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SUMMARY  We propose a new construct, the Text-Graphics
Character (TGC) CAPTCHA, for preventing dictionary attacks
against password authentication systems allowing remote access
via dumb terminals. Password authentication is commonly used
for computer access control. But password authentication sys-
tems are prone to dictionary attacks, in which attackers repeat-
edly attempt to gain access using the entries in a list of frequently-
used passwords. CAPTCHAs (Completely Automated Public
Turing tests to tell Computers and Humans Apart) are cur-
rently being used to prevent automated “bots” from registering
for email accounts. They have also been suggested as a means
for preventing dictionary attacks. However, current CAPTCHAs
are unsuitable for text-based remote access. TGC CAPTCHAs
fill this gap. In this paper, we define two TGC CAPTCHAs and
incorporate one of them in a prototype based on the SSH (Secure
Shell) protocol suite. We also prove that, if a TGC CAPTCHA
is easy for humans and hard for machines, then the resulting
CAPTCHA is secure. We provide empirical evidence that our
TGC CAPTCHAS are indeed easy for humans and hard for ma-
chines through a series of experiments. We believe that a system
exploiting a TGC CAPTCHA will not only help improve the
security of servers allowing remote terminal access, but also en-
courage a healthy spirit of competition in the fields of pattern
recognition, computer graphics, and psychology.*

key words: Reverse Turing Test, CAPTCHA, Secure Shell,
Password Authentication

1. Introduction

Password authentication is one of the most common
building blocks in implementing access control. Each
user has a relatively short sequence of characters com-
monly referred to as a password. To gain access, the
user provides his/her password to the system. Access
is granted if the password is correct; it is denied other-
wise.

A common attack against password authentication
systems is the dictionary attack. An attacker can write
a program that, trying to imitate a legitimate user,
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repeatedly tries different passwords, say from a dictio-
nary, until it finds one that works.

There are several well-known ways to cope with
dictionary attacks. For example, the system can deny
access for the user in question after some number of
tries, a technique known as account locking. However,
this invites a denial of service attack: an attacker can
lock anyone out of the system by submitting a sequence
of incorrect passwords on behalf of the victim. Other
solutions also have their own shortcomings [1].

In this paper, we present an alternative defense
against dictionary attacks. The idea is to make it
harder for automated programs to mount dictionary
attacks by requiring an attacking program to pass a
test that is easy for humans but is hard (in terms of ac-
curacy and/or compute time) for computer programs.
A construct with this property is called a CAPTCHA
(Completely Automated Public Turing test to tell Com-
puters and Humans Apart) [2]. In particular, if there
exists a program that can pass a CAPTCHA with high
probability, then that program can be used to solve a
hard AI problem. CAPTCHASs are already in use in
some systems that benefit from distinguishing between
humans and “bots” [3]. Recently, they have also been
suggested as a means for deterring dictionary attacks
in password authentication systems [1].

Some CAPTCHA suitable for password authenti-
cation systems displays a degraded image of a word to
the human, who then responds by typing the word he or
she sees. Another CAPTCHA uses a sound clip instead
of an image. However, these CAPTCHASs are not suit-
able for systems that allow remote access via consoles
or dumb terminal programs. Our goal is to make it pos-
sible for such minimal systems to obtain the same bene-
fits from CAPTCHA-assisted password authentication
as systems with graphical displays and/or speakers.

To this end, we propose new CAPTCHASs based on
Text-Graphics Characters. We call such a construct a
TGC CAPTCHA. A text-graphics character is an image
of a character rendered on a text-only screen, namely a
screen in which ASCII characters are used to represent
pixels. Unfortunately, images rendered on a text-only
screen are necessarily low resolution. This limits the
number of characters that can be put on a single screen
without hindering recognition. In fact, we find that on
an 80x24 screen, it is unreasonable to display more than
one or two distorted English characters. Without the



contextual information afforded when complete words
are displayed, humans have a harder time recognizing
what is on each screen. Additionally, neither color nor
grayscale are necessarily available to help provide vi-
sual clues. These limitations together make it difficult
to generate text-graphics characters that are easy for
humans but hard for computers to recognize.

