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Abstract— Intelligent vehicles require accurate localization
relative to a map to ensure safe travel. GPS sensors are among
the most useful sensors for outdoor localization, but they still
suffer from noise due to weather conditions, tree cover, and
surrounding buildings or other structures. In this paper, to
improve localization accuracy when GPS fails, we propose
a sequential state estimation method that fuses data from a
GPS device, an electronic compass, a video camera, and wheel
encoders using a particle filter. We process images from the
camera using a color histogram-based method to identify the
road and non-road regions in the field of view in front of the
vehicle. In two experiments, in simulation and on a real vehicle,
we demonstrate that, compared to a standard extended Kalman
filter not using image data, our method significantly improves
lateral localization error during periods of GPS inaccuracy.

I. INTRODUCTION

Among the challenges involved in building a safe intel-
ligent vehicle, localization is among the most important,
because without precise knowledge of the vehicle’s location
with respect to its surroundings, autonomy is impossible.
Although GPS devices are extremely useful for localization,
they are not sufficient by themselves, because satellite signal
quality varies with weather and proximity to trees and
buildings. The problem is especially acute in urban areas.
Under these circumstances, accurate and robust localization
relies critically on additional sensors or filtering techniques.

There is a great deal of previous work using Kalman filters
to improve GPS-based vehicle localization. Cooper et al. [1]
propose an extended Kalman filter (EKF) model for vehicle
navigation that incorporates a GPS device and an inertial
navigation system (INS). Sadiadek et al. [2] improve the
EKF for GPS/INS localization using fuzzy logic to adapt
prediction and sensor noise strength. Thrapp et al. [3] and
Bonnifait et al. [4] demonstrate EKFs that fuse GPS and
odometry data, and Panzieri et al. [5] use an EKF to fuse
GPS, INS, odometry, and laser scanner data. Machine vision
techniques are also proving useful; Georgiev [6] presents a
method using camera pose estimation to improve localization
in urban environments when GPS performance becomes low.
The method fuses GPS, odometry, and compass data using
an EKF, but when the EKF’s uncertainty grows too large,
monocular vision is used instead of the GPS signal. Agrawal
and Konolige [7] present a localization method using stereo
vision and GPS. In their work, visual odometry is fused with

GPS measurements using an EKF.
Although the EKF is efficient, linearizing the motion and

sensor models can introduce inaccuracy, and its assump-
tion of a Gaussian posterior distribution over vehicle poses
means it can fail when the true distribution is non-Gaussian,
especially when it is multi-modal [8], [9]. To solve this
problem, Dellaert et al. introduce a localization method for
indoor mobile robots using particle filter called Monte Carlo
localization (MCL) [10] and apply the technique to the task
of vision-based localization [11]. This work demonstrates the
robustness of particle filters for localization with ambiguous
sensor information.

In our work, we complement a GPS device, compass, and
wheel encoders with machine vision to address GPS inaccu-
racy, and we use a particle filter to address linearization error
and the limitations of the Gaussian posterior assumption.
Our machine vision technique extracts road regions from
the field of view in front of the vehicle. By comparing
the observed road region with that expected based on a
candidate vehicle position and a predefined map, we can
compute the likelihood of the observation given the candidate
vehicle position and, to the extent that the map and road
region classification are accurate, thereby improve vehicle
localization precision.

II. ROAD REGION CLASSIFICATION

We use a forward-pointing camera and road region clas-
sification to improve localization accuracy. As shown in
the flowchart in Fig. 1, we perform Gaussian smoothing to
reduce image noise then classify each pixel in the image
as road or non-road using a H-S color histogram. We then
transform the classification results from the image plane
to the (robot-relative) ground plane using a pre-calculated
planar homography. The resulting robot-relative road region
measurement vector can be used for vehicle localization.

A. Hue-Saturation Histogram

We use a 2D histogram to represent the distribution of
road pixels’ color. Histograms are attractive because they
are simple to calculate and easy to use. We use the hue
and saturation components in the HSV color model [12]
to determine whether each pixel is likely to be on the
road or not because, unlike the RGB color space, HSV
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Fig. 1. Overview of road classification method.

represents intensity or brightness on a dimension orthogonal
to color. Since only a 2D histogram needs to be estimated,
much less traning data is typically needed for equally good
performance.

To calculate a 2D histogram for road pixels, we simply
count the number of occurrences of each H-S pair in a
training data set. Then we normalize the histogram by
the total number of pixels in the training data. We use
road images acquired under a variety of different lighting
conditions.

