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Abstract. Sketching is ubiquitous in medicine. Physicians commonly
use sketches as part of their note taking in patient records and to help
convey diagnoses and treatments to patients. Medical students frequently
use sketches to help them think through clinical problems in individual
and group problem solving. Applications ranging from automated pa-
tient records to medical education software could benefit greatly from the
richer and more natural interfaces that would be enabled by the ability to
understand sketches. In this paper we take the first steps toward devel-
oping a system that can understand anatomical sketches. Understanding
an anatomical sketch requires the ability to recognize what anatomical
structure has been sketched and from what view (e.g. parietal view of
the brain), as well as to identify the anatomical parts and their loca-
tions in the sketch (e.g. parts of the brain), even if they have not been
explicitly drawn. We present novel algorithms for sketch recognition and
for part identification. We evaluate the accuracy of the recognition algo-
rithm on sketches obtained from medical students. We evaluate the part
identification algorithm by comparing its results to the judgment of an
experienced physician.

1 Introduction

Sketching is ubiquitous in medicine. Physicians commonly use sketches as part
of their note taking in patient records and to help convey diagnoses and treat-
ments to patients. Medical students frequently use sketches to help them think
through clinical problems and to facilitate communication with other students
when participating in group problem solving. Applications ranging from auto-
mated patient records to medical education software could benefit greatly from
the richer and more natural interfaces that would be enabled by the ability to
understand sketches. Our particular interest in sketch understanding stems from
our work on the COMET collaborative intelligent tutoring system for medical
problem-based learning (PBL) [12]. COMET provides a collaborative environ-
ment in which students from disparate locations can work together to solve
clinical reasoning problems. It generates tutorial hints by using models of indi-
vidual and group problem solving. The system provides a multi-modal interface
that integrates text and graphics so as to provide a rich communication channel



between the students and the system, as well as among students in the group.
While COMET has already proven itself useful [13], it still does not support the
full range of interaction that occurs in human-tutored PBL sessions. In particu-
lar, it does not support interaction through sketches. From observation of PBL
sessions at Thammasat University Medical School we have found that students
typically sketch anatomical structures on the white board while solving a prob-
lem. The sketches are used to help think through the problem and as an artifact
to support communication among the students. Consider the following scenario:

A group of students in a PBL session is given a problem concerning
unconsciousness due to a car accident. One student sketches the brain.
Thinking about direct impact to the head, another student annotates
the sketch to indicate a contusion in the area where the frontal lobe
should be, although the frontal lobe was not explicitly drawn. The tutor
understands this annotation and encourages the students to also consider
damage to the brain stem by pointing to that part of the sketch and
saying “think about what is going on here as well”.

Supporting this kind of interaction requires several capabilities. First is the
ability to recognize what anatomical structure or structures have been sketched
and from what perspective (e.g. parietal view of the brain). Next is the ability
to identify anatomical parts of the sketched structure (e.g. frontal lobe of the
brain), even if they have not been explicitly drawn. Finally is the ability to un-
derstand annotations on the sketch and to be able to effectively use the sketch
as a medium of communication in a dialogue. In this paper we address the first
two issues. We present a novel approach to sketch recognition that combines the
use of shape context matching [3] together with continuous Naive Bayes classifi-
cation. The approach is robust and is insensitive to scaling. Next we present an
algorithm that uses shape context matching in yet another way to identify the
parts of the anatomical structure. The algorithm works even if the proportions
in the sketch are not anatomically correct and whether or not the anatomical
parts have been explicitly drawn. We evaluate the sketch recognition algorithm
on a collection of sketches by medical students of various views of the brain,
heart, and lungs. Our algorithm achieves a recognition accuracy of 73.6%, far
above the baseline random classification accuracy of 12.5%. We evaluate the
part identification algorithm by comparing its results to those of an experienced
physician. Location, orientation, size, and shape of the parts identified by the
physician and the algorithm are in close agreement.

2 Related Work

The last few years has seen a tremendous increase in interest in sketch-based
interfaces. Applications include computer-aided design, knowledge acquisition,
and image retrieval. Researchers in this area emphasize that the informalness
of sketches is important because it communicates that fact that the ideas be-
ing represented are still rough and thus invites collaboration and modification.



Clean, precise-looking diagrams created by most graphics programs can produce
an impression of more precision than was intended and can lead to a feeling of
commitment to a sketch as originally drawn [9, 7]. We now discuss a few systems
that are representative of the state-of-the-art.

