RELEVANT SUPPORT in the
sense of definition 3.1, wrt ≺tree.

Moreover, postulate 2.3 holds because, by focusing on backward arguments, ABA solely
dismisses forward arguments that are redundant.

Property 5.2 The set of all non-redundant arguments wrt ≺tree, in the sense of defini-
tion 3.2, is the set of all backward arguments.



Theorem 3.1 then holds for the ≺tree-trimmed version of (the abstract argumentation
framework corresponding to) any ABA framework. Theorem 4.2 in [7] is a corollary of
lemma 3.1 used to prove our theorem 3.1.

We analyse postulate 2.1 in two of of the existing instances of ABA, studied in [4].

5.1. ABA for logic programming

A (normal) logic program 4 is a set of rules of the form p ← l1, . . . , ln where p is an
atom, l1, . . . , ln are literals, and n ≥ 0. Negative literals, not q, are the negation as
failure of atoms, q. Logic programs P can be represented as ABA frameworks where

• R = {Bp |p← B ∈ P}
• A = {not p|p is an atom in the Herbrand base of P}
• not p = p for all not p ∈ A

This instance of ABA fulfils the transparency postulate 2.1 since

1. the computational cost of verifying that deployed arguments (namely backward
arguments) are legitimate arguments (namely proofs) is linear in the size of the
argument (number of rules and assumptions used in the argument);

2. the computational cost of verifying that an argument attacks another is constant
(a syntactical check on the atom that is the conclusion of the first argument) and
thus linear.

5.2. ABA for default logic

A default theory [14] is a pair (T,D) where

• T ⊆ L0, where L0 is a first-order language
• D is a set of rules s0,Ms1,...,Msn

s where s0, . . . , sn, s ∈ L0, and n ≥ 0.

Default theories (T,D) can be represented as ABA frameworks 〈L, R, A, 〉 where,
given some deductive system (L0,R0) for classical first-order logic:

• L=L0 ∪ {Mα |α ∈ L0},R = R0 ∪D
• A = {M s|s ∈ L0}
• M s = ¬s for all M s ∈ A

For example,R0 may be the set of inference rules for natural deduction, including (all in-
stances of the schemes) A,B

A∧B (∧I), A,A→BB (→ E), etc, and all tautologies (as inference
rules with empty premises).

This instance of ABA FULFILS the transparency postulate 2.1, since

1. the computational cost of verifying that deployed arguments (namely backward
arguments) are legitimate arguments (namely PROOFS) is linear in the size of the
argument (number of rules and assumptions used in the argument);

2. the computational cost of verifying that an argument attacks another is linear
(since this verification is a syntactical test requiring to scan a sentence s, and is
thus linear in the size of s).

4We focus here on propositional logic programs.



6. Conclusions

We have identified a number of postulates for generic argumentation systems. These pos-
tulates are meant to assess the suitability of argumentations systems to support practical
reasoning, e.g. of the form needed in debate in front of audiences of mixed expertise.
This suitability amounts to tranparency (of arguments and attacks), relevance (of the sup-
port of arguments) and no dismissal of arguments that may make a difference. We have
analysed the fulfilment of these postulates in (two instances of) assumption-based argu-
mentation (ABA) and in argumentation in classical logic (ArCL). Our analysis is solely
in the context of the form of practical reasoning we envisage, and does not determine the
usability of argumentation frameworks in other settings (e.g. for non-monotonic reason-
ing, or in support of decision-making, or as a mechanism for resolving inconsistencies).

Other authors have considered postulates for argumentation, notably [5]. However,
their focus is on rationality postulates for rule-based argumentation systems with strict
and defeasible rules, whereas our focus is on any argumentation system when used in
support of practical reasoning.

For lack of space, we have omitted to consider other argumentation frameworks: we
plan to do so in the future. As an example, it would be interesting to consider DeLP [10]
(also an instance of our generic argumentation frameworks, as mentioned in section 2):
we envisage that this will not fulfil transparency (because attacks in DeLP cannot be
detected in constant time) and no dismissal (in the same sense that ArCL does not).
Other argumentation frameworks we plan to study include Prakken and Sartor’s [13] and
Carneades [11].

