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Abstract—We present a system software architecture for mo- that decompose the robot’s task into a hierarchy of subtasks
bile robots such as autonomous vehicles. The system achisve grganized into layers. Reactive methods [4], [5] combina@yna
the goals of flexibility, maintainability, testability, and modifia- simple parallel short-circuit control loops that bypasghir-
bility through a decoupled software architecture based on a | | ol - tirelv. Most d trol hit
asynchronous publish-subscribe mechanism and a blackbodr evel planning ?n Irely. Most modern contro a_rc |ef:ture
object handling synchronized access to shared data. We refio however, combine some aspects of both deliberative and
on two implementations using the proposed generic architéare reactive control [6]-[12]. Most of these systems use saftwa
and the POSIX rgal timg API. The TiI’St implementation is for an  grchitectures based on cooperating modules with messgage
autonomous vehicle using waypoint-based navigation, andhé passing or procedue calls for communication and synchro-

second implementation uses the same high-level modules but  .”~ .
replaces the low-level hardware interfaces with a virtual eality nization, but others use a shared databasblarkboardfor

simulation. Our experiments and an evaluation indicate thathe ~Communication [13]-[15].

architecture is suitable for a wide variety of control algorithms One potential problem with most of the existing system
and supports the construction of testable, maintainable, ad software architectures is that although modularity is a -com
modifiable autonomous robot vehicles at low cost in terms of ... design goal, they nevertheless introduce unnecessary

real-time performance. . . L )
Index Terms—Software Architecture; Real Time Systems; dependencies between modules or objects, making it difficul

Decoupling; Mobile Robot Control; Autonomous Vehicles. to maintain the software and reuse modules across different
projects.
|. INTRODUCTION In this paper, we propose, implement, and evaluate an

Mobile robots such as intelligent vehicles need to traneduarchitectural solution that attempts to reduce dependsnci
sensor measurements, infer the state of the world, plamgfutbetween modules to a bare minimum. Our approach combines
actions, and execute the plan, all in real time using limitesh asynchronous messaging approach, in which sender and
compute resources. An appropriate software architecsireréceiver are decoupled via a publish-subscribe paradigth, w
crucial for managing complexity, concurrency, and realetima blackboard for updating and querying shared data. The
constraints. The last 20 years has seen a great deal ofchseamplementation is based on the POSIX real-time API. We
in the Al robotics community on mobile robot control archievaluate the architecture by first building a straightfaxdva
tectures emphasizing task flexibility and resolution oftiplé control system for an intelligent vehicle incorporatingeaiety
conflicting goals. At the same time, the embedded systewis sensors, a deliberative waypoint-based planner, and an
engineering community has developed a variety of effectivbstacle detection and avoidance module. We then extend
techniques for the implementation of robust systems coeghoghe system by adding a virtual reality simulation for tegtin
of networks of control units executing tight control loops. the perception, planning, and control software. We find that

In this paper, we distinguish between thebot control the approach produces efficient software with minimal inter
architecture and the system software architecturend take module dependencies. Although the control algorithm we
a software engineering view of the design, implementatioohose for testing is fairly simple, it requires implemeiuat
and evaluation of a system software architecture that maftall of the important module communication patterns. The
only supports a variety of different robot control architees, resulting software architecture would support the vasonitgj
but also scores well in terms of software quality metrics faf control architectures that can be cast as loosely-couple
performance, testability, maintainability, and exteii#ib tasks cooperating through message passing and a shared

Deliberative control architectures range from simple ozint blackboard.
loops [1] to more complex layered architectures [2], [3] The rest of the paper presents our architecture, implemen-
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Sensors Actuators . 3 ) .
The typical module structure is shown in Fig. 2. Most

modules need to export commands instructing them to start,
Fig. 1. Generic software architecture for an autonomoustrob stop, or suspend processing. To provide this functionaligy
split the module into two main threads: Gontroller thread
and aRoutinethread. The module’s task or function, possibly
tation experiments based on the architecture, and a dritiga/olving communicating with hardware devices, produaing
evaluation of the architecture. consuming messages, and interacting with the blackbosird, i
executed in the Routine thread. The Controller threadaiteit

