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Abstract

There is strong evidence that face processing is localized in the brain.
The double dissociation between prosopagnosia, a face recognition
deficit occurring after brain damage, and visual object agnosia, difficulty
recognizing other kinds of complex objects, indicates that face and non-
face object recognition may be served by partially independent mecha-
nisms in the brain. Is neural specialization innate or learned? We sug-
gest that this specialization could be the result of a competitive learn-
ing mechanism that, during development, devotes neural resources to the
tasks they are best at performing. Further, we suggest that the specializa-
tion arises as an interaction between task requirements and developmen-
tal constraints. In this paper, we present a feed-forward computational
model of visual processing, in which two modules compete to classify
input stimuli. When one module receives low spatial frequency infor-
mation and the other receives high spatial frequency information, and
the task is to identify the faces while simply classifying the objetts,

low frequency network shows a strong specialization for faces. No other
combination of tasks and inputs shows this strong specialization. We
take these results as support for the idea that an innately-specified face
processing module is unnecessary.

1 Background

Studies of the preserved and impaired abilities in brain damaged patienigeiroportant
clues on how the brain is organized. Cases of prosopagnosia, a face recodgiiicit often
sparing recognition of non-face objects, and visual object agnosia, an objecmition
deficit that can occur without appreciable impairment of face recognitioniggevidence
that face recognition is served by a “special” mechanism. (For a recent revidvsof



evidence, see Moscovitch, Winocur, and Behrmann (1997)). In this,stuglypegin to
provide a computational account of the double dissociation.

Evidence indicates that face recognition is based primarily on holistidigroal informa-
tion, whereas non-face object recognition relies more heavily on local é&sadind analysis
of the parts of an object (Farah, 1991; Tanaka and Sengco, 1997). Focmgtandistance
between the tip of the nose and an eye in a face is an important factor in fagaitenyg
but such subtle measurements are rarely as critical for distinguistapgtveo buildings.
There is also evidence that configural information is highly relevargnada human be-
comes an “expert” at identifying individuals within other visually hageneous object
classes (Gauthier and Tarr, 1997).

What role might configural information play in the development ofecsglization for face
recognition? de Schonen and Mancini (1995) have proposed that severes fastluding
different rates of maturation in different areas of cortex, an infant’s tesydentrack the
faces in its environment, and the gradual increase in visual acuity as an iefalbgs,
all combine to force an early specialization for face recognition. If this saeisacorrect,
the infant begins to form configural face representations very soon éfter lbased pri-
marily on the low spatial frequency information present in face stimuldeed, Costen,
Parker, and Craw (1996) showed that although both high-pass andalesvipage filter-
ing decrease face recognition accuracy, high-pass filtering degrades ideatifazaturacy
more quickly than low-pass filtering. Furthermore, Schyns and O1i®&T) have shown
that when asked to recognize the identity of the “face” in a briefly-presentaithynage
containing a low-pass filtered image of one individual's face and a pags-filtered image
of another individual's face, subjects consistently use the low-fre;uesmponent of the
image for the task. This work indicates that low spatial frequencyinédion may be more
important for face identification than high spatial frequency infornmatio

Jacobs and Kosslyn (1994) showed how differential availability oHargd small receptive
field sizes in a mixture of experts network (Jacobs, Jordan, Nowlan, artdri1 1991)
can lead to experts that specialize for “what” and “where” tasks. In previouk, wa
proposed that a neural mechanism allocating resources according to thejrtalpiétform
a given task could explain the apparent specialization for face recognitidar®ed by
prosopagnosia (Dailey, Cottrell, and Padgett, 1997). We showea thatdel based on
the mixture of experts architecture, in which a gating network implesneompetitive
learning between two simple homogeneous modules, could develop a gatitialisuch
that damage to one module disproportionately impaired face recogodinpared to non-
face object recognition.

In the current study, we consider how the availability of spatial fezgpy information af-
fects face recognition specialization given this hypothesis of neural resallocation by
competitive learning. We find that when high and low frequency inforomais “split”
between the two modules in our system, and the task is to identify thedtlessimply
classifying the objects, the low-frequency module consistently afiees for face recog-
nition. After describing the study, we discuss its results and thgilications.

2 Experimental Methods

We presented a modular feed-forward neural network preprocessed imagesitiét2 d
ent faces, 12 different books, 12 different cups, and 12 different soda ¢émgave the
network two types of tasks:

1. Learning to recognize the superordinate classes of all four object typesafter
referred to aglassification.

2. Learning to distinguish the individual members of one class (heraafierred to



asidentificatior) while simply classifying objects of the other three types.

