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Abstract

We compare the ability of three exemplar-based memory models, each using three different face stim-
ulus representations, to account for the probability a human subject responded “old” in an old/new facial
memory experiment. The models are 1) the Generalized Context Model, 2) SimSample, a probabilistic
sampling model, and 3) DBM, a novel model related to kernel density estimation that explicitly encodes
stimulus distinctiveness. The representations are 1) positions of stimuli in MDS “face space,” 2) projec-
tions of test faces onto the eigenfaces of the study set, and 3) a representation based on response to a grid
of Gabor filter jets. Of the 9 model/representation combinations, only the distinctiveness model in MDS
space predicts the observed “morph familiarity inversion”effect, in which the subjects’ false alarm rate for
morphs between similar faces is higher than their hit rate for many of the studied faces. This evidence is
consistent with the hypothesis that human memory for faces is a kernel density estimation task, with the
caveat that distinctive faces require larger kernels than do typical faces.

1 Background

Studying the errors subjects make during face recognition memory tasksaids our understanding of the mech-
anisms and representations underlying memory, face processing, and visualperception. One way of evoking
such errors is by testing subjects’ recognition of new faces created from studied faces that have been com-
bined in some way (e.g. Solso and McCarthy, 1981; Reinitz, Lammers, and Cochran 1992). Busey and
Tunnicliff (submitted) have recently examined the extent to which image-quality morphs between unfamiliar
faces affect subjects’ tendency to make recognition errors.

Their experiments used facial images of bald males and morphs between these images(see Figure 1)
as stimuli. In one study, Busey (in press) had subjects rate the similarity of all pairs in a large set of faces
and morphs, then performed a multidimensional scaling (MDS) of these similarity ratings to derive a 6-
dimensional “face space” (Valentine and Endo, 1992). In another study, “Experiment 3” (Busey and Tunni-
cliff, submitted), 179 subjects studied 68 facial images, including 8similar pairs and 8dissimilar pairs, as
determined in a pilot study. These pairs were included in order to studyhow morphs between similar faces
and dissimilar faces evoke false alarms. We call the pair of images from whicha morph are derived its “par-
ents,” and the morph itself as their “child.” In the experiment’s test phase, the subjects were asked to make
new/old judgments in response to 8 of the 16 morphs, 20 completely new distractor faces, the 36 non-parent
targets and one of the parents of each of the 8 morphs. The results were extremely interesting: for many of the
morph/parent pairs, subjects responded “old” to the unstudied morph more often than to its studied parent.
However, this effect (amorph familiarity inversion) only occurred for the morphs withsimilar parents. It
seems that the similar parents are so similar to their “child” morphs that they both contribute toward an “old”
(false alarm) response to the morph.

Many of the models researchers have proposed to account for data from explicit memory experiments
fall into one of three gross categories based on the extent to which memories of the individual studied ex-
emplars are distinct.Exemplar-based models, such as the Generalized Context Model (Nosofsky, 1986) and
SAM (Gillund and Shiffrin, 1984), rely on the assumption that subjects explicitly store representations of
each of the stimuli they study.Superpositional models such as CHARM (Metcalfe Eich, 1982) posit that



Figure 1: Three normalized morphs from the database.

exemplar representations are blended into a composite memory trace.Manifold-based models such as au-
toassociation (Metcalfe, Cottrell, and Mencl, 1992) and principal components analysis (Hancock, Burton,
and Bruce, 1996) attempt to construct a mapping to a low-dimensional surface roughly containing the studied
exemplars. Busey and Tunnicliff applied several exemplar-based models tothe Experiment 3 data, and we
have applied a variety of manifold-based models to the problem (Dailey,Cottrell, and Busey, in press), but
none of these models have been able to fully account for the observed similar morph familiarity inversion
without positing that the similar parents are explicitly blended in memory, producing prototypes near the
morphs.

