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ABSTRACT

Biometric authentication is a convenient and increasingly reli-
able way to prove one’s identity. Iris scanning in particular is among
the most accurate biometric authentication technologies currently
available. However, despite their extremely high accuracy under
ideal imaging conditions, existing iris recognition methods degrade
when the iris images are noisy or the enrollment and verification
imaging conditions are substantially different. To address this issue
and enable iris recognition on less-than-ideal images, we introduce
a weighted majority voting technique applicable to any biometric
authentication system using bitwise comparison of enrollment-time
and verification-time biometric templates. In a series of experiments
with the CASIA iris database, we find that the method outperforms
existing majority voting and reliable bit selection techniques. Our
method is a simple and efficient means to improve upon the accu-
racy of existing iris recognition systems.

Index Terms— Biometrics, iris recognition, weighted majority
voting

1. INTRODUCTION

Biometric authentication has proven to be a reliable way to verify a
human’s identity. The technology has certain advantages over more
traditional password-, pin-, or hardware token-based human identifi-
cation systems. First, biometric traits cannot easily be stolen, forged,
or guessed. Second, there is no need to remember one’s biometric
traits. Third, biometrics are difficult to repudiate. Due to these ben-
efits, biometric authentication systems are being deployed in many
real-world applications. Current systems employ many different bio-
metric traits, including fingerprints, iris images, face images, retinal
scans, palmprints, and gait patterns.

Biometrics based on the iris are among the most accurate exist-
ing techniques for human identification and verification. Systems by
Daugman [1], Wildes et al. [2], Boles et al. [3], and Zhu et al. [4] per-
form extremely well on the data sets they were designed for. How-
ever, the performance of any such system is highly dependent on the
quality of the input iris images. As noise increases, any algorithm’s
performance will decrease. On noisy databases like UBIRIS [5] and
CASIA [6], even the best known algorithms are unable to achieve an
EER of 0 [7][8].

To mitigate the effect of noisy iris images, researchers have pro-
posed a few techniques using multiple enrollment-time iris scans to
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Fig. 1. Iris template generation process. The eye image is from
CASIA version 1 [6].

improve verification performance. These approaches treat the iris
template generation algorithm as a black box, so they do not depend
on any particular algorithm. Davida et al. [9] present a majority vot-
ing technique to overcome the 10–20% bit error rates they observed
between in enrollment- and verification-time iris templates. Their
system acquires an odd number of scans at enrollment time and pro-
duces a “canonical” template vector that contains a 1 (or 0) wher-
ever a majority of the corresponding bits in the original templates
contain a 1 (or 0). Yang et al. [10] propose reliable bit selection.
Their system acquires multiple scans (not necessarily an odd num-
ber) and computes the corresponding template vectors at enrollment
time, then determines which bits are identical in every template. At
verification time, the bits that were not identical (are not reliable) are
ignored.

In this paper, we present a new scheme to enhance the perfor-
mance of iris recognition systems. Rather than treating each bit
equally (as in Davida et al.’s system) or completely ignoring bits that
are not unanimous at enrollment time (as in Yang et al.’s system), we
weight each bit according to its reliability at enrollment time. The
result is a simple and efficient scheme that works with any iris tem-
plate generation method and outperforms both majority voting and
reliable bit selection on the CASIA [6] iris database.

2. IRIS RECOGNITION

2.1. Iris Template Generation

In an iris recognition system, the user presents his or her eye to an
iris sensor, which images the user’s iris and generates a template
from this image. Most iris scanners use near infrared illumination
with normal monochrome CMOS or CCD camera sensors that are
sensitive to near infrared light.

After image acquisition, we use Masek and Kovesi’s algo-
rithm [11, 12] for iris template generation, which is based primarily
on Daugman’s methods [13]. Generating an iris template from a
raw eye image involves three steps: iris segmentation, iris normal-
ization, and iris feature encoding. Figure 1 shows the iris template
generation process schematically.



The iris segmentation procedure segments the annular iris region
from the entire eye image. First, it finds the circular inner and outer
boundaries (the iris-pupil and iris-sclera boundaries) of the iris using
a circular Hough transform. Then it marks the region of the annular
iris ring that is not visible due to eyelids and eyelashes. The method
uses a linear Hough transform to find the eyelids and a simple thresh-
olding technique to find eyelashes covering the iris image.

The iris normalization procedure transforms the segmented iris
region into a rectangular grid of 240 × 20 pixels using a polar-to-
Cartesian transformation and bilinear interpolation. To minimize the
effect on encoding of corrupted regions detected during segmenta-
tion, the method sets the intensity of corrupted regions to the neigh-
borhood’s mean intensity.

The feature encoding procedure encodes the normalized iris im-
age as a binary string. At each pixel in the 240 × 20 image, it ex-
tracts information about local texture characteristics as described by
convolution with a horizontal one-dimensional log-Gabor wavelet
filter [14] whose real and imaginary components form a quadrature
pair. The frequency response of a log-Gabor filter is

G(f) = exp

„
−(log(f/f0))

2

2(log(σ/f0))2

«
where f0 is the base frequency and σ is the bandwidth of the filter.
The method uses f0 = 0.056 cycles/pixel (13.44 cycles/iris) and
σ = 0.5.

