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Abstract—We present a system software architecture for mo-
bile robots such as autonomous vehicles. The system achieves
the goals of flexibility, maintainability, testability, and modifia-
bility through a decoupled software architecture based on an
asynchronous publish-subscribe mechanism and a blackboard
object handling synchronized access to shared data. We report
on two implementations using the proposed generic architecture
and the POSIX real time API. The first implementation is for an
autonomous vehicle using waypoint-based navigation, and the
second implementation uses the same high-level modules but
replaces the low-level hardware interfaces with a virtual reality
simulation. Our experiments and an evaluation indicate that the
architecture is suitable for a wide variety of control algorithms
and supports the construction of testable, maintainable, and
modifiable autonomous robot vehicles at low cost in terms of
real-time performance.

Index Terms—Software Architecture; Real Time Systems;
Decoupling; Mobile Robot Control; Autonomous Vehicles.

I. I NTRODUCTION

Mobile robots such as intelligent vehicles need to transduce
sensor measurements, infer the state of the world, plan future
actions, and execute the plan, all in real time using limited
compute resources. An appropriate software architecture is
crucial for managing complexity, concurrency, and real time
constraints. The last 20 years has seen a great deal of research
in the AI robotics community on mobile robot control archi-
tectures emphasizing task flexibility and resolution of multiple
conflicting goals. At the same time, the embedded systems
engineering community has developed a variety of effective
techniques for the implementation of robust systems composed
of networks of control units executing tight control loops.

In this paper, we distinguish between therobot control
architecture and the system software architectureand take
a software engineering view of the design, implementation,
and evaluation of a system software architecture that not
only supports a variety of different robot control architectures,
but also scores well in terms of software quality metrics for
performance, testability, maintainability, and extensibility.

Deliberative control architectures range from simple control
loops [1] to more complex layered architectures [2], [3]

that decompose the robot’s task into a hierarchy of subtasks
organized into layers. Reactive methods [4], [5] combine many
simple parallel short-circuit control loops that bypass higher-
level planning entirely. Most modern control architectures,
however, combine some aspects of both deliberative and
reactive control [6]–[12]. Most of these systems use software
architectures based on cooperating modules with messgage
passing or procedue calls for communication and synchro-
nization, but others use a shared database orblackboardfor
communication [13]–[15].

One potential problem with most of the existing system
software architectures is that although modularity is a com-
mon design goal, they nevertheless introduce unnecessary
dependencies between modules or objects, making it difficult
to maintain the software and reuse modules across different
projects.

In this paper, we propose, implement, and evaluate an
architectural solution that attempts to reduce dependencies
between modules to a bare minimum. Our approach combines
an asynchronous messaging approach, in which sender and
receiver are decoupled via a publish-subscribe paradigm, with
a blackboard for updating and querying shared data. The
implementation is based on the POSIX real-time API. We
evaluate the architecture by first building a straightforward
control system for an intelligent vehicle incorporating a variety
of sensors, a deliberative waypoint-based planner, and an
obstacle detection and avoidance module. We then extend
the system by adding a virtual reality simulation for testing
the perception, planning, and control software. We find that
the approach produces efficient software with minimal inter-
module dependencies. Although the control algorithm we
chose for testing is fairly simple, it requires implementation
of all of the important module communication patterns. The
resulting software architecture would support the vast majority
of control architectures that can be cast as loosely-coupled
tasks cooperating through message passing and a shared
blackboard.

The rest of the paper presents our architecture, implemen-
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Fig. 1. Generic software architecture for an autonomous robot.

tation experiments based on the architecture, and a critical
evaluation of the architecture.

II. SOFTWARE ARCHITECTURE

Our proposed software architecture is shown in Fig. 1. The
system is separated into two layers. The high-level layer con-
tains task-specific perception, planning and control modules,
and the low-level layer serves as an interface between the
hardware (sensors and actuators) and the high-level layer.The
low level modules simply execute the commands published
by high-level modules, receive and process sensor data, and
publish processed sensor data for consumption by high-level
modules.