Il. SOFTWARE ARCHITECTURE ] ) )
and terminates the Routine thread as necessary. Contnallsig

Our pr oposed software architecture is shown in Fig. 1. T'&?e passed to a module by inserting messages into a control
system is separated into two layers. The high-level layer co

tains task ii " lanni q trol Iqueue, either directly (when point-to-point communicatis
ains 1ask-Specilic perception, planning and contro neslu most appropriate) or via publish-subscribe (describedhin t
and the low-level layer serves as an interface between W t section)

hardware (sensors and actuators) and the high-level faer. In most cases, modules should not communicate with each

:;)whl_e\;]e: m(iduleds ;5|mply executedthe commands pgb!['Sh%ﬂ'\er directly; they should communicate by publishing and
ybl_lgh-eve modu es, reczlvte ?n processt§enzorh_ahai %Bﬂsuming messages or by interacting with the blackboard.
PUbIISh processed sensor data for consumption by NigR-IeYq o oo approaches eliminate coupling between moduleg sinc

modules. : . :
- . . . neither the producer nor consumer of information needs to
Within the layers, the software is structured into mdaé—goW about each other.

pendent modules, each running one or more local threads.
The modular strup_ture gllows for. erX|pIe construct!on _og_ Publish-Subscribe Mechanism
systems for specific vehicles by including and configuring ] ] . .
an appropriate set of modules. The low-level layer modules©One of our main goals is to enable the flexible construction
depend on the hardware platform, but can be easily replacdgvehicle control systems by composing existing sets of
with a new set of modules for a new hardware platform withotffodules. Since dependencies between modules mean that
affecting high-level modules. Tasks in the high-level lagee  ON€ module cannot be compiled, linked, or executed without
also separated into modules so that algorithmic changesen ¢he other, we must minimize dependencies to the extent
module have little or no effect on other modules. possible. Dependencies are minimized when one module is
To allow the modules to share data and synchronize wigivle to notify other modules about important events without
each other, we use two main mechanismsblish-subscribe knowing the actual recipient list. This requires an evemteh

messaging and a shardtackboard These mechanisms areSystem in which event consumers register for (subscribe to)
described in detail later in this section. asynchronous notification of specific event types and event

producers simply generate (publish) events as necessdry an

A. Module Structure continue processing. The publish-subscribe messagirgrpat

For flexibility, ease of implementation, and testabilitye wis perhaps the most straightforward way to implement this
decompose perception, planning, and control tasks intoymdwehavior.
simple tasks. For example, localization with a GPS sensorAs shown in Fig. 3, the publish-subscribe pattern consists o
could be decomposed into two modules:@PSReademod- 3 main entities: the publisher, the broker, and the subscrib
ule responsible for receiving and processing messages frewents (messages) are categorized into types with comespo
the GPS sensor and 2)Lacalizationmodule responsible for ing message formats. The publisher produces and publishes
filtering raw sensor readings and updating the vehicle® stamessages that are consumed by the subscriber. The broker is
With this decoupled structure, the Localization modulesdo@ message router which, among other duties, forwards each




Msgl

B . design of the localization module, which otherwise woultiyon
Mﬁl (sa cramel}=>) Subscriberl | have to repeatedly listen on its input message channel for
Msg2 incoming sensor data, update its estimate of the state, and

Msg2 ’V'Berffki?e D Subscriber2 publish the resulting estimate.