CONTRIBUTIONS. First, we precisely define what a
TGC CAPTCHA is and prove that, if it is easy for hu-
mans and hard for machines, then it is indeed a secure
CAPTCHA according to the definitions in [2]. Specif-
ically, we offer a reductionist proof to show that, if a
particular class of problems believed to be hard is in
fact a hard AI problem as defined in [2], then our TGC
CAPTCHASs are secure. As such, the term “prove” here
is used in the same sense as that in the area of provable
security [4], namely that the security of a construct,
i.e. the CAPTCHA, is proved based on the security of
a primitive, i.e. the corresponding hard AI problem.

Second, we implement two TGC CAPTCHAs.
Then, we incorporate one of them into the user authen-
tication mechanism of the popular Secure Shell (SSH)
protocol suite, thus hardening SSH servers against dic-
tionary attacks. The prototype is available as a source
code patch for OpenSSH 3.6.1 at [5].

Finally, we provide empirical evidence that both
of our TGC CAPTCHAs are easy for humans and
relatively hard for machines by running CAPTCHA
tests against human subjects and an Optical Charac-
ter Recognition (OCR) program [6], respectively. The
results are encouraging: on a character-by-character
level, humans achieve more than 95% accuracy on both
TGC CAPTCHASs after two practice trials, whereas the
OCR program’s accuracy is less than 35% for both TGC
CAPTCHAs. We believe that improving the OCR sys-
tem’s accuracy to approach that of humans will require
more effort on the part of OCR system designers, and
in any case, attackers using OCR systems to mount
automated dictionary attacks will require a substantial
amount of total compute time.

TGC CAPTCHA witH VISUAL NOISE. The first
TGC CAPTCHA presents a sequence of k distorted
characters, one at a time, to the user and accepts only
correct responses (k = 8 in our implementation). To
make the test easy for humans, we use only upper-
case English characters, excluding the characters ‘O’
and ‘D’. For each character, we pick ng “distracters”
and apply several operations to both the character and
the distracters before laying the former over the lat-
ter. The operations are scaling, rotation, translation,
and “row sliding,” an operation involving horizontally
moving each pixel in incremental steps, row-wise. The
characters, the distracters, the operations, and all of
the parameters are chosen at random from configurable
ranges. The resulting image is then displayed to the
user.
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TGC CAPTCHA v RanpoM FIGLET FONTSs. The
second TGC CAPTCHA presents a sequence of k char-
acters (again, k = 8), each displayed as a figlet, a big
character displayed using a collection of ordinary ASCII
characters [7]. For each figlet character, we select a ran-
dom figlet font for the character. (See Figure 5 for ex-
amples of figlets in different fonts.) We use both upper
and lower case here but do not ask the user to dis-
tinguish between a character in the upper and that in
the lower case. To make the test easy for humans, we
exclude ‘I’; ‘L’, ‘O’, and ‘D’ in both upper and lower
case.

THE PrOTOTYPE IN SSH. We add the TGC
CAPTCHA with visual noise to SSH. All our modifi-
cations are compliant with SSH specifications [8]. The
server program, when configured with CAPTCHA sup-
port, informs the client that CAPTCHA-based authen-
tication is a valid method. The client, when configured
with CAPTCHA support, requests CAPTCHA authen-
tication. The server then transmits a sequence of trans-
formed images of characters to the client. The client
displays the received images one by one and collects
responses from the user before sending them all back
to the server with the user’s password (thus minimizing
the impact of network delays). The server grants access
to the user only if he/she both passes the CAPTCHA
test and enters the correct password. The server denies
access otherwise.

FeEATURES OF TGC CAPTCHAS AND THE PROTO-
TYPE. TGC CAPTCHASs provide a defense against on-
line dictionary attacks without resorting to other coun-
termeasures, e.g. account locking, with well-known dis-
advantages. Also, as discussed in [1], even if solving
the underlying AI problem, in this case the problem
of recognizing distorted text-graphics characters, turns
out to be easy for OCR systems, it would still be useful
to use a TGC CAPTCHA in password authentication
systems. The reason is that an attacker mounting an
online dictionary attack still needs both to solve the
CAPTCHA and to find the password in order to login
successfully. In this situation, our approach reduces to
pricing via processing, a paradigm originally proposed
to combat senders of bulk junk email (“spam”) [9]. In
order to mount a dictionary attack, the adversary must
perform a moderately complex computational task on
each password authentication attempt. Thus, even if
the attacker only spends a few compute cycles on each
trial, the cumulative effect becomes significant over the
many trials required for a dictionary attack.