We extend Busey and Tunnicliff’s (submitted) work by applying twoof their exemplar models to addi-
tional image-based face stimulus representations, and we propose a novel exemplar model that accounts for
the similar morphs’ familiarity inversion. The results are consistent with the hypothesis that facial memory
is a kernel density estimation (Bishop, 1995) task, except thatdistinctive exemplars require larger kernels.
Also, on the basis of our model, we predict that distinctivenesswith respect to the study set is the critical
factor influencing kernel size, as opposed to a context-free notion of distinctiveness. We can easily test this
prediction empirically.

2 Experimental Methods

2.1 Face Stimuli and Normalization

The original images were 104 digitized 560x662 grayscale images of bald men, with consistent lighting
and background and fairly consistent position. The subjects varied in raceand extent of facial hair. We
automatically located the left and right eyes on each face using a simple template correlation technique then
translated, rotated, scaled and cropped each image so the eyes were aligned in each image.1 We then scaled
each image to 114x143 to speed up image processing. Figure 1 shows three examples of the normalized
morphs (the original images are copyrighted and cannot be published).

2.2 Representations

Positions in multidimensional face space Many researchers have used a multidimensional scaling ap-
proach to model various phenomena in face processing (e.g. Valentine and Endo, 1992). Busey (in press)
had 343 subjects rate the similarity of pairs of faces in the test set and performed a multidimensional scaling
on the similarity matrix for 100 of the faces (four non-parent target faceswere dropped from this analysis).
The process resulted in a 6-dimensional solution withr2 = 0:785 and a stress of 0.13. In the MDS modeling
results described below, we used the 6-dimensional vector associated with eachstimulus as its representation.

Principal component (eigenface) projections “Eigenfaces,” or the eigenvectors of the covariance matrix
for a set of face images, are a common basis for face representations (e.g. Turkand Pentland, 1991). We
performed a principal components analysis on the 68 face images used in the study set for Busey and Tunni-
cliff’s experiment to get the 67 non-zero eigenvectors of their covariance matrix. We then projected each of

1The images were scaled by the same amount vertically and horizontally, so the mouth position was allowed to vary, maintaining the
ratio between facial height and width, since Busey’s study (in press) showed that aspect ratio was a significant dimension of variation in
the human similarity ratings.



the 104 test set images onto the 30 most significant eigenfaces to obtain a 30-dimensional vector representing
each face.2

Gabor filter responses von der Malsburg and colleagues have made effective use of banks of Gabor fil-
ters at various orientations and spatial frequencies in face recognition systems. We used one form of their
wavelet (Buhmann, Lades, and von der Malsburg, 1990) at five scales and 8 orientations in an 8x8 square grid
over each normalized face image as the basis for a third face stimulus representation. However, since this
representation resulted in a 2560-dimensional vector for each face stimulus, we performed a principal com-
ponents analysis to reduce the dimensionality to 30, keeping this representation’s dimensionality the same as
the eigenface representation’s. Thus we obtained a 30-dimensional vector based on Gabor filter responses to
represent each test set face image.

2.3 Models

The Generalized Context Model (GCM) There are several different flavors to the GCM. We only con-
sider a simple sum-similarity form that will lead directly to our distinctiveness-modulated density estimation
model. Our version of GCM’s predicted P(old), given a representationy of a test stimulus, ispredy = �+ �Xx2X e�c(dx;y)2
where� and� linearly convert the probe’s summed similarity to a probability,X is the set of representations
of the study set stimuli;c is used to widen or narrow the width of the similarity function, anddx;y is eitherkx � yk, the Euclidean distance betweenx andy or the weighted Euclidean distance

pPk wk(xk � yk)2
where the “attentional weights”wk are constants that sum to 1. Intuitively, this model simply places a
Gaussian-shaped function over each of the studied exemplars, and the predicted familiarity of a test probe is
simply the summed height of each of these surfaces at the probe’s location.

Recall that two of our representations, PC projection space and Gabor filter space, are 30-dimensional,
whereas the other, MDS, is only 6-dimensional. Thus allowing adaptiveweights for the MDS representation
is reasonable, since the resulting model only uses 8 parameters to fit 100 points, but it is clearly unreasonable
to allow adaptive weights in PC and Gabor space, where the resulting modelswould be fitting 32 parameters
to 100 points. For this reason, we report results in MDS space both with and without adaptive weights, but
do not report adaptive weight results for models in PC and Gabor space.

