
A Sound and Complete Dialectical Proof

Procedure for Sceptical Preferred

Argumentation

Phan Minh Dung and Phan Minh Thang

Department of Computer Science, Asian Institute of Technology

GPO Box 4, Klong Luang, Pathumthani 12120, Thailand

dung@cs.ait.ac.th, thangphm@ait.ac.th

Abstract. We present a dialectical proof procedure for computing skep-

tical preferred semantics in argumentation frameworks. The proof proce-

dure is based on the dispute derivation introduced for assumption-based

framework. We prove the soundness of the procedure for any argumen-

tation frameworks and the completeness for a general class of finitary

argumentation frameworks containing the class of finite argumentation

frameworks as a subclass.

1 Introduction

Argumentation is a form of reasoning, that could be viewed as a debate, in
which the participants present their arguments to establish, defend, or attack
certain propositions. An argument could be said to represent a consensus if it is
accepted by all participants. For example, in legal domain, different members of
a jury could have different views of the presented evidence (different preferred
extensions) but a guilty verdict is the result of a consensus among members. This
form of reasoning to find a consensus is characterized by the skeptical semantics
in argumentation. Skeptical semantics is also useful in AI systems for negotiation
and decision making [14–17, 21].

Several procedures for computation of skeptical preferred semantics have
been proposed, e.g the TPI procedure [19] for coherent argumentation frame-
work [4, 10], and a dialectic procedure for finding ideal skeptical semantics, an
approximation of the skeptical preferred semantics [9]. In [4], an algorithm for
computing sceptical preferred semantics is proposed. Given an argument a, the
algorithm proceeds in two separate steps: It first checks that a is not attacked
by any admissible set. In the second step, it looks for an admissible set that can
not be extended into a bigger one containing a. Failure to find such a set implies
that a is included in each preferred extension. In other words, the algorithm
represents an indirect way of proving that a is skeptically preferred based on the
idea that failure to show that a is not skeptical preferred implies the contrary.
Though the idea is intuitively clear, no formal proof for the soundness of the
algorithm is given.
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In contrast, in this paper we present a direct dialectical proof procedure for
general skeptical preferred semantics. We prove the soundness of the procedure
for any argumentation frameworks and its completeness for a general class of
finitary argumentation frameworks containing the class of finite argumentation
frameworks as a subclass.

The structure of the paper is as follows. In section 2 we recall and intro-
duce notions of proof tree, proof derivation and proof procedure for credulous
preferred semantics. We introduce finitary argumentation frameworks and prove
soundness and completeness of credulous proof procedure for them. In section 3
we present proof theories and algorithm for general skeptical preferred semantics.

2 Credulous Acceptance

Following [7], we define an argumentation framework as a pair AF = (A, att),
where A is a set of arguments, and att is a binary relation on A (att ⊆ A×A).
Given two arguments A and B, (A,B)∈ att means A attacks B. A set S of argu-
ments attacks an argument A if there is an argument B in S such that B attacks
A. The definitions of conflict-free set, admissible set and preferred extension are
recalled from [7] as follows:

Let S be a set of arguments

1. S is conflict-free iff there exist no arguments A, B in S such that A attacks
B

2. Argument A is acceptable with respect to S iff for each argument B if B
attacks A then S attacks B

3. S is admissible iff S is conflict-free and each argument in S is acceptable with
respect to S

4. S is a preferred extension of AF iff S is a maximal admissible set of AF
5. Argument A is credulously accepted iff A is contained in at least one pre-

ferred extension of AF
6. Argument A is skeptically accepted iff A is contained in every preferred

extensions of AF

To prove the credulous acceptance of an argument, a proof tree is constructed.
A proof tree can be viewed as a specification of a debate between a proponent
and an opponent, where an initial argument is put forward by the proponent,
and then the opponent and proponent alternatively present their arguments to
attack the arguments of the other. The proponent wins the dispute if he can
attack every attacking argument of the opponent. We recall the definition of
proof tree from [8, 9]:

Definition 1. A proof tree for an argument A with respect to an argument
framework AF is defined as following:

1. Nodes are labeled by arguments and the root is labeled by A. The argument
labeling a child node attacks the argument labeling its parent.
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2. There are two types of nodes: proponent nodes and opponent nodes
3. Each opponent node has exactly one child that is a proponent node
4. For each proponent node N labeled by an argument B, N has as many children

nodes as the number of arguments attacking B, and for every argument C
attacking B, there is a child node of N, which is an opponent node labeled by
C.