Following Daugman [13], the method discards the amplitude of
the complex-valued response and quantizes the phase so that only its
quadrant in the complex plane is retained, using a two-bit Gray code.
The result is a 9600-bit template (240×20×2), which is combined
with the corrupted bit mask computed in the segmentation stage.

2.2. Iris Template Comparison

The most common metric for iris template comparison is the Ham-
ming metric. The normalized Hamming distance between two binary
strings is the number of positions in which the strings differ from
each other, divided by the size of each string [13]:

HD(T, T ′) =
1

n

nX
i=1

ti ⊕ t′i (1)

where T and T ′ represent the two templates to be matched and n is
the size of iris template.

When information about masked (corrupted) bits is incorpo-
rated, we exclude bits in the template that are marked as corrupted
by the corresponding mask:

HD(T, T ′,M,M ′) =

Pn
i=1(ti ⊕ t

′
i) ∧mi ∧m′iPn

i=1mi ∧m′i
(2)

where T and T ′ represent the two templates to be matched and M
and M ′ represent corresponding masks. ∧ represents the bitwise
AND operation.

3. PROPOSED SCHEME

At enrollment time, we obtain n images of the user’s iris, where
n is an odd integer. (In our experiments with CASIA, reported in
Section 4, we use n = 5.) For each of the n scans, we generate a
9600-bit iris base template, as described in Section 2.1.

We then generate a single combined final template T containing
the majority votes of the n base templates. A bit ti in the final tem-
plate contains a 1 if more than n/2 corresponding bits in the base
templates are 1; otherwise it contains a 0.

In addition to T , we also generate a weight vector W that de-
scribes the reliability of the individual bits in the final template. We
let the ith elementwi ofW , corresponding to the ith element ti of T ,
be the proportion of base templates containing ti (the majority vote
for the ith bit). A high value for wi indicates that ti is highly reli-
able, and a low value for wi indicates that ti is less reliable. Clearly,
for all i, 0.5 < wi ≤ 1.

Our scheme stores the final template T and the weight vectorW
for later use at verification time. Figure 2 illustrates calculation of T
and W from a set of base templates.

At verification time, we obtain a fresh iris scan and generate an
iris template T ′ from the scan using, once again, the method de-
scribed in Section 2.1. We then retrieve T and W and compare T
and T ′ according to the weighted normalized Hamming distance

HDw(T, T ′,W ) =
1Pn

i=1 wi

nX
i=1

wi(ti ⊕ t′i). (3)

Figure 3 illustrates how we compare templates using weighted ma-
jority voting.
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Fig. 2. Final template and weight vector generation at enrollment
time. T1, T2, · · · , T5 represent base templates, T is the final tem-
plate and W is the generated weight vector. Here we show 12-bit
vectors for illustration, but the full vectors contain 9600 bits.
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Fig. 3. Calculation of weighted Hamming distance. T is the
enrollment-time final template, T ′ is the verification-time iris tem-
plate, W represents the weight vector, and HD is the normalized
weighted Hamming distance.

To incorporate the corrupted bits information in our scheme, we
do a majority vote for the individual masks and generate a resultant
mask. Using masking information, the normalized Hamming dis-
tance becomes



HD(T, T ′,M,M ′,W ) =Pn
i=1((ti ⊕ t

′
i) ∧mi ∧m′i)× wiPn

i=1(mi ∧m′i)× wi

(4)

where T and T ′ are the templates to match, M and M ′ are the cor-
responding masks, and W represent the weight vector.

Since the iris templates to be compared initially may not be
aligned due to head tilt, we perform template alignment along with
matching. We rotate the verification-time template 16 times (8 times
in the clockwise and 8 times in the counterclockwise direction) by
1.5◦, and each time compare it with the corresponding enrollment-
time template using either equation 3 or equation 4. The comparison
that results in the lowest normalized Hamming distance among these
17 comparisons (1 original + 8 clockwise rotations + 8 counterclock-
wise rotations) is taken as the final Hamming distance between the
two compared templates.

4. EXPERIMENTAL EVALUATION

4.1. Iris Database and Algorithm

We used CASIA version 1 [6] for our experiments. It consists of
7 iris images captured from each of 108 subjects, for a total of 756
images. The images were taken in two sets one month apart. We
ran Masek and Kovesi’s segmentation algorithm [12] on each of the
756 CASIA images. The algorithm accurately located the pupil and
iris in 83% of the images. We manually located the pupil and iris in
the remaining images then performed the rest of the base template
extraction procedure as described in Section 2.1.

We should point out that CASIA version 1 has been criticized
as an iris image database because the images have been altered to
eliminate specular reflections in the pupil area [15]. However, al-
though this makes the iris segmentation problem easier, in this paper,
we treat iris segmentation and template generation as a black box.
This means each of the bit weighting algorithms we compare benefit
equally from the pupil alteration, and the relative performance of the
bit weighting algorithms are not affected.

