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Abstract

We compare the ability of three exemplar-based memory rspdakh using three different face stim-
ulus representations, to account for the probability a husmject responded “old” in an old/new facial
memory experiment. The models are 1) the Generalized Coktedel, 2) SimSample, a probabilistic
sampling model, and 3) DBM, a novel model related to kernebkig estimation that explicitly encodes
stimulus distinctiveness. The representations are 1}iposiof stimuli in MDS “face space,” 2) projec-
tions of test faces onto the eigenfaces of the study set, aadebresentation based on response to a grid
of Gabor filter jets. Of the 9 model/representation combdmest only the distinctiveness model in MDS
space predicts the observed “morph familiarity inversiefiéct, in which the subjects’ false alarm rate for
morphs between similar faces is higher than their hit raterfany of the studied faces. This evidence is
consistent with the hypothesis that human memory for fag@skiernel density estimation task, with the
caveat that distinctive faces require larger kernels thmatypical faces.

1 Background

Studying the errors subjects make during face recognition memorydaskeur understanding of the mech-
anisms and representations underlying memory, face processing, andpésteption. One way of evoking
such errors is by testing subjects’ recognition of new faces created fraliedtiaces that have been com-
bined in some way (e.g. Solso and McCarthy, 1981; Reinitz, Lammers, adior&01992). Busey and
Tunnicliff (submitted) have recently examined the extent to which eragality morphs between unfamiliar
faces affect subjects’ tendency to make recognition errors.

Their experiments used facial images of bald males and morphs between these (seagegure 1)
as stimuli. In one study, Busey (in press) had subjects rate th&asgimiof all pairs in a large set of faces
and morphs, then performed a multidimensional scaling (MDS) of thieséasty ratings to derive a 6-
dimensional “face space” (Valentine and Endo, 1992). In another studygtiimpnt 3” (Busey and Tunni-
cliff, submitted), 179 subjects studied 68 facial images, includisgr@ar pairs and &issimilar pairs, as
determined in a pilot study. These pairs were included in order to stadymorphs between similar faces
and dissimilar faces evoke false alarms. We call the pair of images from whiatrph are derived its “par-
ents,” and the morph itself as their “child.” In the experiment’s testgsh the subjects were asked to make
new/old judgments in response to 8 of the 16 morphs, 20 completehdistractor faces, the 36 non-parent
targets and one of the parents of each of the 8 morphs. The results weraeytinteresting: for many of the
morph/parent pairs, subjects responded “old” to the unstudied moopé aften than to its studied parent.
However, this effect (anorph familiarity inversion) only occurred for the morphs witimilar parents. It
seems that the similar parents are so similar to their “child” morphshegttioth contribute toward an “old”
(false alarm) response to the morph.

Many of the models researchers have proposed to account for data fromitexygimory experiments
fall into one of three gross categories based on the extent to which riesnedrthe individual studied ex-
emplars are distincExemplar-based models, such as the Generalized Context Model (Nosofsky, 1986) and
SAM (Gillund and Shiffrin, 1984), rely on the assumption thatjeats explicitly store representations of
each of the stimuli they studySuperpositional models such as CHARM (Metcalfe Eich, 1982) posit that



Figure 1: Three normalized morphs from the database.

exemplar representations are blended into a composite memory Wkegfold-based models such as au-
toassociation (Metcalfe, Cottrell, and Mencl, 1992) and principal compseraralysis (Hancock, Burton,
and Bruce, 1996) attempt to construct a mapping to a low-dimensioriatsupughly containing the studied
exemplars. Busey and Tunnicliff applied several exemplar-based modéls Experiment 3 data, and we
have applied a variety of manifold-based models to the problem (D&letyrell, and Busey, in press), but
none of these models have been able to fully account for the observddrsimairph familiarity inversion
without positing that the similar parents are explicitly blended enmry, producing prototypes near the
morphs.

