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Summary

Objective: Sketching is ubiquitous in medicine. Physicians commonly use sketches as
part of their note taking in patient records and to help convey diagnoses and
treatments to patients. Medical students frequently use sketches to help them think
through clinical problems in individual and group problem solving. Applications
ranging from automated patient records to medical education software could benefit
greatly from the richer and more natural interfaces that would be enabled by the
ability to understand sketches. In this paper we take the first steps toward developing
a system that can understand anatomical sketches.
Methods: Understanding an anatomical sketch requires the ability to recognize what
anatomical structure has been sketched and from what view (e.g. parietal view of the
brain), as well as to identify the anatomical parts and their locations in the sketch
(e.g. parts of the brain), even if they have not been explicitly drawn.We present novel
algorithms for sketch recognition and for part identification. We evaluate the
accuracy of the recognition algorithm on sketches obtained from medical students.
We evaluate the part identification algorithm by comparing its results to the judgment
of an experienced physician.
Results: The sketch recognition algorithm achieves a recognition accuracy of 75.5%,
far above the baseline random classification accuracy of 6.7%. Comparison of the

results of the part identification algorithm with the judgment of an experienced
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physician shows close agreement in terms of location, orientation, size, and shape of
the identified parts.
Conclusions: The performance of our prototype in terms of accuracy and running time
provides strong evidence that development of robust sketch understanding systems
for medical domains is an attainable goal. Further work needs to be done to extend
the approach to sketches containing multiple and partial anatomical structures, as
well as to be able to interpret sketch annotations.
# 2006 Elsevier B.V. All rights reserved.
1. Introduction

Sketching is ubiquitous in medicine. Physicians
commonly use sketches as part of their note taking
in patient records and to help convey diagnoses
and treatments to patients. Medical students fre-
quently use sketches to help them think through
clinical problems and to facilitate communication
with other students when participating in group
problem solving. Applications ranging from auto-
mated patient records to medical education soft-
ware could benefit greatly from the richer and
more natural interfaces that would be enabled
by the ability to understand sketches. Our parti-
cular interest in sketch understanding stems from
our work on the COMET collaborative intelligent
tutoring system for medical problem-based learn-
ing (PBL) [1,2]. COMET provides a collaborative
environment in which students from disparate
locations can work together to solve clinical rea-
soning problems. It generates tutorial hints by
using models of individual and group problem sol-
ving. The system provides a multi-modal interface
that integrates text and graphics so as to provide a
rich communication channel between the students
and the system, as well as among students in the
group. While COMET has already proven itself
useful [3], it still does not support the full range
of interaction that occurs in human-tutored PBL
sessions. In particular, it does not support inter-
action through sketches. From observation of PBL
sessions at Thammasat University Medical School
we have found that students typically sketch ana-
tomical structures on the white board while sol-
ving a problem. The sketches are used to help
think through the problem and as an artifact to
support communication among the students. Con-
sider the following scenario:

A group of students in a PBL session is given a
problem concerning unconsciousness due to a car
accident. One student sketches the brain. Think-
ing about direct impact to the head, another
student annotates the sketch to indicate a contu-
sion in the area where the frontal lobe should be,
although the frontal lobe was not explicitly drawn.
Please cite this article as: Peter Haddawy et al., Anatomical
structure, Artificial Intelligence in Medicine (2006), doi:10.
The tutor understands this annotation and
encourages the students to also consider damage
to the brain stem by pointing to that part of the
sketch and saying ‘‘think about what is going on
here as well.’’