The Electronic Cocktail Napkin [7] is a general-purpose sketching program
that provides trainable symbol recognition, parses configurations of symbols and
spatial relations, and can match similar figures. It recognizes a symbol by com-
paring its features — pen path, number of strokes and corners, and aspect ratio
— with a library of stored feature templates. Applications developed using the
system include a visual bookmark system, an interface to simulation programs,
and an HTML layout design tool.

SILK [10] is a sketching tool for developing user interfaces. SILK recognizes
seven basic widgets, as well as combinations of widgets. To recognize a widget,
SILK first identifies primitive components using a statistical classifier learned
from examples. SILK recognizes four single-stroke primitive components: rectan-
gle, squiggly line, straight line, and ellipse. Once components are identified, they
are passed to an algorithm that detects spatial relationships among primitive
and widget components. These include containment, closeness, and sequence.
SILK finally uses a set of rules to identify widgets from primitive components.
In an evaluation with twelve users, SILK achieved a widget recognition accuracy
of 69%. SILK supports use of five single-stroke gestures for editing sketches:
cross, circle, squiggly line, spiral, and angle (for insertion). Designers can create
storyboards by drawing arrows from any screen’s graphical objects, widgets, or
background to another screen. SILK has a run mode in which it can simulate
the functioning of the widgets and the transitions between screens.

ASSIST [2] supports sketching and simulation of simple 2-dimensional me-
chanical systems. ASSIST recognizes the user’s sketch by identifying patterns
that represent mechanical parts, leveraging off the fact that mechanical engi-
neering has a fairly concrete visual vocabulary for representing components.
ASSIST uses a three-stage procedure to choose the most likely interpretation for
each stroke. First it matches the stroke to a set of templates to produce the set
of possible interpretations, e.g. circle or rectangle. Next it ranks the interpreta-
tion using heuristics about drawing style and mechanical engineering. Finally,
the system chooses the best consistent overall set of interpretations and displays
this to the user. ASSIST supports editing of the sketch through the use of ges-
tures. At any time during the design process, the user can run a simulation of
the design being sketched.

In an effort to attain immediate practical functionality as well as broad
domain independence, Forbus and Usher [5] take a very different approach to
sketching. Their sKEA system does not address the recognition issue, focusing
rather on qualitative reasoning about the spatial relations among objects and
on analogical comparison of sketches containing multiple objects. They avoid
the recognition problem by requiring the user to indicate when he begins and
finishes drawing a new object as well as the interpretation of the object. The
interpretation is selected from a pull-down menu.



The work reported in this paper is the first application of sketch-based in-
terfaces to intelligent tutoring that we know of, and also the first in a medical
domain other than image retrieval [1]. The motivation behind the use of sketch-
ing in medical tutoring is similar to that previously mentioned, namely that
sketching supports collaboration and encourages modification. But in addition,
sketching in medical PBL is valuable because it gives students practice in re-
calling anatomical structure. A menu-based drawing interface would not provide
such practice. The issues involved in recognizing anatomical sketches are signifi-
cantly different from those of recognizing design diagrams. Most of the previous
work in sketching starts by recognizing primitive components such as lines, cir-
cles, and corners. This works fine for domains such as mechanical engineering
and user interface design, but anatomical sketches are rather amorphous com-
plex structures which may be sketched with more or less detail. This complexity
and lack of a well-defined set of primitive components demands a very different
approach to object recognition. Fortunately, the anatomical recognition problem
is eased by the fact that by convention 2-dimensional depictions of anatomical
structures are only shown from eight standard views. We have five external views
corresponding to the sides of a cube: anterior, posterior, superior, inferior, lat-
eral (2 sides); and three internal views corresponding to the three cutting planes:
sagittal, coronal, axial. This fact is exploited by our recognition algorithm, de-
scribed next.

3 Recognizing Structure and Parts

We call our prototype system UNAS3 for UNderstanding Anatomical Sketches.
We divide the task of understanding a sketch into two subtasks: identifying what
the sketch portrays, then identifying the relevant parts of the sketch.