Definition 2. A proof tree is said to be admissible if there is no argument that
labels both a proponent node and an opponent node.

Fig. 1.

Fig. 2.

Example 1. The argumentation framework AF=(A,att) is depicted on Fig. 1,
where: A={A,G,E,F} and att = {(G, A),(E, G),(F, G),(E,F),(F, E)}.

A proof tree for argument A is depicted in Fig. 2 where:

– argument A labels the root
– arguments A, E label proponent nodes
– arguments G, F label opponent nodes
– this tree is admissible, since there is no argument labeling both opponent

and proponent nodes.

The following lemma is similar to a theorem from [8] and proved in the
extended version of [9].

Lemma 1.
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1. Let T be an admissible proof tree for A and S the set of all arguments labeling
proponent nodes of T. Then S is admissible.

2. Let S be an admissible set of arguments and A in S. Then there exists an
admissible proof tree T for A such that the set of arguments labeling the
proponent nodes in T is a subset of S

A proof tree is often infinite as example 1 shows. A proof derivation is a
finite top-down construction of an (possibly infinite) admissible proof tree by a
sequence of tuples < P ,O ,SP ,SO >, where P is a set of arguments, put forward
by the proponent but which have not been attacked yet, and O is a set of
arguments put forward by the opponent to attack the proponent’s arguments,
against which the proponent doesn’t have counter-attack until now. SP is the
set of arguments presented by proponent, and SO is the set of arguments put
forward by the opponent, and already counter-attacked by the proponent. Our
proof derivation is defined in a spirit like the dispute derivation in [8] and the
dialectical games in [4]. In each step of a proof derivation building process only
one argument is selected. Let B be a selected argument and let OB be the set
of all arguments attacking B. In the first case if B labeling a proponent node,
then OB consists of all arguments labeling opponent child nodes of the node
labeled by B. In the second case if B labeling an opponent node, then OB is a
set of arguments, from which one argument is chose to label a proponent child
node of the node labeled by B. Hence there exists no proof derivation if there
is one argument in OB labeling a proponent node in the first case, or there is
one argument in OB labeling an opponent node or OB = ∅ in the second case,
because our proof tree is not admisible.

Definition 3. A proof derivation D for an argument A is a sequence < P0, O0,
SP0, SO0 > ... < Pn, On, SPn, SOn > where:

1. Pi, Oi, SPi, and SOi are argument sets
2. P0 = SP0 = {A}, SO0 = O0 = ∅, Pn = On = ∅
3. Let B be the argument selected at step i, and let OB be the set consisting of

all arguments attacking B.
(a) If B ∈ Pi and OB ∩ SPi = ∅ then

Pi+1 = Pi \ {B}
Oi+1 = Oi ∪ (OB \ SOi)
SPi+1 = SPi

SOi+1 = SOi

(b) If B ∈ Oi then select an argument C ∈ OB such that C 6∈ (SOi ∪ Oi)
Pi+1 = Pi ∪ {C} if C 6∈ SPi, otherwise Pi+1 = Pi

Oi+1 = Oi \ β where β = {B′ | C attacks B′}
SPi+1 = SPi ∪ {C}
SOi+1 = SOi ∪ (β ∩ Oi) (Note that B∈ β ∩ Oi)

Example 2. Let argumentation framework AF=(A,att), where A = {A} and
att=∅ then a sequence < {A}, ∅, {A}, ∅ >< ∅, ∅, {A}, ∅ > is the proof derivation
for A.
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Example 3. (Continue example 1 ) A proof derivation for A is presented in fol-
lowing table, where the notation X means that X is selected in step 3 of definition
3.

i Pi Oi SPi SOi comment

0 A ∅ A ∅ OA={G} according to step3.a

1 ∅ G A ∅ OG={E,F}, E is selected form OG, β={G,F} according to step3.b

2 E ∅ A, E G OE={F} according to step3.a

3 ∅ F A, E G OF ={E}, E is selected and E∈ SP3, β={G,F} according to step3.b

4 ∅ ∅ A, E G, F

Table 1. The construction of a proof derivation for A

Theorem 1.

1. Suppose < P0, O0, SP0, SO0 > ... < Pn, On, SPn, SOn > is a proof deriva-
tion for A. Then SPn is admissible and A ∈ SPn.