Within the layers, the software is structured into inde-
pendent modules, each running one or more local threads.
The modular structure allows for flexible construction of
systems for specific vehicles by including and configuring
an appropriate set of modules. The low-level layer modules
depend on the hardware platform, but can be easily replaced
with a new set of modules for a new hardware platform without
affecting high-level modules. Tasks in the high-level layer are
also separated into modules so that algorithmic changes in one
module have little or no effect on other modules.

To allow the modules to share data and synchronize with
each other, we use two main mechanisms:publish-subscribe
messaging and a sharedblackboard. These mechanisms are
described in detail later in this section.

A. Module Structure

For flexibility, ease of implementation, and testability, we
decompose perception, planning, and control tasks into many
simple tasks. For example, localization with a GPS sensor
could be decomposed into two modules: 1)GPSReadermod-
ule responsible for receiving and processing messages from
the GPS sensor and 2) aLocalizationmodule responsible for
filtering raw sensor readings and updating the vehicle’s state.
With this decoupled structure, the Localization module does
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Fig. 2. Typical module structure.

not need to know how to connect and get data from the GPS
sensor, so changing the sensor or communication protocol has
no effect on Localization.

The typical module structure is shown in Fig. 2. Most
modules need to export commands instructing them to start,
stop, or suspend processing. To provide this functionality, we
split the module into two main threads: aController thread
and aRoutinethread. The module’s task or function, possibly
involving communicating with hardware devices, producingor
consuming messages, and interacting with the blackboard, is
executed in the Routine thread. The Controller thread initiates
and terminates the Routine thread as necessary. Control signals
are passed to a module by inserting messages into a control
queue, either directly (when point-to-point communication is
most appropriate) or via publish-subscribe (described in the
next section).

In most cases, modules should not communicate with each
other directly; they should communicate by publishing and
consuming messages or by interacting with the blackboard.
These approaches eliminate coupling between modules, since
neither the producer nor consumer of information needs to
know about each other.

B. Publish-Subscribe Mechanism

One of our main goals is to enable the flexible construction
of vehicle control systems by composing existing sets of
modules. Since dependencies between modules mean that
one module cannot be compiled, linked, or executed without
the other, we must minimize dependencies to the extent
possible. Dependencies are minimized when one module is
able to notify other modules about important events without
knowing the actual recipient list. This requires an event-driven
system in which event consumers register for (subscribe to)
asynchronous notification of specific event types and event
producers simply generate (publish) events as necessary and
continue processing. The publish-subscribe messaging pattern
is perhaps the most straightforward way to implement this
behavior.

As shown in Fig. 3, the publish-subscribe pattern consists of
3 main entities: the publisher, the broker, and the subscriber.
Events (messages) are categorized into types with correspond-
ing message formats. The publisher produces and publishes
messages that are consumed by the subscriber. The broker is
a message router which, among other duties, forwards each
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Fig. 3. Publish-subscribe messaging pattern.

message from a producer to zero or more subscribers, each
of which must register for the particular message types it
would like to receive. Publishers and subscribers are decoupled
through the use ofmessage channelsthat are set up as part
of the configuration and initialization of the system. Since
the publisher and subscriber only need to know the addresses
of their respective output and input message channels, they
are only coupled to each other by message format.1 The
broker acts as an intermediary, listening to every module’s
outgoing message channel and, according to the message type,
forwarding messages to each subscriber’s incoming message
channel.

Continuing with the vehicle localization example from
section II-A, in which we have GPSReader and Localization
modules, we can apply the publish-subscribe pattern to es-
tablish communication between them. At initialization time,
we first define a message type for GPS data and create an
outgoing message channel for GPSReader and an incoming
message channel for Localization. Next, the outgoing mes-
sage channel for Localization needs to be registered with
the message broker. We recommend setting up all message
channels and subscriptions in a main initialization routine,
to prevent the modules from being coupled to the message
broker. At run time, when GPSReader receives data from the
GPS sensor, it creates a message and inserts it into its outgoing
channel, without knowing what modules will end up retrieving
the message. The broker, which listens the the GPSReader’s
outgoing message channel, receives the message and forwards
it to the to Localization’s incoming message channel. Thus,
Localization receives asynchronous GPS updates whenever
they become available, without knowing anything about the
sender. Likewise, other modules requiring GPS updates can
receive the same data by subscribing with the broker.