MsgL2 To solve this problem and to provide a general mechanism
subscribers | fOr sharing global data, we use a blackboard. Our black-
board is a coarse-grained singleton object that encapsulat
and synchronizes access to all of the shared world state
information needed by the high-level modules to perform
their duties. The synchronization method is a standardeshar

message from a producer to zero or more subscribers elepd lock/exclusive write lock solution to the readerstevs

of which must register for the particular message types qfoblem. ,Ol_” gurren'F |mplement§1t|on IS non-pregmptlve_ and
would like to receive. Publishers and subscribers are dgiedu 2/10WS Priority inversion, so designers of the write roesn
through the use ofmessage channetbat are set up as part,need to ensure that all updates are non-blocking and coenplet
of the configuration and initialization of the system. Sincl constant time. . _ .

the publisher and subscriber only need to know the addresse&h® main advantage of the blackboard is that it provides a
of their respective output and input message channels, tfd§PIe mechanism for sharing data between modules without
are only coupled to each other by message fofmahe coupling those modules. For example, the localization rfeodu
broker acts as an intermediary, listening to every modul@n update the vehicle’s position at any time, and the pragni
outgoing message channel and, according to the message t ule can get the current vehicle position at any time, but

forwarding messages to each subscriber’s incoming messHife Wo modules need not kn.ow about each other.
channel. This leads to the main disadvantage of the blackboard,

Continuing with the vehicle localization example fron'@mely that many modules end up coupled to the blackboard

section II-A, in which we have GPSReader and Localizatidis€!f- This coupling is further complicated by the fact tha
modules, we can apply the publish-subscribe pattern to é@_genergl, the blackboard API will be task sp_ecnjc. Poss.|-_
tablish communication between them. At initialization ¢im P& solutions to extreme cases of these application-specifi
we first define a message type for GPS data and createdgRendencies could include 1) refactoring a large incatiere
outgoing message channel for GPSReader and an incon{ﬂl@ckboard into multiple bIackboard_s for dlfferen_t furetal
message channel for Localization. Next, the outgoing med€as of the control system or 2) using standardized databas

sage channel for Localization needs to be registered wigfhnology. Unfortunately, if two modules in a design need t
the message broker. We recommend setting up all messéb@re data, there are few practical choices other than adghar
channels and subscriptions in a main initialization roeytindatabase to decouple the modules. Fortunately, however, we

to prevent the modules from being coupled to the messaiad that in practice, the API for a functional area tends to
broker. At run time, when GPSReader receives data from th@Pilize quickly after the first version.

GPS sensor, it creates a message and inserts it into itsingtgo
channel, without knowing what modules will end up retrigyin
the message. The broker, which listens the the GPSReader' this section we describe the implementation of the system
outgoing message channel, receives the message and ferwarghitecture’s infrastructure, application of the appiodo

it to the to Localization’s incoming message channel. Thughe construction of a basic control system for a real automo-
Localization receives asynchronous GPS updates wheneyg, and then, to measure some of the architecture’s gualit
they become available, without knowing anything about th&tributes, especially extensibility, we integrate thentcol
sender. Likewise, other modules requiring GPS updates cgfstem with a virtual reality simulation.

receive the same data by subscribing with the broker.

Fig. 3. Publish-subscribe messaging pattern.

Il. | MPLEMENTATION

A. Control Design

C. Blackboard Mechanism ) ) ) ]
The vehicle’s task is to follow a predetermined path defined

Not all inter-module commun_ication patterns can pe haBy a sequence of waypoints. Along the way, it is required
dled by an asynchronous publish-subscribe mechanism. kQrayoid obstacles on the road and obey traffic regulations
example, a planning module might need to immediately knoyg girected by a fixed set of traffic signs. Our design uses
the current best estimate of the vehicle’s position and 8peg/e main high-level modules: localization, obstacle dtiteg
at a particular point in the near future. It could, say, makegfic sign recognition, planning, and control.
synchronous request-response call to the localizationuieod 1y | 5cajization: The current simple design uses a GPS sen-
but handling such synchronous requests would complicate U, ‘3nq an electronic compass for localization. The twoens

1 _ _ Lo " . modalities are integrated with control actions to recuaisiv

If complete decoupling of publisher and subscriber is @ekiit is possible timat th d f freed tat . tended
to add transparent message format translation capabilibethe message estimate .a ree egr?e Ot Treedom §a € using an extenae
broker. Kalman filter. State estimates are published to the blaakboa



200

160

Traffic Sign Obstacle
Recognition Detection

| Control |

120

X(m.)