2. Let AF be a finite argumentation framework, and let A be an argument of
AF. If A belongs to an admissible set then there is a proof derivation for A.

Consider the infinite argumentation framework in Fig. 3. It is not diffi-
cult to see that there is an unique preferred extension consisting of arguments
A0, A2, ..., A2n, ... It is obvious that for each argument A2n there is a proof
derivation for A2n. The reason for the existence of a proof derivation for A2n

is that the argumentation framework consisting of the arguments from which
there is a directed path to A2n is finite. In the following, we introduce the class
of finitary argumentation frameworks generalizing this property.

Fig. 3.

Let AF=(A, att) and A ∈ A.1 The environment of A denoted by ENVA is
the set of all arguments B in A such that there is a directed path from B to A in
the graph of AF (i.e.there is a sequence B1, B2..., Bn such that Bi attacks Bi+1

and B=B1 and A=Bn). Let AFA = (ENVA, attA), where attA is the restriction
of att to ENVA.

1 For purpose of reference, we often identify AF with the graph representing it.
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Definition 4. An argumentation framework is said to be finitary if for each
argument A, AFA is finite.

Lemma 2.

1. Let S be an admissible set of arguments in AF. Then S ∩ ENVA is also
admissible in both AF and AFA.

2. Let S ⊆ ENVA be an admissible set in AFA. Then S is also admissible in
AF.

From the lemma 2, it is obvious that

Corollary 1. A is credulously accepted in AF iff A is credulously accepted in
AFA.

The soundness and completeness of proof derivation for finitary argumen-
tation frameworks follows immediately from the above corollary and theorem
1.

Theorem 2. Let AF be a finitary argumentation framework, and A be an ar-
gument of AF. A belongs to an admissible set iff there is a proof derivation for
A.

3 Skeptical Acceptance

An argumentation framework AF is said to be coherent if each preferred exten-
sion of AF is stable. In other words, coherence implies the coincidence between
stable and preferred semantics. TPI procedures are based on the following propo-
sition [4, 11, 19] to check whether a given argument A is skeptically accepted in
coherent argumentation frameworks: An argument A is skeptically accepted in a
coherent argumentation frameworks if A is credulously accepted and there exists
no admissible set attacking A.

The following example shows that TPI procedures can not be used for an-
swering whether a given argument belongs to all preferred extensions in general
cases.

Example 4. The argumentation framework AF=(A,att) is depicted in Fig. 4,
where A = {A,B,G,E,F} and att = {(G,A),(A,B),(B,G),(E,G),(F,E),(E,F)}

It is clear that {A,E} and {F} are the only preferred extensions, and argument
A is not skeptically accepted, although A is credulously accepted and there exist
no admissible set attacking A.

In this chapter we introduce a proof procedure for skeptical preferred seman-
tics in general cases, which is based on the following simple lemma.

Lemma 3. Let S be an admissible set of arguments and E be a preferred set of
arguments, and S is not a subset of E. Then E attacks S (and S also attacks E).
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Fig. 4.

Definition 5. Let A be an argument, and let B be a set of admissible sets such
that each element of B contains A.

1. If for each preferred extension E such that A∈ E, there exists an admissible
set S ∈ B such that S ⊆ E then B is called a base of A.

2. A base B of A is said to be complete if for each preferred extension E, there
is a set S∈ B such that S ⊆ E

Lemma 4. (Skeptical Lemma) An argument A is sceptically accepted iff there
exist a complete base B of A.

The skeptical lemma suggests that a proof procedure for showing that A is
skeptically accepted, could proceed in two steps:

1. Generate a base B of A
2. Verify that B is a complete base of A

3.1 Generating a Base of A

We define a BG2-derivation for an argument A by constructing all possible proof
derivations for A.

Definition 6. BG-derivation for A is a sequence T0, T1, ..., Tn, where:

1. Ti is a set of tuples of the form < P,O, SP, SO >

2. T0= {< {A}, ∅, {A}, ∅ >}
3. Each tuple t of Tn has the form < ∅,∅, SP, SO >

4. At each step Ti one tuple ti =< Pi, Oi, SPi, SOi > is selected from Ti and
one argument B is selected from Pi or Oi.

(a) If B is selected from Pi, then: Ti+1 = (Ti \ {ti})∪{t’}, where t’ is com-
puted from ti as in definition 3 step 3.a.