C. Blackboard Mechanism

Not all inter-module communication patterns can be han-
dled by an asynchronous publish-subscribe mechanism. For
example, a planning module might need to immediately know
the current best estimate of the vehicle’s position and speed
at a particular point in the near future. It could, say, make a
synchronous request-response call to the localization module,
but handling such synchronous requests would complicate the

1If complete decoupling of publisher and subscriber is desired, it is possible
to add transparent message format translation capabilities to the message
broker.

design of the localization module, which otherwise would only
have to repeatedly listen on its input message channel for
incoming sensor data, update its estimate of the state, and
publish the resulting estimate.

To solve this problem and to provide a general mechanism
for sharing global data, we use a blackboard. Our black-
board is a coarse-grained singleton object that encapsulates
and synchronizes access to all of the shared world state
information needed by the high-level modules to perform
their duties. The synchronization method is a standard shared
read lock/exclusive write lock solution to the readers-writers
problem. Our current implementation is non-preemptive and
allows priority inversion, so designers of the write routines
need to ensure that all updates are non-blocking and complete
in constant time.

The main advantage of the blackboard is that it provides a
simple mechanism for sharing data between modules without
coupling those modules. For example, the localization module
can update the vehicle’s position at any time, and the planning
module can get the current vehicle position at any time, but
the two modules need not know about each other.

This leads to the main disadvantage of the blackboard,
namely that many modules end up coupled to the blackboard
itself. This coupling is further complicated by the fact that
in general, the blackboard API will be task specific. Possi-
ble solutions to extreme cases of these application-specific
dependencies could include 1) refactoring a large incoherent
blackboard into multiple blackboards for different functional
areas of the control system or 2) using standardized database
technology. Unfortunately, if two modules in a design need to
share data, there are few practical choices other than a shared
database to decouple the modules. Fortunately, however, we
find that in practice, the API for a functional area tends to
stabilize quickly after the first version.

III. I MPLEMENTATION

In this section we describe the implementation of the system
architecture’s infrastructure, application of the approach to
the construction of a basic control system for a real automo-
bile, and then, to measure some of the architecture’s quality
attributes, especially extensibility, we integrate the control
system with a virtual reality simulation.

A. Control Design

The vehicle’s task is to follow a predetermined path defined
by a sequence of waypoints. Along the way, it is required
to avoid obstacles on the road and obey traffic regulations
as directed by a fixed set of traffic signs. Our design uses
five main high-level modules: localization, obstacle detection,
traffic sign recognition, planning, and control.

1) Localization:The current simple design uses a GPS sen-
sor and an electronic compass for localization. The two sensor
modalities are integrated with control actions to recursively
estimate a three degree of freedom state using an extended
Kalman filter. State estimates are published to the blackboard.



Fig. 4. Specific system software architecture for Experiment I (Little-MEC
II).

2) Obstacle Detection:We use a front-facing monocular
camera to detect obstacles. When possible obstacles (devi-
ations from the background road color) are detected, their
positions in the vehicle coordinate frame are posted to the
blackboard.

3) Traffic Sign Recognition:We use a second monocular
camera to detect traffic signs using color and shape infor-
mation, then perform template matching to categorize signs.
Based on the position and size of a sign in the image, we
estimate sign positions in the vehicle coordinate frame and
post the resulting signs to the blackboard.

4) Planning: The system repeatedly updates the status of
way-points that have been reached and decides which to pursue
next. Additional waypoints are added and deleted as necessary
to avoid obstacles and follow the instructions of traffic signs.

