
ERP Application Development Frameworks:
Case Study and Evaluation

Nattanicha Rittammanart∗, Wisut Wongyued†, and Matthew N. Dailey∗
∗Computer Science and Information Management Asian Institute of Technology, Pathumthani, Thailand

†GismoGears Co., Ltd., Chiangmai, Thailand
Email: Nattanicha.Rittammanart@ait.ac.th, wisut.wongyued@gmail.com, mdailey@ait.ac.th

Abstract—Enterprise Resource Planning (ERP) software
brings many benefits to an organization, but commercial software
is expensive. Smaller organizations may prefer free and open
source solutions but are faced with an enormous array of
options from different vendors. One of the most difficult decisions
to make is whether to develop software from scratch or to
adopt a free and open source ERP framework. To answer
this question, we evaluate one of the most popular enterprise
software development frameworks, JBoss Seam, and one of the
most popular open source frameworks for ERP development,
Apache Open for Business. Using a simple real-world application
integration problem involving an asset management system and
an accounting system as a case study, we compare the frameworks
along a number of dimensions. We find that the ERP framework,
OFBiz, is the better choice for simple ERP development problems
typically encountered in smaller enterprises.

Index Terms—Enterprise applications, Enterprise resource
planning, Application frameworks, Enterprise application inte-
gration, OFBiz, JBoss Seam.

I. INTRODUCTION

Modern organizations require many information systems to
support their business processes. Enterprise Resource Planning
(ERP) software attempts provide a standard, unified, and con-
sistent interface to common functionality. Commercial ERP
software brings many benefits to an organization, but it is
extremely expensive. Due to cost factors, smaller enterprises
wanting to streamline their business processes may be faced
with two options: develop their own software to integrate
existing standalone systems, or adopt a free and open source
business automation solution such as OFBiz, OpenBravo, or
Tiny ERP.

Regardless of whether they develop new software or adopt
an existing solution, organizations need a platform that makes
it easy to integrate disparate information systems and rapidly
customize the application logic. Which approach, new soft-
ware, or open source automation framework, is best? Cur-
rently, there is relatively little information available to guide
organizations in making a decision. For this reason, in this
paper, we compare one of the most popular enterprise soft-
ware development frameworks (JBoss Seam) with one of the
most popular open source frameworks for ERP development
(Apache Open for Business).

In general, an application framework is a set of abstract
classes forming a reusable design [1], a set of state-of-the-art
development tools and practices defined by an independent
standard body [2], or a reusable skeleton for an application

that targets a specific domain [3]. A good framework provides
reusable solutions for difficult, recurring problems.

Among the most difficult recurring problems faced by ERP
developers is the need to integrate multiple systems in order
to automate a business process. Although every application
development platform has platform-specific means to accom-
plish this goal (e.g. JMS and Java RMI for the Java platform),
XML-based Web services are rapidly emerging as an effective
and platform-neutral technology for application integration.

In this paper, to limit the scope of the evaluation, we
focus on relatively straightforward integration problems in
which a simple point-to-point synchronous request-response
(remote procedure call) model is appropriate. Under these
circumstances, SOAP is an ideal Web service protocol. The
service provider exports a WSDL specification documenting
the required format of the XML request and response messages
necessary for invoking services. The client uses the WSDL
specification to construct a request message, sends the mes-
sage, and (in the simplest case) blocks until the response is
received.

Given this common integration problem, one of the main
specific criteria we use to compare frameworks is the ease
with which developers can deploy and interact with SOAP
Web services using the framework. In addition to this specific
criterion, we compare frameworks on a number of more
general criteria, such as customizability and modifiability, to
be introduced in Section II.

The general enterprise software development framework we
chose is JBoss Seam, and the open source ERP framework
is Apache Open for Business (OFBiz). Both frameworks are
based on Java EE, both provide numerous features useful for
ERP software development, and both ship with an integrated
Web server. To motivate the comparison, we use as a case
study a simple integration problem that arose in the context of
developing an asset management system for Haadthip Public
Company Limited, a beverage distributor located in southern
Thailand.

The rest of this paper describes the frameworks and the
case study scenario in detail then evaluates the two frameworks
according to their suitability for ERP system development. We
find that for simple integration problems such as those needed
in our case study, OFBiz is a better solution than JBoss Seam
according to nearly every evaluation criterion.



II. EXPERIMENTAL DESIGN

This section describes the frameworks we selected for
comparison, the case study implementation, and our criteria
for evaluating the frameworks.