4.2. Evaluation Criteria

The accuracy of a biometric identification or verification system is
usually measured in terms of its false acceptance rate (FAR) and
false rejection rate (FRR), both of which depend on a distance or
similarity threshold. To summarize these measures, we report the
equivalent error rate (ERR), the point at which the FAR and FRR are
equal.

Daugman [13] proposes decidability, similar to the d-prime
measure from signal detection theory, as a better criterion for evalu-
ating biometric systems. The decidability d′ is given by

d′ =
|µ1 − µ2|p
(σ2

1 + σ2
2)/2

where µ1 and µ2 are the means and σ1 and σ2 are the standard devi-
ations of the within-class and between-class Hamming distance dis-
tributions, respectively.

Wides [16] suggests Fisher’s ratio for biometric system evalua-
tion. Fisher’s ratio is given by

FR =
(µ1 − µ2)

2

v1 + v2

where µ1 and µ2 are the means and v1 and v2 are the variances of
within class and between class distributions, respectively.

We report all three criteria in our experiments.

4.3. Verification Results

To evaluate our weighted majority voting scheme, we performed two
experiments, one without corrupted bit masking and one with cor-
rupted bit masking. In both cases, we compared standard iris recog-
nition (IR), reliable bit selection (IR-RB), majority voting (IR-MV),
and weighted majority voting (IR-WMV) on CASIA. We computed
Fisher’s ratio, decidability, and the ERR for each experimental con-
dition.

For IR-RB, IR-MV and IR-WMV, we used the first 5 CASIA
images from each subject for training and used the remaining 2 im-
ages of each subject for testing. For IR, we used first image of each
subject for training and used the remaining 6 images of each subject
for testing.

For IR-RB, the final template has varying number of reliable
bits for different subjects. In practice, the final template’s size must
be fixed to be no greater than the shortest length over all subjects,
or some subjects would have to be discarded from the test. In our
experiments, the shortest IR-RB template was 1361 bits, so we used
a final template size of 1350 bits to evaluate the IR-RB scheme.

Table 1 summarizes the results of our experiments without
masking. All three methods improve performance over standard
iris recognition, but the proposed weighted majority voting scheme
outperforms both reliable bit selection and majority voting. Figure 4
shows ROC curves for the four schemes. The figure shows that
IR-WMV offers substantial improvement over IR and IR-RB, and in
the critical region of very low false accept rates, our scheme is also
superior to IR-MV.

IR IR-RB IR-MV IR-WMV
Fisher’s Ratio 5.98 9.56 13.02 14.45
Decidability 3.46 4.37 5.1 5.38

EER (%) 3.73 3.24 1.45 1.39

Table 1. Comparison of iris recognition performance enhancement
techniques without corrupt bit masking. The proposed system (IR-
WMV) performs best according to all three criteria.

Neither Davida et al. [9] nor Yang et al. [10] used informa-
tion about masked (corrupted) bits in their work. We modified their
schemes to use masking and re-ran the experiment. Modifying IR-
MV was straightforward. We did a majority vote for the individual
masks and generated a “canonical” mask. In IR-RB, we considered
only those bits as reliable for which no corresponding bit in any of
its 5 masks was corrupted. The minimum final template size was
found to be 745 bits and we used a 700-bit final template for their
scheme.

IR IR-RB IR-MV IR-WMV
Fisher’s Ratio 11.58 15.3 24.96 27.18
Decidability 4.81 5.53 7.06 7.37

EER (%) 0.83 1.85 0.08 0.06

Table 2. Comparison of iris recognition performance enhancement
techniques with corrupt bit masking. The proposed system (IR-
WMV) performs best according to all three criteria.
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Fig. 4. ROC curves of iris recognition performance enhancement
techniques without corrupt bit masking.

Table 2 summarizes the results of our experiments with the
masked versions of these schemes. Both IR-MV and IR-WMV
attain nearly perfect error rate. Due to space limitations, we omit
the ROC curves for the masked versions of the schemes. The ROC
curve for IR-WMV shows only a slight improvement over that for
IR-MV.

5. DISCUSSION AND CONCLUSION

In this paper, we propose and evaluate a scheme for improving
the accuracy of iris verification systems. As opposed to existing
schemes, which either treat each bit equally or completely ignore
unreliable bits, we use a distance measure that weights the bitwise
comparisons according to the reliability of those bits at enrollment
time. In two experiments on CASIA, one with corrupt bit masking
and one without, we find that the method performs better than ex-
isting schemes using multiple enrollment-time scans to obtain more
reliable templates. The method treats the template generation algo-
rithm as a black box, so it can be used to improve the performance of
any biometric verification system that employs bitwise comparison
of binary templates.

The main limitation of the approach is that if imaging conditions
are substantially different between enrollment time and verification
time, the pattern of stable bits might change dramatically compared
to the training set. This risk is inherent in any biometric authen-
tication scheme, of course, but it does mean that the performance
improvements will most likely decrease as the difference between
enrollment time and verification time conditions increases.

In future work, we plan more extensive experimentation with
larger, more difficult enrollment-time training sets. We expect that
as the number of enrollment images increases, the advantage of
weighted majority voting over other approaches will also increase.
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