Supporting this kind of interaction requires sev-
eral capabilities. First is the ability to recognize
what anatomical structure or structures have been
sketched and from what perspective (e.g. parietal
view of the brain). Next is the ability to identify
anatomical parts of the sketched structure (e.g.
frontal lobe of the brain), even if they have not
been explicitly drawn. Finally is the ability to
understand annotations on the sketch and to be
able to effectively use the sketch as a medium of
communication in a dialog. In this paper we
address the first two issues. We present a novel
approach to sketch recognition that combines the
use of shape context matching [4] together with
support vector machine (SVM) classification. The
approach is robust and is insensitive to scaling.
Next we present an algorithm that uses shape
context matching in yet another way to identify
the parts of the anatomical structure. The algo-
rithm works even if the proportions in the sketch
are not anatomically correct and whether or not
the anatomical parts have been explicitly drawn.
We evaluate the sketch recognition algorithm on a
collection of sketches by medical students of var-
ious views of the brain, heart, and lungs. Our
algorithm achieves a recognition accuracy of
75.5%, far above the baseline random classifica-
tion accuracy of 6.7%. We evaluate the part iden-
tification algorithm by comparing its results to
those of an experienced physician. Location,
orientation, size, and shape of the parts identified
by the physician and the algorithm are in close
agreement.
2. Related work

The last few years has seen a tremendous increase
in interest in sketch-based interfaces. Applica-
tions include computer-aided design, knowledge
sketch understanding: Recognizing explicit and implicit
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acquisition, and image retrieval. Researchers in
this area emphasize that the informality of
sketches is important because it communicates
that fact that the ideas being represented are still
rough and thus invites collaboration and modi-
fication. Clean, precise-looking diagrams created
by most graphics programs can produce an impres-
sion of more precision than was intended and can
lead to a feeling of commitment to a sketch as
originally drawn [5,6]. We now discuss a few
systems that are representative of the state of
the art.

The Electronic Cocktail Napkin [6] is a general-
purpose sketching program that provides trainable
symbol recognition, parses configurations of sym-
bols and spatial relations, and can match similar
figures. It recognizes a symbol by comparing its
features — pen path, number of strokes and corners,
and aspect ratio — with a library of stored feature
templates. Applications developed using the system
include a visual bookmark system, an interface to
simulation programs, and an HTML layout design
tool.

SILK [7] is a sketching tool for developing user
interfaces. SILK recognizes seven basic widgets, as
well as combinations of widgets. To recognize a
widget, SILK first identifies primitive components
using a statistical classifier learned from examples.
SILK recognizes four single-stroke primitive compo-
nents: rectangle, squiggly line, straight line, and
ellipse. Once components are identified, they are
passed to an algorithm that detects spatial relation-
ships among primitive and widget components.
These include containment, closeness, and
sequence. SILK finally uses a set of rules to identify
widgets from primitive components. In an evalua-
tion with twelve users, SILK achieved a widget
recognition accuracy of 69%. SILK supports use of
five single-stroke gestures for editing sketches:
cross, circle, squiggly line, spiral, and angle (for
insertion). Designers can create storyboards by
drawing arrows from any screen’s graphical
objects, widgets, or background to another screen.
SILK has a run mode in which it can simulate the
functioning of the widgets and the transitions
between screens.

ASSIST [8] supports sketching and simulation of
simple two-dimensional mechanical systems.
ASSIST recognizes the user’s sketch by identifying
patterns that represent mechanical parts, lever-
aging off the fact that mechanical engineering
has a fairly concrete visual vocabulary for repre-
senting components. ASSIST uses a three-stage
procedure to choose the most likely interpreta-
tion for each stroke. First it matches the stroke
to a set of templates to produce the set of possible
Please cite this article as: Peter Haddawy et al., Anatomical
structure, Artificial Intelligence in Medicine (2006), doi:10.
interpretations, e.g. circle or rectangle. Next it
ranks the interpretation using heuristics about
drawing style and mechanical engineering. Finally,
the system chooses the best consistent overall set
of interpretations and displays this to the user.
ASSIST supports editing of the sketch through the
use of gestures. At any time during the design
process, the user can run a simulation of the
design being sketched.

In an effort to attain immediate practical func-
tionality as well as broad domain independence,
Forbus and Usher [9] take a very different
approach to sketching. Their sKEA system does
not address the recognition issue, focusing rather
on qualitative reasoning about the spatial rela-
tions among objects and on analogical comparison
of sketches containing multiple objects. They
avoid the recognition problem by requiring the
user to indicate when he begins and finishes draw-
ing a new object as well as the interpretation of
the object. The interpretation is selected from a
pull-down menu.