A. JBoss Seam Framework

JBoss Seam [4] is a lightweight enterprise application
development framework. It builds upon Java EE, with the aim
of unifying Java Server Faces (JSF) with Enterprise JavaBeans
(EJB) 3.0 to create a single consistent programming model.

Seam applications are organized according to a stan-
dard three-layer enterprise architecture (presentation, business
logic, and persistence). The presentation layer is based on the
Model-View-Controller architectural pattern; developers use
JSF to to implement views and controllers. In addition to JSF,
Seam supports its own tag set, Ajax integration, localization,
and themes in the presentation layer. The business logic layer
of a Seam application is based on EJB3 session beans. The
container also provides security services as well as business
process automation via the Drools business rule engine and
the jBPM workflow engine. Business logic layer services can
easily be exported as SOAP Web services. The persistence
layer uses the Java Persistence API (JPA) object-relational
mapping technology.

B. OFBiz Framework

Apache Open For Business (OFBiz) [5] is an open source
enterprise automation system providing, among many other
features, ERP functionality. The system attempts to provide
reusable modules for common business functions and a variety
of paths to develop custom business logic and connect with
external systems.

Similar to Seam applications, OFBiz has a three-layer archi-
tecture. The presentation layer is based on the Model-View-
Controller pattern and makes extensive use of the Decorator
pattern [6] for reuse of design elements. OFBiz integrates
with many presentation-tier technologies, including Tomcat or
Jetty as the Web server, the Freemaker template engine, the
JasperReports report engine, the JavaPOS point-of-sale device
API, the XML User Interface (XUI) rich client platform, and
the BeanShell Java scripting language. The business logic layer
utilizes the Service Oriented Architecture pattern in which
application developers organize the business logic as a set of
reusable services. Services are implemented as scripts using an
OFBiz-specific XML scripting language, Java via BeanShell,
or other languages such as Python via the Bean Scripting
Framework (BSF). Services can be easily exported as SOAP
Web service or Java RMI endpoints. The persistence layer
provides a database-independent entity persistence engine to
the other layers using an XML specification of the database
mapping and an API following the Table Data Gateway [7]
pattern.

C. Implementation

As a case study to drive the comparison of the two
frameworks, we selected a simple integration problem we

Fig. 1. Communication diagram for case study implementation.

encountered while developing an Asset Management System
(AMS) for Haadthip Public Company Limited, a beverage
distributor based in southern Thailand.

One of the requirements for the AMS is that it needs to sup-
ply information about assets to a separate legacy accounting
system connected to a Foxpro database. We selected a simple
use case for this study in which a user of the accounting system
client inserts an accounting record related to a particular fixed
asset into the accounting system database. In this situation, the
accounting system needs to retrieve asset-specific depreciation
information from the AMS before inserting the new record into
the accounting system database.

Our design is shown in Fig. 1. First, the client inserts an
accounting record including an accounting ID, an asset item
ID, and related fields. Before the accounting system inserts
the data, it passes the asset item ID to the AMS to get a
depreciation value. The AMS looks up the asset item, applies
the necessary business logic to calculate the depreciation
value, and returns it to the accounting system. The accounting
system inserts the new record including the depreciation value,
commits the transaction, and notifies the client of success
or failure. This design maintains loose coupling between the
accounting system and the AMS and keeps the business logic
related to asset management local to the AMS. Since the use
case is interactive, the communication is best implemented
using a synchronous request-response protocol such as SOAP.

For the purposes of the current experimental comparison,
we implemented two versions of the AMS, one on Seam and
the other on OFBiz. Both systems use a PostgreSQL database
for persistence, share the same database schema, implement
the same business logic, and export their functionality to the
accounting system via a SOAP Web service endpoint.

Fig. 2 shows the basic technologies used at each archi-
tectural layer in our Seam and OFBiz AMS prototypes. In
the presentation layer, the Seam AMS relies on JSF, whereas
OFBiz utilizes a widget-based structure and the Freemaker
template engine. At the domain logic layer, the Seam AMS
uses EJB3 session beans, whereas OFBiz uses simple XML
scripting language. Finally, at the data source layer, the Seam
AMS uses the JPA object relational mapping whereas the
OFBiz AMS prototype uses the OFBiz Entity Engine, which
implements a Table Data Gateway [7].

D. Comparison Criteria

Frameworks can be compared using many criteria. We
use the following criteria specifically for comparing ERP
application development platforms in our case study:



Fig. 2. Architectural layers of the Seam and OFBiz AMS prototypes.