©-Way-points

80

no

—Running Result

40 4

Low-level Modules |

r———=———]

GPSReader | | c

[ s o
e __£ _______ 1_ _______ N ] i _______ _3 [ ) 0 40 80 120 160 200 240
¥

Y (m.
ePs PO Camera Speed Control | { Steering Control (m.)
Unit Unit

Fig. 5. Tracking results for Experiment 1 (Little-MEC II).

Fig. 4. Specific system software architecture for Experimeittle-MEC
1.

nication between layers is via the message broker using the

2) Obstacle DetectionWe use a front-facing monocularpublish subscribe mechanism. The shaded boxes in the system
camera to detect obstacles. When possible obstacles (devéhitecture represent groups of modules that work togetie
ations from the background road color) are detected, the#lated tasks.
positions in the vehicle coordinate frame are posted to theThe Map object shown on the top of the diagram is a
blackboard. blackboard used by the cooperating high level tasks. Itistsms

3) Traffic Sign RecognitionWe use a second monoculaof many data structures, such as sequences of way-points,
camera to detect traffic signs using color and shape infahe car state history (position, orientation, and speedy, a
mation, then perform template matching to categorize signke positions of obstacles and traffic signs. We allow midtip
Based on the position and size of a sign in the image, wencurrent readers and give writers higher priority thauegs
estimate sign positions in the vehicle coordinate frame atmprevent writer starvation. In our initial experimentg have
post the resulting signs to the blackboard. only needed immediate writes and polling reads, but asyn-

4) Planning: The system repeatedly updates the status ofironous blackboard event handling would be straightfodwa
way-points that have been reached and decides which togurguimplement if necessary.
next. Additional waypoints are added and deleted as negessa The GUI module is responsible for initialization and allows
to avoid obstacles and follow the instructions of trafficnsig users to control (start/stop/suspend) threads runningaah e

5) Control: Speed setpoints are specified for each waypointodule. The GUI module uses point-to-point message passing
as part of the predetermined map. We determine the steeriogimplement control actions. Since the GUI is necessarily
setpoint using fuzzy logic based on the orientation erratoupled to all modules via the initialization and controbpr
differential orientation error, and distance to the nexyp@int. cedures, its implementation is simplified without any adeer

. s architectural effect.
B. Experiment I: Little-MEC Il As a first system-level test, we set a path for Little-MEC Il

~ We implemented the architecture and control algorithgy nayigate along a road around a football field at a speed of
just described on Little-MEC II, a Mitsubishi Galant with a5 15 10 km/hr. The result is shown in Fig. 5.

1.8 L engine and a four-speed automatic transmission. We

equippeq the_ syst_em with a GPS sensor and electror_wic ‘?°m%§%xperimemt II: Simulation

communicating via RS-232, two cameras communicating via

IEEE-1394, and a 3.0 GHz Pentium Core 2 Duo with 1 GB As a test of the flexibility and extensibility of the proposed

of RAM running GNU/Linux (Ubuntu 7.10). architecture, we modified the system described in sectleB Il
We developed the architectural infrastructure and contry replacing the real hardware with a virtual reality sinticia.

software in C. Each module is implemented by one or The modified system architecture is shown in Fig. 6. The

more POSIX threads (POSIX threads are kernel threads g$imulator consists of two main components, the vehicle rhode

GNU/Linux). We implemented the blackboard’s synchroniz&nd the camera simulator:

tion mechanisms using POSIX mutexes and condition vari-1) CarModel: The vehicle model is an active blackboard

ables. We implemented the publish-subscribe mechanism aseapsulating the automobile’s geometry and state. We use

ing POSIX message queues. Since POSIX queues are pointatoron-slippery bicycle model for the dynamics assuming

point, the message broker intermediary is necessary tagaovthat the mass of the vehicle is a point at the center of the

registration and multiple-destination routing facilgtie rear axle. The module maintains the current state of the
As shown in Fig. 4, the Little-MEC Il system consists otar (position, orientation, and speed) while the simulai®

11 modules represented by blue boxes. All of the commuinning, performing updates at 1000 Hz.
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A. Performance

To evaluate the performance of our system, we compare the
latency of our inter-module communication mechanisms with
that of direct procedure calls.