The H-S histogram gives us a model P (H = h, S = s |
C = road), i.e., the class-conditional probability of obtaining
particular H-S values (h, s) when the class C of the pixel
in question is “road.” We threshold this probability in order
to classify each pixel in the region of interest. We use as a
threshold that which is optimal in terms of the F1 measure
for separating road and non-road pixels over a training set.

B. Image Plane to Ground Plane Transformation

The road classification result is used as observation data in
our localization module. The algorithm needs to compare the
road classification results with a predefined map to measure
the likelihood of candidate vehicle positions. To enable fast
computation in the localization module, we transform the
classification results from the image plane to the ground
plane. We calibrate the camera with respect to the vehicle
then pre-compute a 2D homography H between the camera’s
image plane and the ground plane.

III. LOCALIZATION

This section describes the system state, motion model, and
measurement model comprising the design of our particle
filter based localization algorithm.

A. System State

We assume a discrete time system with a constant sam-
pling interval. The state of the system at time t is

xt =
[
xt yt θt

]T
,

where (xt, yt) is the center of the vehicle’s rear axle and θt

is its orientation with respect to the world coordinate plane.

Fig. 2. Using a road classification image to measure a particle’s likelihood.

B. Motion Model

We use two drive wheel encoders and a steering wheel
encoder to obtain odometry information

ut =
[
dt wt

]T
,

where dt is the distance traveled from time t − 1 to time t
(simply the average of the distances obtained from the two
drive wheel encoders) and wt is the steering wheel angle
at time t. We treat the odometry measurement as a control
action and model the motion error as Gaussian:[

d̂t

ŵt

]
=
[
dt

wt

]
+
[
εd(dt)
εw

]
where εd(dt) ∼ N (0, α1dt) and εw ∼ N (0, α2). The error
variance for dt is a linear function of dt. α1 and α2 are
vehicle-specific error parameters, which we currently obtain
through trial and error.

Given an odometry measurement, we discretize the bicycle
kinematic model [13], assuming no slip, to predict the
vehicle’s motion:xt+1

yt+1

θt+1

 =

xt

yt

θt

+

Rt(sin θt − sin(θt − φt))
Rt(cos(θt − φt)− cos θt)

−φt

 ,
where Rt = l/ tan(wt) is the current turning radius (l is the
distance between the front and rear axle) and φt = dt/Rt is
the change in heading angle.

C. Measurement Model

The GPS and compass yield a simple linear measurement
model

zG,t = xt + εG

for which a Gaussian error model εG ∼ N (0, R), R =
diag

(
σ2

G, σ
2
G, σ

2
C

)
, is appropriate.

The measurement model for the H-S histogram-based
road region classifier is necessarily more complex. After
transformation to the ground plane in the vehicle’s coordinate
system, we have a measurement

zC,t =
[
ct,1 ct,2 . . . ct,K

]T
,

where ci is the predicted class (road or non-road) of the i-th
pixel and K is the number of pixels in the vehicle coordinate
ground plane region of interest.



To calculate the likelihood of a candidate vehicle position
according to the road classification image, then, we compare
each pixel in the image with the corresponding location in
a binary map created using satellite images and manual la-
beling of the road and non-road regions. The general idea of
this measurement is shown in Fig. 2. We assume conditional
independence of the road image pixel measurements given
the vehicle’s position and the map. We set the assumed
probability of true positive, false positive, true negative, and
false negative measurements by trial and error.

Combining the two models and exploiting conditional
independence assumptions, we define the weight w(i)

t for
particle i at time t as

w
(i)
t = p(zt | x(i)

t )

= p(zG,t | x(i)
t )p(zC,t | x(i)

t )

= p(zG,t|x(i)
t )

K∏
j=1

p(ct,j | x(i)
t ).

To avoid numerical problems and to prevent the GPS
and compass measurement from being overwhelmed by
the image measurement, we use the modified measurement
model

log(w(i)
t ) = α+β log p(zG,t | x(i)

t )+γ
K∑

j=1

log p(ct,j | x(i)
t ),

where α prevents the image weights from driving the total
weight to 0, and β and γ adjust the relative importance of
the GPS/compass and image terms. Since the weights (w(i)

t )
are normallized after inverting the log, α does not affect
the result mathematically but does improve the numerical
stability. We determine β and γ experimentally through trial
and error.

IV. EXPERIMENTAL RESULTS AND EVALUATION

In this section we describe the results of our implementa-
tion of the proposed method in an intelligent vehicle control
system based on the architecture described in [14]. We test
a simple control system using the proposed localization
method in both a virtual reality simulation and a real vehicle.
In simulation, we precisely specify the characteristics of the
GPS error distribution and compare to ground truth. In the
real vehicle experiment, we evaluate the results qualitatively.