• Technology complexity: are the technologies used to cre-
ate applications on the framework easy to understand?

• Ease of service exposure: what are the steps needed to
expose a Web service on the framework.

• Ease of administration: is installation and application
deployment simple?

• Resource utilization: are the memory and disk space
requirements reasonable?

• Ease of presentation implementation: are the presentation
layer patterns flexible and easy to use?

• Ease of business logic implementation: is it easy to
develop and modify the business logic?

• Ease of database administration: is it easy to enable and
change the database configuration?

In addition to the specific ERP framework comparison
criteria listed above, Gerdessen [3] proposes the following
general criteria for comparing frameworks in any domain:

• Availability
• Customizability
• Modifiability
• Integrability
• Flexibility
In the next section, we evaluate Seam and OFBiz according

to both the ERP-specific and general criteria.

III. FRAMEWORK EVALUATION

This section evaluates the Seam and OFBiz frameworks
according to the ERP-specific and general criteria listed in
Section II-D.

A. ERP-Specific Criteria

1) Technology complexity: We find that JBoss Seam re-
quires developers to clearly understand Java EE technology,
but OFBiz does not require deep knowledge of any one
technology. A Seam developer need skills in JSF, EJB3,
and JPA. In contrast, for OFBiz, a basic knowledge of the
architecture of the framework is sufficient for getting started.
In the data source layer in particular, OFBiz’s Entity Engine
is straightforward for any developer familiar with relational
database technology, but JPA requires in-depth knowledge of
object technology and object-relational mapping. Although
Seam’s complexity may be necessary for a large project,
OFBiz technologies are easier to understand and well tailored
to smaller ERP projects.

2) Ease of service exposure: In our prototype, we found
that OFBiz provides simpler means for exposing business logic
as SOAP Web services. As already mentioned, OFBiz forces
developers to adopt a service-oriented interface to the business
logic layer. Once an OFBiz service has been defined, it is a
simple matter of adding the attribute export="true" to the
XML service definition:

<service engine="java" name="calculateDepre"
location="org.ofbiz.ams.DepreciationServices"
invoke="calculateDepre"
default-entity-name="AssetExts"
auth="false" export="true">

<!-- code for service here-->
</service>

With the export attribute turned on, OFBiz automati-
cally creates a WSDL specification for the service. In Seam,
to export existing session beans’ methods as Web service
operations, developers must create a separate Java interface
declaring the methods that should be exported then add
two annotations: @Remote and @WebService(name = "...",

serviceName = "..."). Like OFBiz, Seam automatically cre-
ates the appropriate WSDL specification. We conclude that
although the Seam solution would be better when developers
want a coarse-grained remote interface and a fine-grained local
interface to the same business logic, the OFBiz approach is
simpler.

3) Ease of administration: Both frameworks require the
Java Development Kit (JDK). OFBiz ships with an embedded
version of the Tomcat application server, but Seam requires
separate installation of the application server and some addi-
tional configuration to notify the server the Seam should be
loaded before it is ready to run. At application deployment
time, OFBiz is capable of dynamically loading controllers,
screens, widgets, forms, and business logic implemented by
scripts. This saves development time and deployment time.
OFBiz makes installation and deployment easier.

4) Resource utilization: In the standard setup, Seam runs
on the JBoss application server, which provides complete
EJB3 support, whereas OFBiz, by default, runs on the more
lightweight Tomcat application server. In our case study, we
found that the Seam installation required 335.2 MB of disk
space and 85808 KB of RAM at runtime, whereas the OFBiz
installation required 193.2 MB of disk space and 75820 KB
of RAM. OFBiz is therefore more lightweight than Seam in
terms of resource utilization.

5) Ease of presentation implementation: Both Seam and
OFBiz utilize the Model-View-Controller (MVC) pattern in the
presentation layer. For Seam, developers must be familiar with
JSF and EJB to implement presentation layer components.
OFBiz developers need only know how to use the Entity
Engine, Service Engine, screens, form widgets, and the built-
in templates. In developing our prototype AMS systems, we
found that the learning for JSF is steeper than that for OFBiz.
However, experienced Java developers already familiar with
JSF but not with the OFBiz framework would presumably
find the OFBiz learning curve steeper.