Without constraints, this problem would be extremely difficult, if not impos-
sible. Fortunately, the fact that 2-dimensional anatomical sketches are always
drawn from one of eight standard views allows us to cast the problem of iden-
tifying what a sketch portrays as a classification problem: given an image of a
sketch I, find the class y = f(I) ∈ {1, . . . , K} to which the image belongs. The
set of possible classes corresponds to the set of standard views of anatomical
structures, e.g., “parietal view of the brain” and “internal view of the lungs.”
With enough labeled examples {(I1, y1), . . . , (Im, ym)}, it is possible to con-
struct a classifier ŷ = h(I) that predicts the unknown true class y = f(I) given
a previously unseen I.

Once we assume the class y that sketch I belongs to, we must then segment
the sketch into regions corresponding to anatomical parts. Since every instance
of a standard anatomical view contains the same parts, the task is well-defined:
attach a label z ∈ {1, . . . , Ly} to every pixel in I. Here the set of possible
labels corresponds to the set of anatomical parts normally visible in view y, e.g.,
“temporal lobe” and “parietal lobe.”
3 Unas was the last king of the 5th dynasty of ancient Egypt. The interpretation of

the bas-relief scenes on the inside of his tomb remains a challenge to this day.



In the preliminary experiments reported upon in this paper, we have made
the following simplifying assumptions:

– Each image I contains exactly one anatomical structure, e.g. brain, lungs,
heart.

– Sketches may not contain annotations or extraneous parts.
– Each sketch is complete (there are no major parts left out).

In future work, we plan to relax all of these assumptions.
For the classification problem, we take the Bayesian maximum a posteriori

(MAP) approach: measure a finite set of features x1, . . . , xn from I then select
the class

ŷ = arg max
y

P (y | x)

where
P (y | x) ∝ P (x | y)P (y).

P (x | y) is the likelihood of feature vector x given class y, and P (y) is the prior
probability of class y. We estimate the parameters of statistical model P (x | y)
from training data, and in the experiments reported in this paper, we assume
uniform priors P (y). In some contexts, such as a PBL session, however, the priors
could be chosen to reflect our prior knowledge that, for example, in a head injury
case study, sketches of the brain are more likely than sketches of the lungs.

The MAP classifier just described requires a set of features and a model for
the data likelihood. In our scheme, feature xi for sketch I is the dissimilarity
between I and template image Ti according to Belongie et al.’s Shape Context
measure [3]. Ideally, the set of templates Ti contains several examples of each
class. Our model for the data likelihood is the well-known Naive Bayes model

P (x | y) =
∏

i

P (xi | y).

The model is “naive” in that it assumes the feature values xi are statistically
conditionally independent given y, even though they generally are not.

Once our Naive Bayes classifier picks the best class ŷ for a given input sketch
I, the next step is to segment the sketch into regions. Our system first warps the
input sketch into correspondence with a pre-labeled canonical template T ∗

ŷ for
class ŷ, assigns labels to sketch points using the labels in T ∗

ŷ , finds the boundary
of each region, then labels each pixel in the sketch according to which region it
falls into.

We compute point correspondences between I and T ∗
ŷ using (once again)

Belongie et al.’s Shape Context algorithm [3]. We then use the point corre-
spondences to estimate a mapping between arbitrary points in the sketch and
template using the Thin Plate Spline (TPS) model [4]. To identify the boundary
of each region, we transfer the labeled points from T ∗

ŷ to I then connect those
points using a simple traveling salesperson algorithm [8].

In the rest of this section, we describe the sketch classification and segmen-
tation algorithms in more detail.



3.1 Sketch Classification

As previously described, the basic features in our Naive Bayes classifier are
dissimilarities between the input sketch image I and each of a set of template
images Ti. The particular dissimilarity measure we use is Belongie et al.’s Shape
Context (SC) measure [3]. SC represents a shape as a set of points sampled from
the shape’s contours. Each sample point is represented by a coarse histogram of
the other points surrounding it. To determine the dissimilarity of two shapes, SC
first finds a correspondence between the sampled points in the two shapes. Then
the total dissimilarity between the shapes is simply the sum of the dissimilarities
of the sample points.

For each template image, we convert the raw grayscale or color image to a line
drawing then In either case, we randomly sample Ns points from the resulting
“edge” image. For each point pi, we obtain the SC histogram by counting the
number of pixels falling into Nb log-polar bins around pi then normalizing the
bin counts (so the sum of the bin counts is 1). The width of the bin template
is adjusted to be proportional to the mean squared distance between points, to
make the resulting histograms invariant to the scale of the image.