In our control system, the GPS, compass, and encoder
readers run at a frequency of 10 Hz, and the road classifier
processes images 13 fps. Since we use a particle filter based
method, the speed of the localization process depends on
the number of particles (samples) used in the system. In our
experiments, with 1000 particles, the localization process can
run at frequency of 4 Hz with the other processes.

As a baseline for comparison, we implemented a straight-
forward Kalman filter based localization method for compar-
ison with our proposed method. The Kalman filter uses the
same motion model described in the previous section along
with the GPS and compass sensor data. We experimentally
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Fig. 3. Localization results in simulation.
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Fig. 4. Overall localization error in simulation. (a) Position error. (b)
Heading error. Error bars denote 95% confidence intervals.

tuned the filter’s parameters (e.g. the estimation and mea-
surement noise covariances) to perform well under normal
GPS error conditions.

We present the simulation results first followed by the real-
vehicle results. We omit results from particle filter based
localization method without measurement data from vision,
since even in the particle filter, the distribution of GPS and
compass errors are assumed to be Gaussian, so the results
are nearly identical to the Kalman filter based method.

A. Experiment I: Simulation

We simulated vehicle motion at 10 km/hr from a start
point to a finish point along a pre-defined trajectory. The
simulation setup and results are summarized in Fig. 3. We
defined four areas in which the GPS error was increased
or biased. In the first and second areas, the GPS error
had a normal distribution with variance of 1.0 meters, and
the mean was biased from the ground truth for 3.0 meters
in the E-W direction (first area) or N-S direction (second
area) accordingly. In the third area, the GPS was completely
blocked, and in the fourth area, the GPS had an extremely
high error (variance of 3.0 meters) with no bias. As shown
in the result image, the localization results from our method
are close to the ground truth for all cases of GPS error, and
they are smoother than the results from the Kalman filter
based localization method.

The localization error averaged over the entire simulation
run is shown in Fig. 4. To compare the error rates in each
condition, we performed paired two-tailed t-tests with a Type
I error rate α = 0.05. We found that the Kalman filter
and particle filter were not significantly different in terms
of position error and that the Kalman filter was significantly



Fig. 5. Waypoints for simulated vehicle trajectory in Experiment I.

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

2 3 5 7 9 : 32 33 35 36 38 39 3; 43 44 45 47 48 4: 4; 53 54 56 57 59 5: 62 63 64 66 68 69 6: 72 73 75 76 78 79 7; 82 84 86 87 88

E
rr

o
r 

(m
.)

time (seconds)

Kalman Filter
Particle Filter
Odometry
Sensor

(a)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

2 3 5 7 9 : 32 33 35 36 38 39 3; 43 44 45 47 48 4: 4; 53 54 56 57 59 5: 62 63 64 66 68 69 6: 72 73 75 76 78 79 7; 82 84 86 87 88

E
rr

o
r 

(m
.)

time (seconds)

Kalman Filter
Particle Filter
Odometry
Sensor

(b)

-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

2 3 5 7 9 : 32 33 35 36 38 39 3; 43 44 45 47 48 4: 4; 53 54 56 57 59 5: 62 63 64 66 68 69 6: 72 73 75 76 78 79 7; 82 84 86 87 88

E
rr

o
r 

(d
eg

re
es

)

time (seconds)

Kalman Filter
Particle Filter
Odometry
Sensor

(c)
Fig. 6. Experimental results in simulation when the GPS error is small.
(a) Lateral error. (b) Longitudinal error. (c) Heading error.

better than the particle filter in terms of heading error. This
is because under normal circumstances, when the GPS error
is small (variance of 0.06 meters), the Kalman based method
is more precise than our method. However, from the results
shown in Fig. 3, it was clear to us that the particle filter
performs better than the Kalman filter during periods of
unreliable GPS, so we simulated vehicle motion again from
left to right along the trajectory shown in Fig. 5 under five
GPS error conditions: small Gaussian error, lateral shift,
longitudinal shift, large Gaussian error, and GPS signal loss.

1) Small GPS error: The GPS error was distributed as
a 2D Gaussian with variance 0.06 meters and mean at the
ground truth. The results in Fig. 6 show that the KF (shown
in blue) performs best since the particle filter sample set may
not contain a particle perfectly positioned at the ground truth.

2) Shift of GPS in lateral direction: We shifted the GPS
error distribution from the ground truth by 0.3 meters in the
lateral direction (upward in Fig. 5) and added Gaussian noise
with a variance of 0.3 meters. As shown in Fig. 7, with the
addition of visual road region information, our particle filter-
based method substantially decreases lateral error.
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Fig. 7. Experimental results in simulation when the GPS is biased in the
lateral direction. (a) Lateral error. (b) Longitudinal error. (c) Heading error.