2 BG stands for ”Base Generation”
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(b) If B is selected from Oi and let OB be the set consisting of all argu-
ments attacking B, then: Ti+1 = (Ti \ {ti}) ∪ {t′ | t’ is computed from
ti as in definition 3 step 3.b for some argument C ∈ OB such that C
6∈ (SOi ∪ Oi)}

It is not difficult to see the following:

Theorem 3.

1. Let T0, T1, ..., Tn be a BG-derivation for A. Let B ={SP |< ∅, ∅, SP, SO >∈
Tn}. Then B is a base of A.

2. Let AF be finitary. Then there exists a BG-derivation for A.

3.2 Verifying the Completion of a Base

Before giving the procedure for verifying the completeness of a base, we need a
few technical results.

Lemma 5. Let B be a base of argument A. B is a complete base of A iff there
exist no preferred extension E attacking every element of B.

A proof derivation for a given argument A is constructed to find an admis-
sible set of arguments defending A. However in some cases we want to answer
the question ”can the proponent admissibly attack arguments proposed by the
opponent”. A notion of a proof derivation D against S is introduced for this
purpose.

Definition 7. A proof derivation D against a set S of arguments is defined as
a sequence < P0, O0, SP0, SO0 > ... < Pn, On, SPn, SOn > where:

1. Pi, Oi, SPi, and SOi are argument sets
2. P0 = SP0 = ∅, O0 = S, SO0 = ∅, Pn = On = ∅
3. < Pi+1, Oi+1, SPi+1, SOi+1 > is constructed from < Pi, Oi, SPi, SOi > as in

definition 3 step 3.

Lemma 6. For finitary argumentation frameworks, there exists a proof deriva-
tion D against a set S iff there exist an admissible set S’ attacking every element
in S.

Let A be an argument and B = {S1, ..., Sn} where Si is an admissible set
containing A, and let CB = {S | ∃e ∈ S1 × S2 × ... × Sn and S is the set of ar-
guments appearing in e}, and let XB = {S | S ∈ CB and S is minimal in CB wrt
set inclusion}

Lemma 7. For finitary argumentation frameworks, let B be a base of A. B is a
complete base of A iff for each S∈ XB there exist no proof derivation D against
S.
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Based on lemma 7 we define now a CB3-verification for a base B of an argu-
ment A to verify the completeness condition of B.

Definition 8. Let B be a finite set. A CB-verification for B is a sequence J0, J1...Jn

where

1. Ji is a set of tuples of the form < P,O, SP, SO >

2. J0={< ∅, O, ∅, ∅ >| O ∈ XB}

3. Jn=∅

4. Jk+1 is obtained from Jk like Tk+1 is obtained from Tk in definition 6.

Theorem 4. Let AF be a finitary framework and B be a finite base of argument
A. There exists a CB-verification for B iff B is a complete base of A.

3.3 Proof Procedure for Skeptical Acceptance

We define a SA4-derivation for A as a combination of a BG-derivation for A and
a CB-verification for the base created by the BG-derivation.

Definition 9. Let A be an argument. An SA-derivation for A is a sequence
T0, T1, ..., Tn, J0, J1...Jm where:

1. The sequence T0, T1, ..., Tn is a BG-derivation for A

2. The sequence J0, J1...Jm is a CB-verfication for B, where B={SP |< ∅, ∅, SP, SO >∈ Tn}

The following theorem follows directly from theorems 3, 4

Theorem 5. Let AF be a finitary argumentation framework and A be an argu-
ment in AF. A is sceptically accepted iff there exists a SA-derivation for A.

Example 5. (Continue example 1 ) Our proof procedure shows that A is skep-
tically accepted (see table 2). The notion fails means ’fails to build a proof
derivation’.

Example 6. (Continue example 4 ) Our proof procedure shows that A is not
skeptically acceptedm(see table 3), something that can not be done using TPI-
procedures.

From table 3 we see that there exist no SA-derivation for A. Hence A is not
sceptically accepted.