For each task, we investigated the effects of high and low spatial frequdnoyation on
identification and classification in a visual processing system with twgeting modules.
We observed how splitting the range of spatial frequency informdietveen the two
modules affected the specializations developed by the network.

2.1 Image Data

We acquired face images from the Cottrell and Metcalfe facial expression da{abad¢
and captured multiple images of several books, cups, and soda cans with aabt@ra
and video frame grabber. For the face images, we chose five grayscale imagesafigach
individuals. The images were photographed under controlled lightidgpose conditions;
the subjects portrayed a different facial expression in each image. For eaehmoittiace
object classes, we captured five different grayscale images of each of 12 boakss] 2
and 12 cans. These images were also captured under controlled lightingarms)ditith
small variations in position and orientation between photos. Theedntage set contained
240 images, each of which we cropped and scaled to a size of 64x64 pixels.

2.2 Image Preprocessing

To convertthe raw grayscale images to a biologically plausible representatre suitable
for network learning and generalization, and to experiment with the effehigbf and
low spatial frequency information available in a stimulus, we exé@&abor jet features
from the images at multiple spatial frequency scales then performed a sepanatpal
components analysis on the data from each filter scale separately to reducpatiptr
dimensionality.

221 Gabor jet features

The basic two-dimensional Gabor wavelet resembles a sinusoid gresitigted by a two-
dimensional Gaussian, and may be tuned to a particular orientation arsbisialufre-
guency scale. The wavelet can be used to model simple cell receptive fields imatypr
visual cortex (Jones and Palmer, 1987). Buhmann, Lades, and von der al$Ba0)
describe the Gabor “jet,” a vector consisting of filter responses at feutiifentations and
scales.

We convolved each of the 240 images in the input data set with two-dioreadsGabor
filters at five scales in eight orientatior £, I, 3 2 3% 37 11) and subsampled an
8x8 grid of the responses to each filter. The process resulted in 2560@omphbers
describing each image.

2.2.2 Principal componentsanalysis

To reduce the dimensionality of the Gabor jet representation while aiaint) a segrega-
tion of the responses from each filter scale, we performed a separate PCA on &tzadh sp
frequency component of the pattern vector described above. For each of tiee Scitkes

in the jet, we extracted the subvectors corresponding to that scale fronpatiem in the
training set, computed the eigenvectors of their covariance matrix, projbetsdbvectors
from each of the patterns onto these eigenvectors, and retained the eiglsignd&tant
coefficients. Reassembling the pattern set resulted in 240 40-dimensiat@is:
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Figure 1: Modular network architecture. The gating network units imédutputs of the
hidden layers multiplicatively.

2.3 TheMod€

The model is a simple modular feed-forward network inspired by theure of experts
architecture (Jordan and Jacobs, 1995); however, it contains hiddendagksstrained by
backpropagation of error rather than maximum likelihood estimation peetation maxi-
mization. The connections to the output units come from two separnai/imdden layer
pairs; these connections are gated multiplicatively by a simple linearonetwith soft-
max outputs. Figure 1 illustrates the model’'s architecture. Durgigitrg, the network’s
weights are adjusted by backpropagation of error. The connections feosottmax units
in the gating network to the connections between the hidden layers anat taypr can
be thought of as multiplicative connections with a constant weight. offthe resulting
learning rules gate the amount of error feedback received by a module accardhmey t
gating network’s current estimate of its ability to process the curraimtihg pattern. Thus
the model implements a form of competitive learning in which the gatigtgvork learns
which module is better able to process a given pattern and rewards thesfivimith more
error feedback.

2.4 Training Procedure

Preprocessing the images resulted in 240 40-dimensional vectors;x@upkes of each
face and object composed a 192-element training set, and one example of each face and
object composed a 48-element test set. We held out one example of eachuadirid
the training set for use in determining when to stop network trainilg set the learning
rate for all network weights to 0.1 and their momentum to 0.5. Botthefiiidden layers
contained 15 units in all experiments. For the identification tasks, eterchined that a
mean squared error (MSE) threshold of 0.02 provided adequate classifisatformance
on the hold out set without overtraining and allowed the gate netwmndettle to stable
values. For the four-way classification task, we found that an MSE thicksh6.002 was
necessary to give the gate network time to stabilize and did not resoNeiriraining. On
all runs reported in the results section, we simply trained the netwatikit reached the
relevant MSE threshold.