The work reported in this paper is the first
application of sketch-based interfaces to intelli-
gent tutoring that we know of, and also the first in
a medical domain other than image retrieval [10].
The motivation behind the use of sketching in
medical tutoring is similar to that previously men-
tioned, namely that sketching supports collabora-
tion and encourages modification. But in addition,
sketching in medical PBL is valuable because it
gives students practice in recalling anatomical
structure. A menu-based drawing interface would
not provide such practice. The issues involved in
recognizing anatomical sketches are significantly
different from those of recognizing design dia-
grams. Most of the previous work in sketching
starts by recognizing primitive components such
as lines, circles, and corners. This works fine for
domains such as mechanical engineering and user
interface design, but anatomical sketches are
rather amorphous complex structures which may
be sketched with more or less detail. This com-
plexity and lack of a well-defined set of primitive
components demands a very different approach to
object recognition. Fortunately, the anatomical
recognition problem is eased by the fact that by
convention two-dimensional depictions of anato-
mical structures are only shown from eight stan-
dard views. We have five external views
corresponding to the sides of a cube: anterior,
posterior, superior, inferior, and lateral (two
sides); three internal views corresponding to the
three cutting planes: sagittal, coronal, and axial.
This fact is exploited by our recognition algorithm,
described next.
sketch understanding: Recognizing explicit and implicit
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3. Methods for recognizing structure
and parts

We call our prototype system UNAS1 for UNderstand-
ing Anatomical Sketches. We divide the task of
understanding a sketch into two subtasks: identify-
ing what the sketch portrays, then identifying the
relevant parts of the sketch.

Without constraints, this problem would be
extremely difficult, if not impossible. Fortunately,
the fact that two-dimensional anatomical sketches
are always drawn from one of eight standard views
allows us to cast the problem of identifying what a
sketch portrays as a classification problem: given an
image of a sketch I, find the class:

y ¼ fðIÞ 2 f1; . . . ;Ng
to which the image belongs. The set of possible
classes corresponds to the set of standard views
of anatomical structures, e.g., ‘‘parietal view of
the brain’’ and ‘‘internal view of the lungs.’’ With
enough labeled template drawings or sketches:

f T 1; fðT 1Þh i; . . . ; T m; fðT mÞh ig;
it is possible to construct a classifier ŷ ¼ hðIÞ that
predicts the unknown true class y ¼ fðIÞ given a
previously unseen I.

In the preliminary experiments reported upon in
this paper, we have made the following simplifying
assumptions about input sketches, examples of
which are shown in Fig. 1:
� E
P
s

1

Th
to
ach image I contains exactly one anatomical
structure, e.g. brain, skull, lungs, heart, sto-
mach, or kidneys.
� S
ketches may not contain annotations or extra-
neous parts.
� E
ach sketch is complete (there are no major parts
left out).

In future work, we plan to relax all of these
assumptions.

For the classification problem, UNAS combines
template matching with machine learning. We begin
with the labeled templates:

f T 1; fðT 1Þh i; . . . ; T m; fðT mÞh ig
including examples of each anatomical view. When
the user creates a sketch I, UNAS compares I to each
of the stored templates using Belongie et al.’s shape
context (SC) distance (dissimilarity) measure dSC(�,�)
[4].
lease cite this article as: Peter Haddawy et al., Anatomical
tructure, Artificial Intelligence in Medicine (2006), doi:10.

Unas was the last king of the fifth dynasty of ancient Egypt.
e interpretation of the bas-relief scenes on the inside of his
mb remains a challenge to this day.
A typical template matching approach to predict
the category y ¼ fðIÞ of the sketch would be to
select the category of the template rated most
similar to I:

ŷ ¼ hðIÞ ¼ fðargmin
T i

dSCðI ; T iÞÞ:

However, we find that better classification per-
formance can be obtained with the aid of machine
learning. Our current prototype employs a support
vector machine (SVM) classifier. Our SVM is a func-
tion h : Rm 7! f1; . . . ;Ng mapping a feature vector:

xI ¼ ½dSCðI ; T 1Þ; . . . ; dSCðI ; T mÞ�
T

of dissimilarities to a category ŷ. The classifier h(�) is
learned from a training set of labeled feature vec-
tors:

fhxI1 ; fðI1Þi; . . . ; hxIn ; fðInÞig:
Once our SVM classifier picks the best class y for

a given input sketch I, the next step is to segment
the sketch into regions. Our system first warps the
input sketch into correspondence with a pre-
labeled canonical template T �ŷ for class ŷ, assigns
labels to sketch points using the labels in T �ŷ, finds
the boundary of each region, then labels each
pixel in the sketch according to which region it
falls into.