We stress here that the use of a TGC CAPTCHA
in password authentication is only one possible appli-
cation. Like other CAPTCHAs, TGC CAPTCHAS can
be used in any application in which it is useful to distin-
guish human users from bots [2,3]. Furthermore, TGC
CAPTCHASs extend these benefits to applications with
console-based interfaces. For example, it can help pre-
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vent bots from signing up for free email accounts or help
conduct online polls via, say, text-based web browsers.
Search engines that disallow bots by requiring graphi-
cal CAPTCHAS to be recognized will no longer end up
automatically rejecting legitimate users who access the
sites via a text-based interface, if a TGC CAPTCHA
is made available to those users.

RELATED WORK. von Ahn et al. [2] were the first to
propose the concept of CAPTCHAs. They formally
defined the CAPTCHA construct and its security no-
tion and specified two classes of Al problems. Our
TGC CAPTCHASs are instances of their second prob-
lem class.

Pinkas and Sanders proposed the use of Re-
verse Turing Tests (RTTs), constructs similar to
CAPTCHAS, to cope with dictionary attacks [1]. Their
focus was on usability and scalability: they wanted to
ensure that the addition of RTTs did not require dra-
matic changes in the users’ behavior and level of effort.
They proposed a concrete login protocol similar to our
prototype. We mention only some of the differences
here: (1) they ask for the password before asking the
user to solve the RT'T; (2) they require the user to solve
the RTT only some fraction of the time; and (3) they
use a persistent data structure, namely a web cookie.
Xu et al. proposed the use of character recognition to
separate humans from machines [10]. However, they
did not assume authenticated, replay-resilient channels.
Consequently, the communication had to be protected
via message authentication codes and serial numbers,
timestamps, or state information. In contrast, our
CAPTCHA challenges and responses are sent over SSH
channels which are already encrypted, authenticated,
and replay-resilient [11]. This dramatically simplifies
our protocol.

NOTATION. Let k be a positive integer. We denote by
Ti,...,Tk £ X the act of sampling each element z;
uniformly and independently from the set X. We write
C — S: msg to denote a move in a protocol where the
party C sends a message msg to the party S.

2. Our Text-Graphics Character CAPTCHASs

In this section, we describe the TGC CAPTCHASs that
we have implemented following the formalization in [2].

2.1 TGC CAPTCHA with Visual Noise

Let Z be a set of images of all upper case English
characters, 7 be a set of transformations on images,
A be the map from an image of a character to the
(ASCII ID of) the character portrayed in the image,
and 7 and k be the security parameters. The TGC
CAPTCHA TGC; is a tuple (Z,7,\, 7, k) defining the
test shown in Figure 1. First, the verifier (i.e. server)
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Fig.1 Text-Graphics Character CAPTCHAs. An instance of
a TGC CAPTCHA is TGC = (Z,7, A, 7, k). The protocol shown
is for TGCy. For TGCga, the set Z includes both upper and
lower case English letters, and the boxed text is replaced by
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Fig.2 Our choice for the reference image set Z for TGC;. We
use only uppercase English characters but omit the characters
‘O’ and ‘D’ because they are hard to distinguish when distorted.

Then, it sends to the prover (i.e. user) the transformed
images t1(i1),...,tk(ix) and sets the timer for 7. The
prover responds with the labels [1, ..., [, each of which
is (the ASCII ID of) a character in the English alpha-
bet. The verifier accepts if I; = A(¢;) for all 1 < j <k
and if the timer has not expired. It rejects otherwise.

We describe here our choices for TGCy for the sets
Z and 7. The reference image for each character, from
the standard X Window System “9x15” font, is shown
in Figure 2. We use all of the uppercase English char-
acters except ‘O’ and ‘D’ which are practically indis-
tinguishable when distorted. The transformation pro-
cess involves the following steps. First, ng distracters
are chosen uniformly with replacement from the set of
all distracter images. In our implementation, we use
ng = 5 samples from a set of 26 9x15 bitmaps that
share some features with English letters but are easily
classified as non-letters by humans. We perform the
following operations:

1. Map to ASCII: The 9x15 bitmap is mapped to a
9x15 array of ASCII characters, also known as a
charmap. White pixels are mapped to the space
(* 7) character, and black pixels are mapped to the
asterisk (“*’) character.