3 CB stands for Complete Base
4 SA stands for Skeptical Acceptance
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BG-derivation for A CB-verification for B
P O SP SO comment P O SP SO comment

T0 A ∅ A ∅ step4.a, OA={G} J0 ∅ A ∅ ∅ step4.b, OA={G}
T1 ∅ G A ∅ step4.b, OG={E,F} ∅ E, F ∅ ∅
T2 E ∅ A, E G step4.a, OE={F} J1 G ∅ G A step4.a, OG={E,F}

F ∅ F, A G ∅ E,F ∅ ∅
T3 ∅ F A, E G step4.b, OF∩ SP={E} J2 ∅ E,F G A step4.b OE∩O={F}, fails

F ∅ F, A G ∅ E,F ∅ ∅
T4 ∅ ∅ A, E G J3 ∅ E,F ∅ ∅ step4.b OE∩O={E}, fails

F ∅ A, F G step4.a OF ={E} J4 Empty

T5 ∅ ∅ E,A G

∅ E F,A G step4.b OE∩SP={F}
T6 ∅ ∅ E,A G B={{E,A}, {F,A}} and

∅ ∅ F,A G XB ={{A},{E,F}}

Table 2. Construction of a BG for A and CB-verification for B

P O SP SO comment P O SP SO comment

T0 A ∅ A ∅ step3.a, OA={G} J0 ∅ E ∅ ∅ step3.b, OE={F}
T1 ∅ G A ∅ step3.b, OG={E,B} ∅ A ∅ ∅
T2 E ∅ A, E G step3.a, OE={F} J1 F ∅ F E step3.a, OF =SO={E}

B ∅ A, B G ∅ A ∅ ∅
T3 ∅ F A, E G step3.b, OF ={E}, {E}in SP J2 ∅ ∅ F E

B ∅ A, B G ∅ A ∅ ∅ step3.b OA={G}
T4 ∅ ∅ A, E G, F J3 ∅ ∅ F E

B ∅ A, B G step3.a OB∩ SP={A} fails G ∅ G A step3.a OG={E, B}
T5 ∅ ∅ A, E G, F B={{A, E}} and J4 ∅ ∅ F E

XB={{A}, {E}} ∅ B, E G A step3.b OB∩SO={A} fails

J5 ∅ ∅ F E not empty

Table 3. Construction of the SA-derivation for A
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4 Conclusion and Discussions

It is a well-known result from [11] that skeptical acceptance is
∏(p)

2 -complete.
Therefore in worst cases, computing a SA derivation is not polynomial.

Consider the argumentation framework in Fig. 5. Using the BG-derivation,
we would be able to generate a base B = {{A,E,C},{A,E,D},{A,F,C},{A,F,D}}.
Looking at the subgraph consisting of only E,F, we could realize that if there is
any attack against E or F, it should come from within this subgraph. Similarly
for C,D. Hence, it would be enough if in the CB-verification, we consider only
derivations againsts {A},{E,F},{C,D}. Structuring argumentation frameworks
into strongly connected component like in [1] would facilitate optimizing the
SA-derivations in this direction.

Fig. 5.
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A Appendix

A.1 Proof of lemma 2

1. Let R=S ∩ENVA . It is obvious that R is conflict-free. Let B be an argument
attacking R. It is obvious that B ∈ ENVA. Hence there is C ∈ S such that
C attacks B. Hence C ∈ ENVA. Hence C ∈ R. Hence R is admissible both
wrt AF and AFA.

2. It is clear that S is conflict-free in AF. Let B be an argument attacks S in
AF. Hence B ∈ ENVA. Hence S attacks B in AFA. Hence S attacks B in
AF.
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A.2 Proof of lemma 3

It is clear that if E attacks S then S also attacks E and vice versa. Assume
that S, E do not attack each other. Hence C=S ∪ E is conflict-free. For each
argument A in C if there is an argument B attacking A then B is attacked by
S or by E since A is in S or E. So B is attacked by C. Hence each argument in
C is acceptable wrt C. Then C is admissible and contains E and there exists an
argument G in C which is not in E because S is not subset of E. Contradiction
since E is preferred. Hence S attacks E and E also attacks S.

A.3 Proof of lemma 4

1. Only if part
Let B be the set of all preferred extensions, then B is a complete base of A.

2. If part
Let B be a complete base of A, then for each preferred extension E there
exists a set S ∈ B such that S ⊆ E. Since A ∈ S for each S ∈ B then A is
contained in each preferred extension E. Hence A is sceptically accepted.

A.4 Proof of lemma 5

1. Only if part
Let B be a complete base of A, and E be an arbitrary preferred extension.
Then there is an admissible set S of B such that S⊆ E . Hence E does not
attack S. Hence E does not attack every element of B.