For a new sketch, we perform the same sampling and SC histogram compu-
tation steps, then find the optimal correspondence between the sketch sample
points and the template’s sample points. The dissimilarity between two nor-
malized SC descriptors is the simply the χ2 test statistic. Given the (square)
dissimilarity matrix for the sketch and template SC histograms, the optimal cor-
respondence is the permutation of the sketch points minimizing the summed dis-
similarity of the matched points. This corresponds to a weighted bipartite graph
matching problem and is solved in O(N3

s ) time using the Hungarian method
[11]. Once we obtain the optimal assignment, the final dissimilarity xi between
sketch I and template Ti is the sum of the Ns individual point-matching costs.

After computing the dissimilarities xi between sketch I and templates Ti,
UNAS forms the feature vector x = [x1, . . . , xn]T , which is then input to the
sketch classifier.

UNAS assumes each of the probability densities P (xi | y) used in the Naive
Bayes classifier is a Gaussian with mean µy,i and standard deviation σy,i. The
classifier’s 2nK parameters µy,i, σy,i are estimated directly from a training set
containing an equal number of example sketches from each class.

Once UNAS obtains the MAP estimate ŷ for the class of I, the next step is to
segment the sketch into regions corresponding to anatomical parts. We describe
the details of the segmentation procedure next.

3.2 Sketch Segmentation

As previously described, the first step in segmentation is to align sketch I with
the canonical labeled template T ∗

ŷ for class ŷ. To align the sketch with the
template, UNAS first uses Shape Context as described above to find a set of Ns

point correspondences (xi, yi) ↔ (x′
i, y

′
i) between the sketch and the template.

These correspondences are then used to fit a thin plate spline (TPS) model [4]



mapping T ∗
ŷ to I. TPS fits a smooth function fx(x, y) mapping the template

points (xi, yi) to the x coordinates x′
i of the sketch points, and another smooth

function fy(x, y) mapping the template points to the y coordinates y′i of the
sketch points. The fitted functions fx and fy model the deformation of thin
steel plates constrained to interpolate the observed values x′

i and y′i, respectively.
However, since sampling introduces noise, and the Hungarian assignment method
does not attempt to impose any spatial regularity constraints, strict interpolation
is not desirable. Belongie et al. [3] introduce a regularization factor into the
minimization that penalizes excessively warped transformations. The quality of
the final transform can be iteratively improved by repeating the correspondence
estimation and transform estimation steps, using the results of the previous step
as a starting point. In our experiments, we iterate the process 6 times. The result
is a smooth mapping from every point in T ∗

ŷ to a point in I.
The canonical templates T ∗

y are derived from drawings in medical atlases, for
which the ground truth segmentation is known. When we sample and compute
the SC histograms for each canonical template, we also associate (by hand) a set
of labels with each sampled point. The labels indicate which regions (anatomical
parts) each point belongs to. Since the sampled points correspond to edges in
the original image, they often delineate boundaries between two regions; in these
cases, the points are assigned the labels of both regions.

We initiate the segmentation process by simply copying the labels of the
template points (xi, yi) to the corresponding points (fx(xi, yi), fy(xi, yi)) in I.
Now the task is to use these points to compute a closed boundary for each region
of I. Under certain conditions described by Giesen [6], solutions to the traveling
salesperson tour problem (TST) accomplish exactly this task.

We use Giesen’s insight for curve reconstruction in UNAS. For each anatom-
ical part label zi ∈ {1, . . . , Lŷ} for view ŷ, UNAS collects the set of projected
boundary points for region zi and runs a traveling salesperson algorithm [8] to
“connect the dots.” The result is a simple polygon approximating the boundary
of region zi in I.

The final step, after the region boundaries have been determined, is to use
those boundaries to assign a unique label z to each pixel of I. UNAS tests each
pixel for membership in each polygonal region using the technique of segment
intersections: if an arbitrary ray from pixel p intersects an odd number of the
polygon’s sides, it is inside the polygon; otherwise, it is outside the polygon.

This concludes our description of the classification and segmentation algo-
rithms employed by UNAS. In the next section, we describe an empirical evalu-
ation of the approach.