For each of the tasks reported in the results section (four-way classificatok identi-
fication, and face identification), we performed two experiments. In the &is a control,
both modules and the gating network were trained and tested with thfalimensional
pattern vector. In the second, the gating network received the full 4@+diional vector,



but module 1 received a vector in which the elements corresponding to ¢festiavo Ga-

bor filter scales were set to 0, and the elements corresponding to the filtddkrale were

reduced by 0.5. Module 2, on the other hand, received a vector in which thergkeoor-

responding to the smallest two filter scales were set to 0 and the elemeespoomding to

the middle filter were reduced by 0.5. Thus module 1 received mostlyfrégjuency infor-

mation, whereas module 2 received mostly low-frequency informatidh,d@emphasized
overlap in the middle range.

For each of these six experiments, we trained the network using 2Cediitfi@itial random
weight sets and recorded the softmax outputs learned by the gating netweakh training
pattern.

3 Reaults

Figure 2 displays the resulting degree of specialization of each modutach stimulus
class. Each chart plots the average weight the gating network assigns to edwle for
the training patterns from each stimulus class, averaged over 20 traimiagvith different
initial random weights. The error bars denote standard error. For ealeé tifree reported
tasks (four-way classification, book identification, and face identificatame chart shows
division of labor between the two modules in the control situationyhich both modules
receive the same patterns, and the other chart shows division of labozdrethe two
modules when one module receives low-frequency information and teeretteives high-
frequency information.

When required to identify faces on the basis of high- or low-frequerfoyrimation, com-
pared with the four-way-classification and same-pattern controls, thérémuency mod-
ule wins the competition for face patterns extremely consistentlygfioight graph). Book
identification specialization, however, shows considerably less setysttivspatial fre-
guency.

We have also performed the equivalent experiments with a cup discrionireatd a can
discrimination task. Both of these tasks show a low-frequency $étyslower than that
for face identification but higher than that for book identification. Dusgdace limitations,
these results are not presented here.

The specialized face identification networks also provide good modelsosbpagnosia
and visual object agnosia: when the face-specialized module’s output is “danages”
moving connections from its hidden layer to the output layer, the dveradork’s general-
ization performance on face identification drops dramatically, while iteigdization per-
formance on object recognition drops much more slowly. When the ace-$pecialized
(high frequency) module’s outputs are damaged, the opposite effecsotieaioverall net-
work’s performance on each of the object recognition tasks drops, whesgasfitrmance
on face identification remains high.

4 Discussion

The results in Figure 2 show a strong preference for low-frequerficgniation in the face
identification task, empirically demonstrating that, given a choice, a catwpanecha-
nism will choose a module receiving low-frequency, large receptive iidtadrmation for
this task. This result concurs with the psychological evidence for gordi face repre-
sentations based upon low spatial frequency information, and suggesthédeveloping
brain could be biased toward a specialization for face recognition by thatisfnitially
low visual acuity.

On the basis of these results, we predict that human subjects perfdiama@nd object
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Figure 2: Average weight assigned to each module broken down by stitiaks. For each
task, in the control experiment, each module receives the same patterplitfiequency

charts summarize the specialization resulting when module 1 receivesrbiglehcy Ga-
bor filter information and module 2 receives low-frequency Gabor filtermation.



identification tasks will show more degradation of performance in-pigss filtered images
of faces than in high-pass filtered images of other objects. To our knowlgdg&as not
been empirically tested, although Costen et al. (1996) have investigatedfeiet of high-
pass and low-pass filtering on face images in isolation, and Parker, Listamdidughes
(1996) have investigated the effect of high-pass and low-pass filtefiface and object
images used as 100 ms cues for a same/different task. Their results indatatedhant
high-pass filtered images cue object processing better than low-pass fiftergel, but the
two types of filtering cue face processing equally well. Similarly, Sct&@iva’s (1997)
results described earlier suggest that the human face identification netwedekemtially
responds to low spatial frequency inputs.

Our results suggest that simple data-driven competitive learning c@aiith constraints
and biases known or thought to exist during visual system develdpraenaccount for
some of the effects observed in normal and brain-damaged humans. Théestdsgup-
port to the claim that there is no need for an innately-specified face processihge —

face recognition is only “special” insofar as faces form a remarkably homogsmaber

gory of stimuli for which within-category discrimination is ecologlly beneficial.
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