We extend Busey and Tunnicliff’s (submitted) work by applying twidheir exemplar models to addi-
tional image-based face stimulus representations, and we propose axewela model that accounts for
the similar morphs’ familiarity inversion. The results are comsisivith the hypothesis that facial memory
is a kernel density estimation (Bishop, 1995) task, exceptdistitictive exemplars require larger kernels.
Also, on the basis of our model, we predict that distinctivervesis respect to the study set is the critical
factor influencing kernel size, as opposed to a context-free notion aiatiseness. We can easily test this
prediction empirically.

2 Experimental Methods

2.1 Face Stimuli and Normalization

The original images were 104 digitized 560x662 grayscale images of bald wiignconsistent lighting

and background and fairly consistent position. The subjects varied inarat@xtent of facial hair. We
automatically located the left and right eyes on each face using a simple teropteglation technique then
translated, rotated, scaled and cropped each image so the eyes were aligned in eaéWm#wen scaled

each image to 114x143 to speed up image processing. Figure 1 showsxhngaes of the normalized
morphs (the original images are copyrighted and cannot be published).

2.2 Representations

Positions in multidimensional face space Many researchers have used a multidimensional scaling ap-
proach to model various phenomena in face processing (e.g. Valentine and128@2). Busey (in press)
had 343 subjects rate the similarity of pairs of faces in the test set aratped a multidimensional scaling

on the similarity matrix for 100 of the faces (four non-parent target faegae dropped from this analysis).
The process resulted in a 6-dimensional solution with= 0.785 and a stress of 0.13. In the MDS modeling
results described below, we used the 6-dimensional vector associated wittieadhbs as its representation.

Principal component (eigenface) projections “Eigenfaces,” or the eigenvectors of the covariance matrix
for a set of face images, are a common basis for face representations (e.gnduplentland, 1991). We
performed a principal components analysis on the 68 face images used tudhset for Busey and Tunni-
cliff’s experiment to get the 67 non-zero eigenvectors of their covariancexnéfe then projected each of

1The images were scaled by the same amount vertically anzdmbaily, so the mouth position was allowed to vary, maiitaj the
ratio between facial height and width, since Busey'’s studyiess) showed that aspect ratio was a significant dimermdigariation in
the human similarity ratings.



the 104 test set images onto the 30 most significant eigenfaces to obtadirm&sional vector representing
each facé.

Gabor filter responses von der Malsburg and colleagues have made effective use of banks of Gabor fil-
ters at various orientations and spatial frequencies in face recognitiemsysiVe used one form of their
wavelet (Buhmann, Lades, and von der Malsburg, 1990) at five scales and@toienin an 8x8 square grid
over each normalized face image as the basis for a third face stimulus repieserttatwever, since this
representation resulted in a 2560-dimensional vector for each face stimelyerformed a principal com-
ponents analysis to reduce the dimensionality to 30, keeping this ezpagion’s dimensionality the same as
the eigenface representation’s. Thus we obtained a 30-dimensional vassar @n Gabor filter responses to
represent each test set face image.

2.3 Models

The Generalized Context Model (GCM) There are several different flavors to the GCM. We only con-
sider a simple sum-similarity form that will lead directly to ourtdistiveness-modulated density estimation
model. Our version of GCM’s predicted P(old), given a representgtiofa test stimulus, is

predy = a+ [ Z e clxy)’

xeX

wherea andg linearly convert the probe’s summed similarity to a probabiiyis the set of representations
of the study set stimuli; is used to widen or narrow the width of the similarity function, akd, is either

|lx — y||, the Euclidean distance betweerandy or the weighted Euclidean distan¢g) ", wy, (zx — yi)?
where the “attentional weightsi, are constants that sum to 1. Intuitively, this model simply places a
Gaussian-shaped function over each of the studied exemplars, and thegatéaticiliarity of a test probe is
simply the summed height of each of these surfaces at the probe’s location.

Recall that two of our representations, PC projection space and Gabor fiiee, sre 30-dimensional,
whereas the other, MDS, is only 6-dimensional. Thus allowing adapights for the MDS representation
is reasonable, since the resulting model only uses 8 parameters to fitib@ pot it is clearly unreasonable
to allow adaptive weights in PC and Gabor space, where the resulting nvamldt$ be fitting 32 parameters
to 100 points. For this reason, we report results in MDS space batthand without adaptive weights, but
do not report adaptive weight results for models in PC and Gabor space.