6) Ease of business logic implementation: OFBiz makes
business logic layer services available to many clients automat-
ically, leaving the developer with the relatively straightforward
task of plugging in small segments of reusable business logic
code in Java or a scripting language. In our case study, we
found that Seam, on the other hand, sometimes requires more
hand coding than OFBiz for the same task.

7) Ease of database administration: Both Seam and OFBiz
provide means to connect with several different database man-
agement systems. In both frameworks, changing the database
is a simple matter of modifying a configuration file to point
to the correct data source. However, the OFBiz framework
does have the advantage that developers can create, import,
export, and seed data in an XML file format using a simple
Web interface.

B. General Criteria

1) Availability: We have not been able to find any data on
the relative failure rates of the Tomcat and JBoss application
servers. However, we do find that JBoss requires server restarts
more frequently that OFBiz when deploying new versions
of the code. This means that OFBiz provides slightly more
availability than Seam.

2) Customizability: JBoss Seam is in a sense more cus-
tomizable than OFBiz in that it does not restrict the developer
in any way. OFBiz developers must adapt to its style. On the
other hand, OFBiz provides many customizable features, for
messaging, database vendor, or work flow with XPDL stan-
dard. OFBiz has many common services that can be invoked
in any application. The developer only needs to change a
simple XML specification to switch the service endpoint to
a different component. Therefore, it is very easy to customize
OFBiz if what the developer wants to do fits into the OFBiz
framework. Since OFBiz is optimized for the common cases
in ERP development, in most cases there will be a fit.

3) Modifiability: In Seam, the application architecture is up
to the developer. This means that the modifiability of the final
system depends on the developer’s skill. OFBiz, on the other
hand, requires developers to use a service-based organization
that forces them to build a loosely-coupled system. Since OF-
Biz is loosely coupled by design, it encourages modifiability
more than Seam does.

4) Integrability: As previously explained, OFBiz makes it
simple to expose any business logic service as a SOAP Web
service endpoint. In this simple case study scenario, OFBiz
exhibited more integrability than Seam. However, we should
note that although OFBiz is the better framework according to
this test, we have only tested one small aspect of integration.
Other types of integration requiring standard Java APIs like
JMS would not be advantageous for OFBiz, and integration
tasks that benefit from JBoss’ special features, e.g. jBPM,
would put OFBiz at a disadvantage.

5) Flexibility: OFBiz is more flexible than Seam frame-
work because it has many management and support tools
for tasks such as user interface developement, web service

exposure and database setup. With the OFBiz framework, we
have more choices of scripting languages.

IV. CONCLUSION

In this paper, we compared two frameworks, OFBiz and
JBoss Seam, using a typical enterprise application integra-
tion scenario. We find that for simple integration scenarios
like the one presented here, OFBiz is better according to
almost every criterion. It is therefore an excellent choice as
a lightweight and easy-to-learn alternative to the full Java
EE stack. However, we expect that Seam’s complexity would
eventually prove beneficial as the system size and complexity
increases.

ACKNOWLEDGMENTS

This research was supported by scholarships from Haadthip
Public Company Limited and the Royal Thai Government to
NR. We are grateful to Haadthip Public Company Limited for
the case study scenario. We thank Vatcharaporn Esichaikul,
Donyaprueth Krairit, and Chokchai Phatharamalai for helpful
comments on this work.

REFERENCES

[1] R. E. Johnson, “Components, frameworks, patterns,” in SSR ’97: Pro-
ceedings of the 1997 symposium on Software reusability. New York,
NY, USA: ACM, 1997, pp. 10–17.

[2] M. E. Fayad, D. S. Hamu, and D. Brugali, “Enterprise frameworks
characteristics, criteria, and challenges,” Commun. ACM, vol. 43, no. 10,
pp. 39–46, 2000.

[3] A. Gerdessen, “Framework comparison method: Comparing two
frameworks based on techincal domains focussing on customisability
and modifiability,” Master’s thesis, University of Amsterdam,
August 2007. [Online]. Available: http://homepages.cwi.nl/∼paulk/
thesesMasterSoftwareEngineering/2007/AntonGerdessen.pdf

[4] M. J. Yuan and T. Heute, JBoss Seam: Power and Flexibility Beyond Java
EE 5.0. Prentice Hall, 2007.

[5] Apache Software Foundation, “OFBiz, the Apache Open for Business
Project — Open Source E-Business / E-Commerce, ERP, CRM, POS,”
2008. [Online]. Available: http://apache.ofbiz.org

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[7] M. Fowler, Patterns of Enterprise Application Architecture. Addison-
Wesley, 2002.