2. Scale: The charmap is scaled by a random factor
between 1.3 and 1.7.

3. Rotate: The charmap is rotated by a random angle
between -20 and 20 degrees.

4. Translate: The charmap is translated to a random
location on the n. X n, screen with the constraint
that the entire character must still be visible.

5. Row Slide: Each row of the charmap is optionally
slid left or right relative to the row above. We shift
left with probability 0.33, right with probability
0.33, and otherwise do not shift.



Fig.3 Screen shot of a rendered TGC CAPTCHA character
corresponding to the character ‘P’ for TGCj.
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Fig.4 Example TGC CAPTCHA characters for TGCy.
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Fig.5 Example TGC CAPTCHA characters for TGCs.

In our implementation, all of the random samples are
from a uniform distribution and rely on the standard
C library random() function (seeded with the system
time). Finally, the transformed target and distracter
images are overlaid as follows. Each overlay is given
an opaque whitespace boundary, and the target image
is laid down last, to ensure that the target stands out
clearly from the background. Figure 3 shows an exam-
ple of a transformed character as it would be rendered
on the screen. Figure 4 shows at a lower resolution ex-
amples of how some characters may be transformed.

We believe that the set of transformations that we
have described gives sufficient variability in the out-
put images to make recognition fairly difficult for ma-
chines while preserving the necessary property that it is
easy for humans. Experienced users (e.g. the authors)
consistently classify the characters with 100% accuracy,
and as we shall see in Experiment 1A below, even naive
users perform well enough to make our construction
practical for deployment in real systems.

2.2 TGC CAPTCHA in Random Figlet Fonts

The TGC CAPTCHA in Random Figlet Fonts TGCy, =
(Z,7T, A, 7,k) is similar to TGC; shown in Figure 1. The
differences between the two are in the choices of the sets
7 and 7. Specifically, 7 is the set of English characters
in both upper and lower case excluding ‘I’, ‘I’, ‘O’, and
‘D’. The set 7 contains the figlet fonts basic, big,
block, broadway, colossal, cosmic, cybermedium,
doh, doom, dotmatrix, epic, fender, nancyj, ogre,
pebbles, puffy, roman, rounded, starwars, stop,
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univers, and whimsy [7]. A few examples are shown in
Figure 5. Computing ¢(¢) where t € 7 and i € 7 yields
character i in the figlet font .

The fonts that we choose give sufficient variability
in the output images to make recognition fairly diffi-
cult for machines while remaining relatively easy for
humans. Experiment 1B below shows that even naive
users perform well against this TGC CAPTCHA.

3. CAPTCHA-Augmented Password Authen-
tication

We have found that TGC CAPTCHAS can complement
password-based authentication systems. In this section,
we give an overview of how a TGC CAPTCHA can be
applied to user authentication, then describe an imple-
mentation of the general approach as part of the SSH
user authentication protocol.

3.1 Overview

A TGC CAPTCHA can complement any interactive
password authentication scheme, so long as a suffi-
ciently large text console is available for displaying the
CAPTCHA. The type of password-based authentica-
tion protocols we focus on is that described in [1].
In particular, a user trying to gain access to a sys-
tem is challenged by a CAPTCHA test and asked to
enter his/her password. If the user both passes the
CAPTCHA test and correctly enters the password,
then access is granted. Otherwise, access is denied.

To ensure that a denied request gives no indication
of whether the user has failed the CAPTCHA or has en-
tered an incorrect password, the user must not receive
any feedback until after both solving the CAPTCHA
and entering a password. We also assume that the
communication channel used during protocol execution
is encrypted, authenticated, and replay-resilient (as is
the case, for example, in SSH).

3.2 Putting CAPTCHA to Use in SSH

We have implemented a prototype TGC CAPTCHA
password authentication method compatible with the
SSH user authentication protocol [8]. As a concrete
example, we base our implementation on the TGC
CAPTCHA TGC; and OpenSSH 3.6.1. However, the
method could just as easily be based on TGCs and/or be
incorporated into any SSH-compliant client or server.
The latter is so because SSH was specifically designed
to allow new user authentication methods to be added
in a modular fashion.