In the case of the blackboard, modules cooperate with each
other via shared memory. Theoretically, the communication
latency for the blackboard is just the amount of time used to
update memory plus the amount of time the recipient thread
waits to access the data. These are exactly the same stéps tha
are required for direct module-to-module communicatian, s
as long as starvation is prevented, the blackboard meahanis
does not increase the latency of inter-module communicatio

Our publish-subscribe mechanism, however, uses interme-
diaries (POSIX message queues and the message broker)
to route messages between modules. This surely increases
latency of inter-module communication compared to direct
procedure calls. To determine this cost, we performed a
simple experiment to empirically compare the communicatio
latency of our publish-subscribe mechanism compared to
direct procedure calls. We built a testing system congjstin
of 3 modules: a publisher, a subscriber, and the message
broker. We constructed test messages consisting of a neessag
header, a fixed-size character string representing theagess
payload, and a timestamp. To determine the latency, we set
up the publisher to repeatedly set the timestamp then send
the message, and we set up the subscriber to retrieve the sent
message then compare the message timestamp to the current
timestamp. We varied the message payload from 50 to 1000
bytes.

The results of the comparison are shown in Fig. 7. The over-
head of the publish-subscribe mechanism, while signifidant
on the order of 100 microseconds on our test system. Since
this is much faster than the sensor, actuator, and contopklo

2) CameraSimulatorWe use the OpenGL library to rende{OUr sensor loops run at 100 Hz), it is manageable, so long
3D scenes based on a background environment model and@fd"© more than a few messages are passed per control loop
car state produced by the CarModel, using the same camifgation. This will always be the case as long as the modules
positions as the real car. When called, the module create8'§ coarse grained. The architecture thus satisfies théimel
3D model of the vehicle and the surrounding environment, af§mands of the typical autonomous robot application.

according to the car state (position and orientation),ntess
the images and passes them to the Image(Sim)Grabber.

B. Testability

Integrating the simulator required changing a few modules.Our architecture is explicitly designed for testabilityner

In particular, the modules in the low-level layer that ifdee

restriction of dependencies between modules means we can

directly with sensors and actuators needed to be repladbd wiery easily test at the unit, integration, and system leugtst

new modules. The yellow boxes in Fig. 6 are the moduléssting the low-level modules only requires the moduldfitse
we had to replace or modify; they are restricted to the lowhe hardware device the module is communicating with, some
level layer. The simulated sensor reader modules run thair omeans to generate test input messages for the module, and
threads and issue queries to the CarModel blackboard, &dshme means to examine and determine the correctness of the
actuator modules also update the CarModel module.

IV. ARCHITECTUREEVALUATION

resulting output messages. Unit testing the high-levelufexi
only requires the module itself, a means to generate test inp
messages for the module, a means to examine the module’s
output messages, and a test fixture for the blackboardialinit
state.

In this section, we critically evaluate the proposed systemWe find that the modular and decoupled nature of the system
software architecture. We focus on performance, testgbilimakes it easy to construct integration tests that combine

maintainability, and modifiability.

subsets of the modules to test the end-to-end data flow.



Map architecture by replacing a subset of the modules without
affecting the rest of the system at all.
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robots that supports the flexible construction of efficient,

testable, and modifiable autonomous robot vehicles. A serie

| & | EEEIREEE of two implementation experiments and an evaluation indica
e that the approach is quite promising. In future work, we plan
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