5) Control: Speed setpoints are specified for each waypoint
as part of the predetermined map. We determine the steering
setpoint using fuzzy logic based on the orientation error,
differential orientation error, and distance to the next waypoint.

B. Experiment I: Little-MEC II

We implemented the architecture and control algorithm
just described on Little-MEC II, a Mitsubishi Galant with a
1.8 L engine and a four-speed automatic transmission. We
equipped the system with a GPS sensor and electronic compass
communicating via RS-232, two cameras communicating via
IEEE-1394, and a 3.0 GHz Pentium Core 2 Duo with 1 GB
of RAM running GNU/Linux (Ubuntu 7.10).

We developed the architectural infrastructure and control
software in C. Each module is implemented by one or
more POSIX threads (POSIX threads are kernel threads on
GNU/Linux). We implemented the blackboard’s synchroniza-
tion mechanisms using POSIX mutexes and condition vari-
ables. We implemented the publish-subscribe mechanism us-
ing POSIX message queues. Since POSIX queues are point-to-
point, the message broker intermediary is necessary to provide
registration and multiple-destination routing facilities.

As shown in Fig. 4, the Little-MEC II system consists of
11 modules represented by blue boxes. All of the commu-
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Fig. 5. Tracking results for Experiment 1 (Little-MEC II).

nication between layers is via the message broker using the
publish subscribe mechanism. The shaded boxes in the system
architecture represent groups of modules that work together on
related tasks.

The Map object shown on the top of the diagram is a
blackboard used by the cooperating high level tasks. It consists
of many data structures, such as sequences of way-points,
the car state history (position, orientation, and speed), and
the positions of obstacles and traffic signs. We allow multiple
concurrent readers and give writers higher priority than readers
to prevent writer starvation. In our initial experiments, we have
only needed immediate writes and polling reads, but asyn-
chronous blackboard event handling would be straightforward
to implement if necessary.

The GUI module is responsible for initialization and allows
users to control (start/stop/suspend) threads running in each
module. The GUI module uses point-to-point message passing
to implement control actions. Since the GUI is necessarily
coupled to all modules via the initialization and control pro-
cedures, its implementation is simplified without any adverse
architectural effect.

As a first system-level test, we set a path for Little-MEC II
to navigate along a road around a football field at a speed of
5 to 10 km/hr. The result is shown in Fig. 5.

C. Experimemt II: Simulation

As a test of the flexibility and extensibility of the proposed
architecture, we modified the system described in section III-B
by replacing the real hardware with a virtual reality simulation.

The modified system architecture is shown in Fig. 6. The
simulator consists of two main components, the vehicle model
and the camera simulator:

1) CarModel: The vehicle model is an active blackboard
encapsulating the automobile’s geometry and state. We use
a non-slippery bicycle model for the dynamics assuming
that the mass of the vehicle is a point at the center of the
rear axle. The module maintains the current state of the
car (position, orientation, and speed) while the simulation is
running, performing updates at 1000 Hz.



Fig. 6. Specific system software architecture for Experiment II (virtual reality
simulation). Switching between the real world and the simulation is a simple
matter of configuring a different set of low-level modules atinitialization time.
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2) CameraSimulator:We use the OpenGL library to render
3D scenes based on a background environment model and the
car state produced by the CarModel, using the same camera
positions as the real car. When called, the module creates a
3D model of the vehicle and the surrounding environment, and
according to the car state (position and orientation), it renders
the images and passes them to the Image(Sim)Grabber.

Integrating the simulator required changing a few modules.
In particular, the modules in the low-level layer that interface
directly with sensors and actuators needed to be replaced with
new modules. The yellow boxes in Fig. 6 are the modules
we had to replace or modify; they are restricted to the low-
level layer. The simulated sensor reader modules run their own
threads and issue queries to the CarModel blackboard, and the
actuator modules also update the CarModel module.