2. If part
Assume B is not a complete base of A. Then there exists a preferred extension
E such that E 6⊇ S for every element S of B. Hence E attacks every element
S of B (lemma 3). Contradiction.

A.5 Proof of lemma 6

Let AF=(A,att) be the argumentation framework we are working in. Let AF’=(A′,att’)
be another argumentation framework such that A′= A∪ {T}, where T is a new
argument not in A, att’=att∪ {(C, T) | C ∈ S}. Then each proof derivation D
against S can be transferred into a proof derivation D′ for T by adding the tuple
< {T}, ∅, {T}, ∅ > to the beginning of D and add T to the SP component in
each tuple in D

1. Only if part
Since there is a proof derivation D against a set S in AF, then there is a
proof derivation D′ for T in AF’. Hence there exists an admissible set R
in AF’ containing T. Since T is attacked by every element of S, then each
element of S is attacked by R. Let S’=R \ {T}. Hence each element of S
is attacked by S’. S’ is conflict-free, because R is an admissible set. Since
S’ ⊆ A, every argument attacking S’ belongs to A. For each argument B
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attacking S’, there is an argument B’ ∈ S’ such that (B’,B)∈ att, because
att’=att ∪ {(C, T) | C ∈ S). Hence S’ is an admissible set wrt AF. So there
exists an admissible set attacking every element in S.

2. If part
Let R=S’ ∪ {T}. T is not in A, then T is not in S’. Furthermore S’ is
admissible, and set S’ defends T, then R is admissible. Hence there is a
proof derivation D′ for T. Hence there is a proof derivation D against a set
S by dropping the first tuple from D′.

A.6 Proof of lemma 7

1. Only if part
Let E be a preferred extension. Since B is a complete base for A, then there
is a set Si ∈ B such that Si ⊆ E. That means for each S ∈ XB there is an
argument C ∈ (S ∩Si) such that E doesn’t attack C. Hence for each S ∈ XB
there exist no preferred extension attacking every element in S. Then for
each S ∈ XB there exists no admissible set attacking every element in S.
Hence there exists no proof derivation D against S (lemma 6).

2. If part
Assume the contradiction, that means B is not complete base of A. Hence
there exists a preferred extension E attacking every element Si of B (lemma
5). Hence for each Si there is an argument Ci in Si such that E attacks Ci.
Hence E attacks every element in S={C1, C2...Cn} ∈ XB. Hence there exists
proof derivation D against S (lemma 6). Contradiction.

A.7 Proof of theorem 4

Let XB = {O1, ..., On}. Let AF=(A,att). Let AF’=(A′,att’) and A′ = A∪ R
where R={A’,Q,G1, ..., Gn} and A∩ R=∅, att’=att ∪{(C1, G1) | C1 ∈ O1}∪ ...
∪{(Cn, Gn) | Cn ∈ On} ∪ {(G1, Q), ..., (Gn, Q), (Q,A′)} (figure 6). A CB-verification
D for B can be transferred to a proof derivation D′ for A’ by

adding a sequence T0, T1, T2 to the beginning of D, and

T0 =< {A′}, ∅, {A′}, ∅ >

T1 =< ∅, {Q}, {A′}, ∅ >

T2 = {< {Gi}, ∅, {Gi, A
′}, {Q} >| i ∈ [1, n]}

T3 = {< ∅, Oi, {Gi, A
′}, {Q} >| i ∈ [1, n]}.

It is not difficult to see that T3 corresponds to J0 of D in the sense that the
first two components of the tuples in T3 coincide with the first two components
of the tuples in D. D could be easily modified to have T3 as its first element since
Gi, A

′, Q do not have any effects on the status of the elements in A. Abusing
the notation, we still identify T3 and J0.
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1. Only if part

There is a CB-verification for B wrt AF. Hence there exists no proof deriva-
tion for A’ in AF’. Hence there exists no admissible set containing one of
G1, ..., Gn. That means ∀i there is no admissible set containing Gi. Therefore
∀i there is no admissible set attacks each argument in Oi. Hence there is no
admissible set attacking each element in B. Hence B is complete.