3) Shift of GPS in longitudinal direction: We again shifted
the GPS error distribution from the ground truth by 0.3
meters but this time in the longitudinal direction (rightward
in Fig. 5). As shown in Fig. 8, our localization results become
slowly biased by the GPS error. This is because the difference
in appearance of the road regions in the longitudinal direction
is small, so the distribution of the posterior depends strongly
on the biased measurements from the GPS and compass.

4) Extreme GPS error: We set the GPS error variance to
be high (5 meters). The results in Fig. 9 show that the PF’s
estimates are smoother and closer to the ground truth.

5) GPS signal loss: Finally, we blocked the GPS for some
time. The only observation data used to measure the vehicle’s
position and orientation were from the compass and camera.
The results in Fig. 10 show that our localization method is
nevertheless close to the ground truth in the lateral direction,
although the longitudinal error is high, since the road region
images do not differentiate longitudinal positions well.

In each of these five cases, we checked whether the results
of our method significantly decrease localization error or not.
The graphs in Fig. 11 compare the localization error from
our method and the EKF-based method in each condition.
The blue vertical bars represent the absolute mean error of
our method, the red bars represent the absolute mean error
of EKF localization, and the vertical error bars indicate 95%
confidence intervals. Paired t-test with Bonferroni correction
at α = 0.05 were used to test the statistical confidence of the
results, and the evaluation shows that the error rates for our
method are significantly different from the EKF error rates
in every condition.

The results (Fig. 11(a)) show that our method can signif-
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Fig. 8. Experimental results in simulation when the GPS is biased in the
longitudinal direction. (a) Lateral error. (b) Longitudinal error. (c) Heading
error.
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Fig. 9. Experimental result in simulation when the GPS error is extremely
high. (a) Lateral error. (b) Longitudinal error. (c) Heading error.
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Fig. 10. Experimental results in simulation when the GPS signal is lost
for some time. (a) Lateral error. (b) Longitudinal error. (c) Heading error.
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Fig. 11. Evaluation of our proposed method compared to EKF-based
localization. (a) Lateral error. (b) Longitudinal error. (c) Heading error.

icantly decrease lateral localization error in comparison to
the Kalman filter based localization method. In the case of
small GPS error, although our method gives higher error, the
difference is only approximately 10 centimeters on average,
which is acceptable for vehicle localization.

For longtitudinal error (Fig. 11(b)), our method gives more
precise results than the KF in the case of longitudinal shift
of GPS and extreme GPS error. For other cases, our method
is worse because the variability of road region appearance
in longitudinal direction is small, and the filter thus ends up
relying more heavily on the noisy odometry measurements.

The chart in Fig. 11(c) shows that our method does
not improve orientation estimation. In the simulation, we
used a small constant compass error, so the KF is more



Fig. 12. Real vehicle PA-PA-YA used in Experiment II.
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Fig. 13. Experiment II results. (a) Map of the traversed road. (b) Local-
ization results.

precise at predicting vehicle heading. As we previously
noted, when sensor errors is small, there may be no sampled
particle positioned perfectly on the ground truth, limiting the
accuracy of the particle filter.

B. Experiment II: Real vehicle

In Experiment II, we implemented our localization method
on PA-PA-YA, an electric golf cart (shown in Fig. 12). It
is driven by two DC motors and equipped with a GPS,
a compass, three encoders (two for the drive wheels and
one for the steering wheel), and an IEEE-1394 camera. The
control system runs on a 2.0 GHz Pentium Core 2 Duo with
2 GB of RAM with GNU/Linux (Ubuntu 8.04).

We drove the vehicle at a speed of 5 to 10 km/hr to
avoid dependency of control on the localization method used.
To create a situation with noisy odometry and GPS, we
chose a path covered by trees and containing speed bumps
as shown in Fig. 13 (a). We drove the vehicle along the
center of the road. The results of the experiment are shown in
Fig. 13(b), which clearly shows that our localization method
gives results that are more precise than pure odometry and
more smooth than the Kalman filter.

V. CONCLUSION

We have shown that our proposed vehicle localization
method can increase accuracy in situations where GPS is
unreliable. Our machine vision method identifies the road
region in front of the vehicle, and our particle filter fuses
that result with GPS, compass, and odometry measurements.

Although longitudinal error is reduced only moderately by
our method, lateral error is substantially reduced. We con-
sider lateral error to be more serious than longitudinal error,
because lateral error could cause the vehicle to leave its lane
or go off the road.

The proposed localization method can be improved to
further reduce longitudinal error. One possible solution is
to use additional observation data such as visual odometry.
Another solution may be to use other kinds of sensor such
as a laser scanner in addition to the camera.
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