Our list of postulates is not exhaustive. It would be interesting to consider other
postulates, e.g. concerning the avoidance of obvious repetitions in debate and, as in [12],
the relevance of all arguments put forward in the debate to the starting point of the debate.
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A. Proofs

Proof of lemma 3.1

1. Let α ∈ Arg attack β. Hence there is α′ ∈ NR such that α′ ≺ α. Hence α′ attacks β in
〈NR, attNR〉. Therefore there is γ ∈ B such that γ attacks α′. Hence γ attacks α.

2. Follows directly from item 1 of this lemma.
3. Let β ≺ α and γ ∈ Arg such that γ attacks β. Therefore γ attacks α. Hence there is
σ ∈ B attacking γ.

4. Follows directly from item 3 of this lemma.

Proof of lemma 3.2
The monotonicity of FAF (X) wrt set inclusion is obvious.

1. We show thatFAF (X) is indeed a function from CNR into C such thatFAF (X)∩NR =
X by showing that FAF (X) is a complete extension in 〈AF, att〉 if X is a complete
extension in 〈NR, attNR〉.
Let X be a complete extension in 〈NR, attNR〉. Hence, by lemma 3.1, item 2, X is
admissible in 〈AF, att〉. Further, by lemma 3.1, item 4, for eachα ∈ FAF (X), each “non-
redundant version of α” is acceptable wrt X in 〈NR, attNR〉. Thus, as X is complete in
〈NR, attNR〉, each “non-redundant version of α” belongs to X . Therefore, (FAF (X)−
X) ∩NR = ∅. Hence FAF (X) ∩NR = X .
To prove that FAF (X) is a complete extension, let β be acceptable wrt FAF (X) and let γ
attack β. Hence, there is σ ∈ FAF (X) attacking γ. Hence, any “non-redundant version of
σ” is inX and attacking γ. Hence,X attacks γ. Thus, β is acceptable wrtX , and therefore
β ∈ FAF (X). As a consequence, FAF (X) is complete.

2. Let C be a complete extension in 〈AF, att〉. We show that C′ = C ∩ NR is complete
in 〈NR, attNR〉. From lemma 3.1, item 3, and the fact that C is complete in 〈AF, att〉,
each “non-redundant version of arguments” in C belongs to C.
Let γ ∈ NR attack C′. Hence, there is α ∈ C attacking γ. Let α′ be a “non-redundant
version of α”. Therefore, α′ ∈ C′. Hence, α′ attacks γ. Hence C′ is admissible. Each
non-redundant argument acceptable wrt C′ is acceptable wrt C and hence belongs to C
and hence to C′. C′ is therefore complete.
As C′ ⊆ C, it is clear that FAF (C

′) ⊆ FAF (C) = C. We show now that each argument
acceptable wrt C is also acceptable wrt C′. Let β be an argument acceptable wrt C in
〈AF, att〉 and let σ be an argument attacking β. Hence, there is an argument δ ∈ C
attacking σ. Hence, there is a “non-redundant version” δ′ ∈ C of δ attacking σ. Hence C′

attacks σ. Thus β is acceptable wrtC′ in 〈AF, att〉. WE HAVE SHOWN THAT FAF (C
′) ⊇

FAF (C) = C , I.E. FAF (C ∩NR) = C .

Proof of theorem 3.1
Let C and CNR be the sets of complete extensions of 〈Arg, att〉 and 〈NR, attNR〉, respectively.

From lemma 3.2, it follows immediately that for each X ∈ CNR, FAF (X) is minimal or
maximal wrt set inclusion in C iff X is minimal or maximal respectively in CNR. Hence X is
grounded or preferred in 〈NR, attNR〉 iff FAF (X) is grounded or preferred in 〈Arg, att〉, re-
spectively.



Similarly, X is contained in every preferred extension of 〈NR, attNR〉 iff FAF (X) is con-
tained in every preferred extension of 〈Arg, att〉. Hence X is ideal in 〈NR, attNR〉 iff FAF (X)
is ideal in 〈Arg, att〉.