SimSample Busey and Tunnicliff (submitted) invented SimSample in an attempémeedy the GCM'’s
poor predictions of the human data. It is related to both GCM, in thatas wepresentations in MDS space,
and SAM (Gillund and Shiffrin, 1984), in that it involves sampliagemplars. The idea behind the model
is that when a subject is shown a test stimulus, instead of a summed ¢sompr all of the exemplars
in memory, the test probe probabilistically samplesngle exemplar in memory, and the subject responds
“old” if the probe’s similarity to the exemplar is above a noisy cidar The model has a similarity scaling
parameter and two parameters describing the noisy threshold functiortoBpace limitations, we cannot
provide the details of the model here.

Busey and Tunnicliff were able to fit the human data within the Sim3arnamework, but only when
they introduced prototypes at the locations of the morphs in MDS spateade the probability of sampling
the prototype proportional to the similarity of the parents. Hameyever, we only compare with the basic
version that does not blend exemplars.

As with the GCM, the SimSample model allows a weighted Euclidean distdut for the same reason
discussed earlier, we only report adapted weight results for the MDS sgaresentation.

The Distinctive Blob Model (DBM) In this model, we assume that subjects, at study time, implicitly create
a probability density surface corresponding to the training set.stifiace must be robust in the face of the
variability or noise typically encountered in face recognition (lightithanges, perspective changes, etc.) yet

2We used 30 eigenfaces because with this number, our therédistinctiveness” measure was best correlated withstmme
measure in MDS space.



also provide some level of discrimination support (i.e. even wherntervals of possible representations for
a single face could overlap due to noise, some rational decision boumdestystill be constructed). If we
assume a Gaussian mixture model, in which the density surface idrbuiltGaussian “blobs” centered on
each studied exemplar, the task is a form of kernel density estimatiama(i4995).

We can formulate the task of predicting the human subjects’ P(old)srirdmework, then, as optimizing
the priors and widths of the kernel functions to minimize the meaargglerror of the prediction. However,
we also want to minimize the number of free parameters in the model — par&ios methods for setting
the priors and kernel function widths potentially lead to more useiights into the principles underlying
the human data. If the priors and widths were held constant, we woutdahsimple two parameter model:

=y i?
predy, = E ae 207
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wherea folds together the uniform prior and normalization constants,saistthe standard deviation of the
Gaussian kernels. If we ignore the constants, however, this modeddatédly the same as the version of
the GCM described above. As the results section will show, this modebt#ulty account for the human
familiarity data in any of our representational spaces.

To improve the model, we introduce two parameters to allow the gremnegl function height) and stan-
dard deviation (kernel function width) to vary with thestinctiveness of the studied exemplar. This modifi-
cation has two intuitive motivations. First, when humans are askedwdifitwo parent faces a 50% morph
is most similar to, if one parent is distinctive and the other paregpisal, subjects tend to choose the more
distinctive parent (Tanaka et al., submitted). Second, we hypothesize/tien a human is asked to study
and remember a set of faces for a recognition test, faces with few neighbblikelyl have more relaxed
(wider) discrimination boundaries than faces with many nearby neighbors.

Thus in each representation space, for each studiedsfase computedi(x), the theoretical distinc-
tiveness of each face, as the Z-scored average distance to the five nearest atadied/e then allowed the
height and width of each kernel function to vary witfx):

__ lx—y)?
predy, = Z a(l + cpd(x))e 2(+ead)?
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As was the case for GCM and SimSample, we report the results of usinggate@iEuclidean distance
betweerny andx in MDS space only.

2.4 Parameter fitting and model evaluation

For each of the nine combinations of models with face representationsgavehed parameter space by
simple hill climbing for the parameter settings that minimized the me@ared error between the model's
predicted P(old) and the actual human P(old) data.