PASSWORD AUTHENTICATION IN SSH. The SSH user
authentication protocol [11] provides several authen-
tication methods, but we focus on the password-
based method here. The SSH password authentication
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S — (C': available authentication methods
C': get user’s password
C'— S: SSH_MSG_USERAUTH_REQUEST,
user name = <uname>, service name = <sname>,
method name = password, change = FALSE,
password = <password>
S': check password
S — C': SSH_USERAUTH_SUCCESS

Fig.6 A successful SSH authentication protocol with the stan-
dard password method. The client C' and the server S are as-
sumed to have established a transport-layer session beforehand so
that integrity and confidentiality are guaranteed during the pro-
tocol. We denote by <var> a variable var whose value depends
on the context of the protocol execution.

method is shown schematically in Figure 6. We em-
phasize that the user authentication protocol runs on
top of the SSH transport protocol, which provides in-
tegrity and confidentiality [11]. Here we describe the
essential steps in a password authentication exchange;
for details, please refer to the specification [8].

The protocol begins with the SSH server telling the
client which authentication methods are available. The
SSH client is then free to request authentication using
any of the available methods.

To request password-based authentication, the
client sends a SSH_MSG_USERAUTH REQUEST message
(type 50) to the server. This message contains one
byte for the message type followed by a user name (a
UTF-8 encoded string), a service name (a US-ASCII
encoded string), and a method name (also a US-ASCII
string). When the method name is password, two
more fields follow: a one-byte boolean flag indicating
whether this request is a password change request, and
a cleartext UTF-8 encoded password. The former is
used to indicate when the request is a response to a
SSH_MSG_USERAUTH_PASSWD_CHANGEREQ from the server,
but it is ignored in OpenSSH 3.6.1, which does not im-
plement password change requests. The latter specifies
the password.

On receipt of the SSH_MSG_USERAUTH_REQUEST mes-
sage, the server initiates one or more challenge-response
interactions, then under normal circumstances, it will
eventually respond with SSH_MSG_USERAUTH_SUCCESS
(type 52) or SSH_MSG_USERAUTH FAILURE (type 51). In
the case of success, the user authentication protocol is
complete. In the case of failure, the client is free to
re-attempt authentication using the same or a different
method. After some (configurable) number of failed
authentication attempts, the server terminates the ses-
sion.

This standard password authentication method
only involves a single exchange of messages between
the client and server. But the SSH standard also al-
lows for the implementation of authentication methods
that involve multiple exchanges. We exploit this ca-
pability to add CAPTCHASs to the existing password
authentication method.

S —C': available authentication methods
C'— S: SSH_MSG_USERAUTH_REQUEST,
user name = <uname>, service name = <sname>,
method name = captcha-password
S': generate <captchas>
S — C': SSH.MSG_CAPTCHA, number of columns = <nc>,
number of rows = <nr>, number of letters = <k>,
data = <captchas>
C': get user’s password and responses to <captchas>
C'—S: SSH_MSG_USERAUTH_CAPTCHA_ RESPONSE,
response = <captcha response>, change = FALSE,
password = <password>
S': check password and responses to <captchas>
S — C': SSH_USERAUTH_SUCCESS

Fig.7 A successful SSH authentication protocol with the
CAPTCHA-augmented captcha-password method. The client
C and the server S are assumed to have established a transport-
layer session beforehand so that integrity and confidentiality are
guaranteed during the protocol. We denote by <var> a variable
var whose value depends on the context of the protocol execution.

ADpDING CAPTCHAS 1O SSH PASSWORD AUTHEN-
TICATION. We implemented a new SSH authentication
method, captcha-password, that incorporates both
the password authentication request and a CAPTCHA
challenge-response exchange. Here we briefly describe
the protocol flow, which is illustrated in Figure 7.

1. As always, the SSH server sends the client a list of
acceptable authentication methods. If the server is con-
figured with the CAPTCHA authentication method,
the string captcha-password is sent as one of the ac-
ceptable methods.

2. The client sends a SSH_MSG_USERAUTH_REQUEST mes-
sage to the SSH server with the usual username
and service fields, but sets the method field to
captcha-password. The captcha-password method
does not add any method-specific fields to the request
message.

3. The server creates a sequence of TGC CAPTCHA
characters for a random word. The number of letters
in the word is configurable.