2. If part

B is complete then there is no admissible set attacking every Si ∈ B wrt
AF. So there is no admissible set attacking every element of Oi for each
Oi ∈ XB. We prove that there is no proof derivation for A’ wrt AF’. Assume
contradiction, that means there is an admissible set S containing A’. Let
S’=S \ {A’}. Since S is admissible and A’ doesn’t defend any argument,
then S’ is admissible. Gi defends A’, then at least one Gi ∈ S’. Set Oi attacks
Gi then every element of Oi is attacked by S’ in AF’. Let S”=S’ \ {Gi}.
Since S’ is admissible and Gi does not attack any argument in S’, then S”
is admissible, and every element of Oi is attacked by S” in AF’. Since R ∩
S”=∅ and S” is not attacked by R and S” is admissible, then every element
of Oi is attacked by S” in AF. Contradiction. Hence there exists no proof
derivation for A’. Hence there is a CB-verification for B.

References

1. P. Baroni, M. Giacomin, and G. Guida SCC-recursiveness: a general schema for

argumentation sematics. In Artificial Intelligence, 168(1-2):162-210,2005.
2. A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni An abstract, argumenta-

tion theoretic approach to default reasoning. In Artificial Intelligence, 93:63-101,
1997.

3. M. Caminada On the Issue of Reinstatement in Argumentation. Technical report
UU-CS-023-2006.

4. C. Cayrol, S. Doutre, and M. Jerome On Decision Problems related to the Preferred

Semantics for Argumentation Framework. In Journal of logic and computation,
13(3):377403,2003.

5. C.R. Chesnevar, A.G. Maguitman, and R.P. Loui Logical Models of Argument. In

ACM Computing Surveys,32(4):337383,2000.
6. S. Doutre, and M. Jerome On sceptical vs credulous acceptance for abstract sys-

tems. In Lecture notes in computer science, 3229:462-473,2004.
7. P.M. Dung On the acceptability of arguments and its fundamental role in mono-

tonic reasoning, logic programming and n-person games. In Artificial Intelligence,
77:321-357, 1995.

8. P.M. Dung, R.A. Kowalski, and F. Toni Dialectic proof procedures for assumption-

base, admissible argumentation. In ArtificialIntelligence, 170: 114-159, 2006.
9. P.M. Dung, P. Mancarella, and F. Toni A dialectic procedure for sceptical,

assumption-based argumentation. In COMMA 2006.10S Press.
10. Paul E. Dunne, and T.J.M. Bench-Capon Two party immediate response disputes:

Properties and efficiency. In Artificial Intelligence, 149:221-250, 2003.



A Sound and Complete Dialectical Proof Procedure 63

11. Paul E. Dunne, and TJ.M. Bench-Capon Coherence in finite argument systems.

In Artificial Intelligence, 141: 187203,2002.
12. H. Iakobovits and D. Vermeir Dialectic Semantics for Argumentation Frameworks.

In Proc. ICAIL’99, pp 53-62. ACM Press, 1999.
13. A.C. Kakas and F. Toni Computing Argumentation in Logic Programming. In

Journal of Logic and Computation, 9(4):515562, August 1999.
14. S. Kraus, K. Sycara, and A. Evenchik Reaching agreements throughs argumen-

tation: a logical model and implementation. In Artificial Intelligence, 104: 1-69,
1998.

15. S. Parson, C. Sierra, and N.R. Jennings Agent that reason and negotiate by

arguing. In Journal of Logic and Computation, 8(3):261-292, 1998.
16. I. Rahwan, S.D. Ramchurn, N.R. Jennings, P. McBurney, S. Parsons, and L. So-

nenberg. Argumentation-Base Negotiation. In The Knowledge Engineering Review,
18(4):343-375,2004.

17. I. Rahwan, L. Sonenberg, and F. Dignum. Towards Interest-Based Negotiation. In

MMAS’03, pp 773-780, ACM Press, 2003.
18. B. Verheij A Labeling Approach to the Computation of Credulous Acceptance in

Argumentation. In IJCAI07, pp 623-628
19. G.A.W. Vreeswijk, and H. Prakken. Credulous and Sceptical Argument Games for

Preferred Semantics. In Proc. JELIA’2000, pp 239-253. LNAI 1919,2000.
20. G. Vreeswijk. An algorithm to compute minimally grounded and admissible defence

sets in argument systems. In Proceedings of the First International Conference on
Computational Models of Argument, pp 109-120. IOS Press 2006.

21. M. Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons, Ltd,
2002.