We rate each model’s effectiveness with two criteria. First, we measure tthelshglobal fit with RMSE
orr2 over all test set points. A model's RMSE can be compared to the baselinerparfce of the “dumbest”
model, which simply predicts the mean human P(old) of 0.5395, and ashéavRMSE of 0.2044. Second,
we evaluate the extent to which a model predicts the mean human respoeselicof the six categories
of test set stimuli: 1) non-parent targets, 2) non-morph distrac®rsimilar parents, 4) dissimilar parents,
5) similar morphs, and 6) dissimilar morphs. If a model correctly jmtedhe rank ordering of these category
means, it obviously accounts for the similar morph familiarity ini@rgattern in the human data.

3 Results

Table 1 shows the global fit of each model/representation pair. The Sini&amogel in MDS space provides
the best quantitative fit. GCM generally outperforms DBM, indicathngt for a tight quantitative fit, having
parameters for a linear transformation built into the model is moreitapt than allowing the kernel function
to vary with distinctiveness. Also of note is that the PC projectepresentation is consistently outperformed
by both the Gabor jet representation and the MDS space representation.
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Figure 2: Average actual/predicted responses to the faces in each category.th©mlistinctiveness-
modulated kernel models in MDS space exhibit the observed similar nfampiiarity inversion effect.

Key: DP = Dissimilar parents; SM = Similar morphs; T = Non-parentetsgSP = Similar parents; DM
= Dissimilar morphs; D = Distractors.



| Model | MDSspace | MDS +weights| PC projections|  Gabor jets |

GCM 0.1633/0.3733 0.1417/0.5278 0.1745/0.2724 0.1624/0.3807
SimSample|| 0.1521/0.4564 0.1404/0.5373 0.1756/0.2619 0.1704/0.3176
DBM 0.1601/0.4150 0.1528/0.4639 0.1992/0.2093 0.1668/0.3832

Table 1: RMSE# for the three models and three representations. Quality of fit for madisdaptive at-
tentional weights are only reported for the low-dimensional representdMDS + weights”). The baseline
RMSE, achievable with a constant prediction, is 0.2044.

But for our purposes, the degree to which a model predicts the mean hraspamses for each of the six
categories of stimuli is more important, given that it is doing a reably good job globally. Figure 2 takes a
more detailed look at how well each model predicts the human category meanghBugh SimSample in
MDS space has the best global fit to the human familiarity ratings, it dogsredict the familiarity inversion
for similar morphs. Only the distinctive blob models in MDS spaceaxdly predict the morph familiarity
effect. All of the other models underpredict the human responses talilarsinorphs.

4 Discussion

The results for the distinctive blob model are consistent with gothesis that facial memory is a kernel
density estimation task, with the caveat that distinctive exemplargredqrger kernels. Whereas true density
estimation would tend to deemphasize outliers in sparse areas of the facdlspacanan data show that the
priors and kernel function widths for outliers should actually beeased.

Since a theoretical distinctiveness measure based on the sparseness of faamsipacen exemplar was
sufficient to account for the similar morphs’ familiarity inversiorg mredict that distinctiveness with respect
to the study set is the critical factor influencing kernel size, rather tharexsfite human distinctiveness
judgments. We can easily test this prediction by having subjects ratkistimectiveness of the stimuli without
prior exposure and then determine whether their distinctivenesssatimgove or degrade the model’s fit.

The most disturbing (though not particularly surprising) aspéctuo results is that the model requires
a representation based on human similarity judgments. Ideally, we woelddr to provide an information-
processing account using image-based representations like eigenface prsject@abor filter responses.
Interestingly, the efficacy of the image-based representations seems to degdewd similar they are to the
MDS representations. The PC projection representation performed tkg mod distances between pairs of
PC representations had a correlation of 0.388 with the distances betweenfpdIDS representations. For
the Gabor filter representation, which performed better, the correlatidb1s. In future work, we plan to
investigate how the MDS representation (or a representation like giitrbie derived directly from the face
images.

Besides providing an information-processing account of the human Hata, are several exciting av-
enues for future research. These include empirical testing of our digéinets predictions, evaluating the
applicability of the distinctiveness model in domains other than facegssing, and evaluating the ability of
other modeling paradigms to account for this data.
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