SimSample Busey and Tunnicliff (submitted) invented SimSample in an attempt to remedy the GCM’s
poor predictions of the human data. It is related to both GCM, in that it uses representations in MDS space,
and SAM (Gillund and Shiffrin, 1984), in that it involves samplingexemplars. The idea behind the model
is that when a subject is shown a test stimulus, instead of a summed comparison to all of the exemplars
in memory, the test probe probabilistically samples asingle exemplar in memory, and the subject responds
“old” if the probe’s similarity to the exemplar is above a noisy criterion. The model has a similarity scaling
parameter and two parameters describing the noisy threshold function. Dueto space limitations, we cannot
provide the details of the model here.

Busey and Tunnicliff were able to fit the human data within the SimSample framework, but only when
they introduced prototypes at the locations of the morphs in MDS spaceand made the probability of sampling
the prototype proportional to the similarity of the parents. Here,however, we only compare with the basic
version that does not blend exemplars.

As with the GCM, the SimSample model allows a weighted Euclidean distance, but for the same reason
discussed earlier, we only report adapted weight results for the MDS space representation.

The Distinctive Blob Model (DBM) In this model, we assume that subjects, at study time, implicitly create
a probability density surface corresponding to the training set. Thesurface must be robust in the face of the
variability or noise typically encountered in face recognition (lighting changes, perspective changes, etc.) yet

2We used 30 eigenfaces because with this number, our theoretical “distinctiveness” measure was best correlated with thesame
measure in MDS space.



also provide some level of discrimination support (i.e. even when the intervals of possible representations for
a single face could overlap due to noise, some rational decision boundarymust still be constructed). If we
assume a Gaussian mixture model, in which the density surface is builtfrom Gaussian “blobs” centered on
each studied exemplar, the task is a form of kernel density estimation (Bishop, 1995).

We can formulate the task of predicting the human subjects’ P(old) in this framework, then, as optimizing
the priors and widths of the kernel functions to minimize the mean squared error of the prediction. However,
we also want to minimize the number of free parameters in the model — parsimonious methods for setting
the priors and kernel function widths potentially lead to more useful insights into the principles underlying
the human data. If the priors and widths were held constant, we would have a simple two parameter model:predy =Xx2X�e� kx�yk22�2
where� folds together the uniform prior and normalization constants, and� is the standard deviation of the
Gaussian kernels. If we ignore the constants, however, this model is essentially the same as the version of
the GCM described above. As the results section will show, this model cannot fully account for the human
familiarity data in any of our representational spaces.

To improve the model, we introduce two parameters to allow the prior (kernel function height) and stan-
dard deviation (kernel function width) to vary with thedistinctiveness of the studied exemplar. This modifi-
cation has two intuitive motivations. First, when humans are asked which of two parent faces a 50% morph
is most similar to, if one parent is distinctive and the other parent istypical, subjects tend to choose the more
distinctive parent (Tanaka et al., submitted). Second, we hypothesize that when a human is asked to study
and remember a set of faces for a recognition test, faces with few neighbors will likely have more relaxed
(wider) discrimination boundaries than faces with many nearby neighbors.

Thus in each representation space, for each studied facex, we computedd(x), the theoretical distinc-
tiveness of each face, as the Z-scored average distance to the five nearest studied faces. We then allowed the
height and width of each kernel function to vary withd(x):predy =Xx2X�(1 + c�d(x))e� kx�yk22(�(1+c�d(x))2

As was the case for GCM and SimSample, we report the results of using a weighted Euclidean distance
betweeny andx in MDS space only.

2.4 Parameter fitting and model evaluation

For each of the nine combinations of models with face representations, we searched parameter space by
simple hill climbing for the parameter settings that minimized the mean squared error between the model’s
predicted P(old) and the actual human P(old) data.