4 Evaluation

We evaluated the sketch classification algorithm by building a Naive Bayes clas-
sifier for the brain, heart, and lungs and evaluating its accuracy in classifying
sketches. We chose the following eight views:

– Brain: parietal (lateral), sagittal, basal (inferior)



Fig. 1. Medical student sketches (first column) with corresponding segmentations pro-
duced by a physician (second column) and by UNAS (third column). The templates
used by the segmentation algorithm are shown in the upper right corners.

– Heart: anterior, posterior, interior (coronal)
– Lung: anterior, interior (coronal)

These views were chosen because they are the standard views from which these
organs are typically drawn. We collected 300 sketches from 48 medical students
in their second to sixth years of study. The sketches were vetted for quality by
a physician and we eliminated those that the physician could not identify. This
was done because we do not expect our recognition algorithm to perform better
than an experienced physician and because low quality sketches are unlikely to
be useful as templates. This left us with 272 sketches. We then chose an equal
number of sketches for each view, resulting in 30 sketches for each view or a total
of 240 sketches. For each view we randomly separated the sketches into 70% (21



sketches) for training and 30% (9 sketches) for testing. All the 168 sketches in
the training set were potential templates in the Naive Bayes classifier. To this set
we added six medical atlas illustrations for each view, resulting in a total of 216
candidate templates. The 168 sketches in the training set were used to compute
the means µy,i and variances σy,i of eight conditional Gaussian distributions
P (xi | y) for each candidate template Ti. Using all the templates would result
in a classifier with unacceptably slow running time and also may not yield the
highest classification accuracy. So we conducted feature selection by performing
a best-first search through the space of all subsets of templates. Each subset
resulted in a different Naive Bayes classifier, that was evaluated on a validation
set, using 7-fold cross validation (to evenly divide the training set of 21 sketches
per view). The best performing classifier contained 24 templates. This classifier
had a total classification accuracy of 73.6% on the test set, far above the baseline
random classification accuracy of 12.5%. The accuracy for each class ranged from
the lowest value of 55.6% for the brain parietal and heart posterior views to the
highest of 88.9% for the heart anterior and lung external views.

We evaluated the sketch segmentation algorithm by comparing its segmen-
tation to that of an experienced physician on three sketches each of the external
view of the lungs and the parietal view of the brain. We chose three qualitatively
different sketches for each organ. Each sketch used was correctly recognized by
UNAS. The segmentation results are shown in Figure 1. The first column shows
the sketches, the second column is the physician’s segmentation, and the last
column is UNAS’s segmentation. The segmentations produced by UNAS and by
the physician agree quite closely on all sketches. For example, in the first sketch
of the lung (i) the student drew a protrusion below the superior lobe of the left
lung that is not normally drawn in the external view. Both the physician and
UNAS correctly did not include this as part of the superior lobe. The segmen-
tations produced by UNAS differ from of those of the physician in two primary
respects. When internal parts are drawn slightly incorrectly, the physician still
segments following the lines in the sketch. In contrast, UNAS attempts to cor-
rect the sketch. This can be seen by comparing the superior lobe of the left lung
in viii and ix, and the cerebellum in viii and ix. The other difference is that
because the thin-plate spline transformation is applied globally, sometimes parts
get warped too much, for example the pons in segmentation vi.

5 Conclusions and Future Research

The results from our initial prototype system are encouraging but much work
remains to be done in order to realize the functionality described in our moti-
vating example. We are currently gathering sample sketches of more anatomical
structures to expand the scope of UNAS. We also plan to compare the recog-
nition accuracy and segmentation results of UNAS to those of physicians with
varying levels of experience. On the algorithm side, several improvements and
extensions can be made. The accuracy of the recognition algorithm can be im-
proved. A first step is to use a more sophisticated search for feature selection



since the feature space seems to contain many local maxima. A next step is to
relax the Gaussian assumption in the Naive Bayes model, but this will require
more examples. Other machine learning techniques that direclty use similar-
ity information, such as support vector machines with similarity kernels, are
promising and should be tried. We have assumed that a sketch includes only
one anatomical structure but sketches often contain multiple structures as well
as incompletely drawn structures. Generalizing our approach to handle this will
possibly require adding spatial reasoning abilities. In addition to understanding
the sketch, UNAS should be able to understand annotations commonly used in
medicine, such as arrows, circles, crosses, darkened regions, and clusters of dots.
For this we are exploring the use of hidden Markov models, which tend to work
well for such relatively simple symbols. The final step will be to integrate UNAS
into the COMET intelligent tutoring system.
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