IV. A RCHITECTUREEVALUATION

In this section, we critically evaluate the proposed system
software architecture. We focus on performance, testability,
maintainability, and modifiability.

A. Performance

To evaluate the performance of our system, we compare the
latency of our inter-module communication mechanisms with
that of direct procedure calls.

In the case of the blackboard, modules cooperate with each
other via shared memory. Theoretically, the communication
latency for the blackboard is just the amount of time used to
update memory plus the amount of time the recipient thread
waits to access the data. These are exactly the same steps that
are required for direct module-to-module communication, so
as long as starvation is prevented, the blackboard mechanism
does not increase the latency of inter-module communication.

Our publish-subscribe mechanism, however, uses interme-
diaries (POSIX message queues and the message broker)
to route messages between modules. This surely increases
latency of inter-module communication compared to direct
procedure calls. To determine this cost, we performed a
simple experiment to empirically compare the communication
latency of our publish-subscribe mechanism compared to
direct procedure calls. We built a testing system consisting
of 3 modules: a publisher, a subscriber, and the message
broker. We constructed test messages consisting of a message
header, a fixed-size character string representing the message
payload, and a timestamp. To determine the latency, we set
up the publisher to repeatedly set the timestamp then send
the message, and we set up the subscriber to retrieve the sent
message then compare the message timestamp to the current
timestamp. We varied the message payload from 50 to 1000
bytes.

The results of the comparison are shown in Fig. 7. The over-
head of the publish-subscribe mechanism, while significant, is
on the order of 100 microseconds on our test system. Since
this is much faster than the sensor, actuator, and control loops
(our sensor loops run at 100 Hz), it is manageable, so long
as no more than a few messages are passed per control loop
iteration. This will always be the case as long as the modules
are coarse grained. The architecture thus satisfies the real-time
demands of the typical autonomous robot application.

B. Testability

Our architecture is explicitly designed for testability. The
restriction of dependencies between modules means we can
very easily test at the unit, integration, and system levels. Unit
testing the low-level modules only requires the module itself,
the hardware device the module is communicating with, some
means to generate test input messages for the module, and
some means to examine and determine the correctness of the
resulting output messages. Unit testing the high-level modules
only requires the module itself, a means to generate test input
messages for the module, a means to examine the module’s
output messages, and a test fixture for the blackboard’s initial
state.

We find that the modular and decoupled nature of the system
makes it easy to construct integration tests that combine
subsets of the modules to test the end-to-end data flow.
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Finally, since the system is flexible and straightforward to
extend with the virtual reality simulation described in section
III-C, it is easy to construct specific full-system tests without
the safety issues of testing experimental software on real
vehicles.

C. Maintainability

The goal of maintainability is achieved by systems in which
changes to the software remain local without affecting other
parts of the system. Modularity is one way to ensure that
changes are local. Another indication of maintainability is
the number of dependencies between modules. To assess the
level of dependency in our system, we compare, in Fig. 8, the
dependency diagram for the system using publish-subscribe
and the blackboard, to a system using direct module-to-module
communication.

From the figure, we see that the number of dependencies
between modules, including dependencies on the blackboard,
falls from 10 to 5. As previously explained, the modules are
still slightly coupled by message formats, but this coupling can
also be eliminated through message translation in the message
broker. The decreased number of dependencies will very likely
lead to more maintainable systems in the long run.

D. Modifiability

We believe that following the principles of modularity
and dependency minimization in architecture design leads to
systems that are easy to modify and extend. This has already
been proven in section III-C, in which we show that it is
straightforward to modify an existing system based on our

architecture by replacing a subset of the modules without
affecting the rest of the system at all.

V. CONCLUSION

We have presented a system software architecture for mobile
robots that supports the flexible construction of efficient,
testable, and modifiable autonomous robot vehicles. A series
of two implementation experiments and an evaluation indicate
that the approach is quite promising. In future work, we plan
to build a wider variety of more complex mobile robots on
top of the basic platform and refactor as necessary to achieve
flexibility and reusability.
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