4. The server creates a SSH MSG_CAPTCHA (type 62)
message containing the CAPTCHA images. The first
byte is the message type. The next 12 bytes spec-
ify the number of columns (n.), rows (n,), and let-
ters (k) in the CAPTCHA. Our implementation uses
n. = 80,n, = 24,k = 8 by default. The remainder
of the message is the payload: n. x n, x k US-ASCII
encoded characters to be displayed by the client. Once
the message is created, it is encrypted, packetized, and
sent to the client by the transport layer.

5. On receipt, the client decodes the SSH-MSG_CAPTCHA
message, displays each text-graphics image in sequence,
and records the user’s responses. It then prompts the
user to enter her password.

6. The client creates and sends a SSH_.MSG_USERAUTH_

CAPTCHA RESPONSE (type 63) message containing the
password and CAPTCHA response. The first byte is



the message type. This is followed by a string specify-
ing the user’s response to the CAPTCHA, the one-byte
password change request field, and the user’s password
response. Any characters in the CAPTCHA response
string outside the range ‘a’-‘z’ are first converted to a
space (‘') character.

7. On receipt of the CAPTCHA response mes-
sage, the server first checks the correctness of the
user response. If incorrect, the server sends a
SSH_MSG_USERAUTH FAILURE message and aborts the
authentication attempt. If correct, the server checks
the user’s password as usual in the password authen-
tication method. Again, if the password is incor-
rect, the server sends a SSH_MSG_USERAUTH_FAILURE
message and aborts the authentication attempt.
If the password is correct, the server sends the
SSH_MSG_USERAUTH_SUCCESS message and proceeds to
service the user’s request. In the case of failure, the
client is free to re-attempt authentication until the
server decides to close the connection.

The actual changes required to implement our authen-
tication method on top of OpenSSH 3.6.1 are mini-
mal. The modified sshd server now requires the C
math libraries for the graphics transforms, and the ssh
client now requires the curses library to display TGC
CAPTCHASs on text terminals. Source code patches
relative to OpenSSH 3.6.1 are available at [5].

4. Theoretical Result

We instantiate a problem from the class of problems
P2 defined in [2] and reduce the security of a TGC
CAPTCHA to the hardness of the problem. We de-
scribe roughly the definition of P2 and some key terms.
See [2] for more precise definitions.

The family of AI problems P2 is indexed by the
distributions of images Z and 7 and by the solution
A which is a map of images to their corresponding la-
bels. Intuitively, it is the following problem: given a
transformed image ¢(i) where ¢ € Z and ¢t € 7, find
the label A(¢). A problem is (4, 7)-hard if no current
program can solve it with probability at least § in time
at most 7. A test is (o, 3)-human executable if at least
an « portion of the human population can pass it with
at least 0 success probability. An («, 3,7n)-CAPTCHA
with respect to a (8, 7)-hard problem P is a test that is
(, B)-human executable and has the property that, if
an algorithm B passes it with a success probability of
at least 7, then B can be used to solve the problem P
with probability at least § in time at most 7.1

In discussion, we say that a problem is “hard” if it
is (0, 7)-hard for any program running in “reasonable”

fOur definition for CAPTCHA is slightly different than
the original definition in [2] in that we make the dependence
on the hard problem underlying the CAPTCHA explicit.
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time 7 with “reasonable” success probability 6. We
say that a CAPTCHA is “secure” if it is an (a, 3,7)-
CAPTCHA with respect to a hard problem for “rea-
sonable” value of n. Intuitively, the following theorem
states that each CAPTCHA TGC = (Z,7, A\, 7, k) that
we define in Section 2 is secure assuming that the un-
derlying problem P2z 7 ) is hard.

Theorem 4.1: Let k be the security parameter, and
let 7,7, be as previously defined in Section 2. Let
0,7, , B be non-negative real numbers. Assume that
TGC = (Z,7,)\ 71,k) is (o, 8)-human executable. If
P27 7 is (0,7 + O(k))-hard, then TGC is a (a, 3,0)-
CAPTCHA with respect to P27 7 .

Proof: Given an algorithm B that has a success prob-
ability of at least 0 over TGC in time 7, we construct an
algorithm A that is a (8,7 + O(k)) solution to P27 7 .
This proves the theorem.