We rate each model’s effectiveness with two criteria. First, we measure the models’ global fit with RMSE
or r2 over all test set points. A model’s RMSE can be compared to the baseline performance of the “dumbest”
model, which simply predicts the mean human P(old) of 0.5395, and achieves an RMSE of 0.2044. Second,
we evaluate the extent to which a model predicts the mean human response for each of the six categories
of test set stimuli: 1) non-parent targets, 2) non-morph distractors, 3) similar parents, 4) dissimilar parents,
5) similar morphs, and 6) dissimilar morphs. If a model correctly predicts the rank ordering of these category
means, it obviously accounts for the similar morph familiarity inversion pattern in the human data.

3 Results

Table 1 shows the global fit of each model/representation pair. The SimSample model in MDS space provides
the best quantitative fit. GCM generally outperforms DBM, indicating that for a tight quantitative fit, having
parameters for a linear transformation built into the model is more important than allowing the kernel function
to vary with distinctiveness. Also of note is that the PC projection representation is consistently outperformed
by both the Gabor jet representation and the MDS space representation.
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Figure 2: Average actual/predicted responses to the faces in each category. Onlythe distinctiveness-
modulated kernel models in MDS space exhibit the observed similar morphfamiliarity inversion effect.
Key: DP = Dissimilar parents; SM = Similar morphs; T = Non-parent targets; SP = Similar parents; DM
= Dissimilar morphs; D = Distractors.



Model MDS space MDS + weights PC projections Gabor jets

GCM 0.1633 / 0.3733 0.1417 / 0.5278 0.1745 / 0.2724 0.1624 / 0.3807
SimSample 0.1521 / 0.4564 0.1404 / 0.5373 0.1756 / 0.2619 0.1704 / 0.3176
DBM 0.1601 / 0.4150 0.1528 / 0.4639 0.1992 / 0.2093 0.1668 / 0.3832

Table 1: RMSE/r2 for the three models and three representations. Quality of fit for modelswith adaptive at-
tentional weights are only reported for the low-dimensional representation (“MDS + weights”). The baseline
RMSE, achievable with a constant prediction, is 0.2044.

But for our purposes, the degree to which a model predicts the mean humanresponses for each of the six
categories of stimuli is more important, given that it is doing a reasonably good job globally. Figure 2 takes a
more detailed look at how well each model predicts the human category means. Eventhough SimSample in
MDS space has the best global fit to the human familiarity ratings, it doesnot predict the familiarity inversion
for similar morphs. Only the distinctive blob models in MDS space correctly predict the morph familiarity
effect. All of the other models underpredict the human responses to the similar morphs.

4 Discussion

The results for the distinctive blob model are consistent with the hypothesis that facial memory is a kernel
density estimation task, with the caveat that distinctive exemplars require larger kernels. Whereas true density
estimation would tend to deemphasize outliers in sparse areas of the face space,the human data show that the
priors and kernel function widths for outliers should actually be increased.

Since a theoretical distinctiveness measure based on the sparseness of face spacearound an exemplar was
sufficient to account for the similar morphs’ familiarity inversion, we predict that distinctiveness with respect
to the study set is the critical factor influencing kernel size, rather than context-free human distinctiveness
judgments. We can easily test this prediction by having subjects rate thedistinctiveness of the stimuli without
prior exposure and then determine whether their distinctiveness ratings improve or degrade the model’s fit.

The most disturbing (though not particularly surprising) aspect of our results is that the model requires
a representation based on human similarity judgments. Ideally, we wouldprefer to provide an information-
processing account using image-based representations like eigenface projections or Gabor filter responses.
Interestingly, the efficacy of the image-based representations seems to dependon how similar they are to the
MDS representations. The PC projection representation performed the worst, and distances between pairs of
PC representations had a correlation of 0.388 with the distances between pairs of MDS representations. For
the Gabor filter representation, which performed better, the correlation is0.517. In future work, we plan to
investigate how the MDS representation (or a representation like it) might be derived directly from the face
images.

Besides providing an information-processing account of the human data, there are several exciting av-
enues for future research. These include empirical testing of our distinctiveness predictions, evaluating the
applicability of the distinctiveness model in domains other than face processing, and evaluating the ability of
other modeling paradigms to account for this data.
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