On input a transformed image t*, the algorithm A sim-
ply draws g <& {1,...,k} and sets wy = t*. Then, for
all j such that 1 < j <k and j # g, it draws i; 27
and t; < 7T, then sets w; = t;(i;). Next, it submits
wy, ..., w; to B and obtains the answers [y, ..., [; from
B. Finally, it outputs I, as its answer.

It is easy to see that A simulates B perfectly. Also, A
runs in time taken by B plus time linear in k. Finally,
if B has probability § of getting all of its answers right,
then A’s probability of success is at least 6. |

5. Experimental Results

We performed two experiments to assess the difficulty
of our TGC CAPTCHASs for humans and machines.

EXPERIMENT 1: PLAYING AGAINST HUMANS. In
this experiment, we set out to answer the question of
whether our TGC CAPTCHASs are easy enough for hu-
mans to be practical complements to password authen-
tication.

We ran two experiments, 1A and 1B, for TGC; and
TGC,, respectively. For each experiment, 20 naive sub-
jects were recruited from the faculty, staff, and students
of Thammasat University and the Asian Institute of
Technology. All of the subjects were competent, though
non-native, English speakers. The test equipment was
one of several PCs running Linux or Mac OS X. The
TGC CAPTCHA characters were always displayed in
a standard terminal window.

Each subject participated in an individual session
lasting approximately 5 minutes. We gave brief writ-
ten instructions explaining that they would be asked
to identify English characters. They were instructed to
maximize their accuracy without regard to time. The
instructions were followed by two practice trials with
two different sequences of k = 8 characters displayed
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on a n. = 80 by n, = 24 screen. At the end of each
trial, the subjects received feedback on whether their
response was correct or incorrect. If incorrect, their
response and the correct response were displayed.

Following the practice trials were 10 test trials
with the same parameters. During the test trials, the
subjects’ responses and response times were recorded.
(They were not told that their response times were be-
ing recorded, however.)

For Experiment 1A, we used only upper case En-
glish characters excluding ‘O’ and ‘D’ and displayed
them on noisy screens. For Experiment 1B, we used
both upper and lower case English characters exclud-
ing ‘I, ‘L, ‘O’, and ‘D’ and displayed them in the figlet
fonts listed in Section 2.2. In both experiments, the
subjects were instructed that they could type either
upper case or lower case responses without penalty.

The subjects’ average per-character accuracy pp on
the test trials was 0.960 for Experiment 1A and 0.965
for Experiment 1B. Their average word-level accuracy
(the number of 8-letter TGC CAPTCHAs answered
with 100% accuracy) was 0.765 for Experiment 1A and
0.780 for Experiment 1B. (Assuming independence and
pr = 0.960 for 1A and p, = 0.965 for 1B, we would
expect a word-level accuracy (pp,)* of 0.721 for 1A and
0.752 for 1B.)

The fact that naive users achieve such high accu-
racy rates justifies the use of TGC CAPTCHAs in live
systems. Frequent users would very rapidly adapt to
the statistics of the character set, achieving even higher
accuracy rates.

EXPERIMENT 2: PLAYING AGAINST A MACHINE. We
ran two experiments, 2A and 2B, for TGC; and TGCo,
respectively. In each experiment, we sought to put an
upper bound on the difficulty of each TGC CAPTCHA
for machines. To this end, we employed an Optical
Character Recognition (OCR) system as an adversary
against our CAPTCHAs. We selected GOCR, [6] be-
cause it is open-source, has an active developer com-
munity, and runs on a variety of platforms including
the UNIX-like operating systems that ship SSH by de-
fault.

Using the same parameters as Experiments 1A
and 1B, for both Experiment 2A and 2B, we gener-
ated 100 TGC CAPTCHAs of length 8, for a total of
2 x 100 x 8 = 1600 text-graphics characters. We then
converted each textual display into a bitmap. Each
row and column of the bitmap corresponds to a row
and column in the text display. We mapped the back-
ground text character to white and all other characters
to black.

We then built the GOCR 0.39 program from
source code using its default configuration, and fed each
bitmap directly to the program. In both experiments,
we gave GOCR the legal set of characters it should de-
tect, i.e. the 24 characters ‘A’—7Z’ excluding ‘D’ and

‘O’ for Experiment 2A and the 44 characters ‘A—7Z’
and ‘a’—‘z’ excluding both upper and lower case ver-
sions of ‘D’, ‘I’, ‘L’, and ‘O’. We call this the Naive
GOCR adversary to emphasize that different configu-
rations could in principle yield better adversaries. After
running Naive GOCR on each image, we classified its
response as correct or incorrect.

One important difference between our OCR setup
and the human experiment is that the OCR system
was not constrained to respond with one and only one
character for a given image. As a result, on some im-
ages, the OCR system responded with no characters,
and on some images, it responded with multiple char-
acters. We therefore measured the system’s accuracy
with two different criteria in an attempt to put rough
bounds on the system’s accuracy. As a conservative
criterion, we judged the OCR system’s response cor-
rect when it responded with the expected English letter
and no other letters. As a less conservative criterion,
we judged the OCR system’s response correct any time
the desired English letter appears in the OCR system’s
output, even if other letters also appear.

For Experiment 2A, naive GOCR had a per-
character accuracy p,, of 0.278 and 0.314 by the first
(conservative) and second (loose) criterion, respec-
tively. The word-level accuracy was 0 by both crite-
ria. For Experiment 2B, without any extraneous noise
in the image, naive GOCR had the same per-character
accuracy p,, of 0.330 by both the strict and loose eval-
uation criteria. The word-level accuracy was 0.

We believe that p,, could be significantly im-
proved by incorporating problem-specific knowledge of
the TGC CAPTCHA algorithm. We leave this as an
exercise for interested readers. Clearly, however, the re-
sults demonstrate that Naive GOCR is unsuitable for
mounting dictionary attacks against TGC CAPTCHA-
enabled password authentication systems.

6. Conclusion

In this paper, we have proposed a construct called the
TGC CAPTCHA, a new CAPTCHA requiring only the
most basic user interface equipment: a dumb terminal
(or terminal emulation program) and a keyboard. A
TGC CAPTCHA is therefore suitable for protecting
password authentication systems from automated dic-
tionary attacks, even in systems that are not equipped
with graphical user interfaces.

A TGC CAPTCHA shows promise as a construct
for improving the security of password authentication
systems. As an example application, we have imple-
mented and tested a new CAPTCHA-based password
authentication method for the popular SSH protocol
suite. We note, however, that TGC CAPTCHASs could
be utilized for any application in which it is useful to
distinguish human users from robots over a console-
based interface.



We have implemented two TGC CAPTCHAs and
have shown that they are relatively easy for humans but
would be difficult for “Naive GOCR” adversaries. Of
course, this only puts an upper bound on the difficulty of
the problem. We have not proven that no adversary can
do better. (After all, certain AI pundits believe that
ALL tasks humans can perform today will be performed
equally well by machines in the not-so-distant future!)
However, we emphasize that, for a TGC CAPTCHA to
be of use in securing password authentication systems
against dictionary attacks, we do not require that it be
necessarily more difficult for machines than humans.
To the contrary, it is only necessary to force attackers
to expend enough compute time to make attacks based
on password searches impractical.

However, forcing attackers to expend additional
compute time is not the only benefit of the CAPTCHA
approach. Since the security of a CAPTCHA pass-
word authentication system increases as the gap be-
tween human and machine performance on the test
widens, TGC CAPTCHASs can serve as a modest cross-
disciplinary challenge in the fields of pattern recog-
nition, system security, computer graphics, and even
psychology. This is the approach championed by [2].
Through friendly competition, we hope to encourage
not only new OCR algorithms, but also a better under-
standing of the strengths and weaknesses of the human
visual system relative to the best present-day machine
vision systems.

7. Future Work

In this paper, we have demonstrated the efficacy of
TGC CAPTCHASs as a tool to improve the security
of console-based network applications. In forthcoming
work, we plan the following improvements. First, we
would like to improve the performance of the Naive
GOCR adversary as it is currently somewhat weak.
For example, rather than searching for arbitrary text
in the CAPTCHA window, the adversary could be con-
strained to perform a 24-way or 44-way forced choice,
thus improving its chance of success. Likewise, as
the adversary improves, we may need to improve the
CAPTCHASs in turn, making them harder for machines
without making it more difficult for humans. Finally,
our captcha-password authentication method for SSH
needs to be generalized before it will be acceptable as
an Internet standard.
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