We compute point correspondences between I
and T �ŷ using (once again) Belongie et al.’s shape
context algorithm [4]. We then use the point corre-
spondences to estimate a mapping between arbi-
trary points in the sketch and template using the
thin plate spline (TPS) model [11]. To identify the
boundary of each region, we transfer the labeled
points from T �ŷ to I then connect those points using
a simple traveling salesperson algorithm [12].

3.1. Sketch classification

As explained above, the basic features in our SVM
classifier are dissimilarities between the input
sketch I and each of a set of templates T i. The
particular dissimilarity measure we use is Belongie
et al.’s shape context (SC) measure [4]. SC repre-
sents a shape as a set of points sampled from the
shape’s contours. Each sample point is represented
by a coarse histogram of the other points surround-
ing it. To determine the dissimilarity of two shapes,
SC first finds a correspondence between the sampled
points in the two shapes and then computes an
aligning transformation that maps the first shape
onto the other. Once the aligning transformation is
found, the total dissimilarity between the shapes is
simply the sum of the dissimilarities of the sample
points, plus the cost of the alignment of the match-
ing points.
sketch understanding: Recognizing explicit and implicit
1016/j.artmed.2006.07.010
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Figure 1 Sample anatomical sketches correctly recognized by UNAS.
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We now describe each of these steps and the SVM
classifier in detail. Template processing is per-
formed as a preprocessing step offline; new sketches
are processed and classified online.

3.1.1. Template preprocessing
The first step of template processing is to convert
each image into a bitmap, using one of two
methods:
� If
P
s

the template is a simple line drawing, we con-
vert it to a bitmap using Otsu’s method [13],
which chooses a threshold minimizing the var-
iance of the pixel intensities above and below
the threshold. We then perform line thinning on
the resulting binary image to obtain a uniform line
width throughout the image.
� If
 the template is a textured or shaded image, we
perform Sobel edge detection with suppression of
weak and nonmaximum points.
lease cite this article as: Peter Haddawy et al., Anatomical
tructure, Artificial Intelligence in Medicine (2006), doi:10.

Figure 2 Templates used for sketch classi
Fig. 2 shows the template sketches used in our
current classification prototype. Some are derived
from drawings in medical atlases, and others were
drawn by medical students at Thammasat Univer-
sity.

Referring to the sketches in Fig. 1 and the tem-
plates in Fig. 2, the reader will notice that whereas
the internal details of medical sketches might vary
for a given view, the outline is relatively stable. One
dramatic example is the two interior views of the
lungs in Fig. 1. This variability makes it difficult to
obtain accurate point correspondences for internal
features, but easier to obtain accurate point corre-
spondences along sketch outlines. To exploit this
situation, we manually segment each template T i

into an outline region T outl
i and an interior region

T int
i , as shown in Fig. 3(a)—(c). Only the outline

region is used to establish point correspondences.
After thinning and segmenting each template T i

into regions T outl
i and T int

i , we obtain uniform

P. Haddawy et al.
sketch understanding: Recognizing explicit and implicit
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Figure 3 Template point sampling example: (a) original thinned template, (b) outline region, (c) interior region, (d)
outline sample, and (e) interior sample.

Figure 4 Log-polar histogram template for one point in
the skull anterior outline sample of Fig. 3(d).
random samples Poutl
T i

and Pint
T i

from the points in
each region. The sample sizes are proportional to
the sizes of the original sets, i.e.:

jPoutl
T i
j ¼ b csjT outl

i j c and jPint
T i
j ¼ b jcsT int

i j c :

For the results reported in this paper, we use
cs = 1/11. Example outline and interior samples are
shown in Fig. 3(d) and (e).

Once we obtain the sampled point sets Poutl
T i

and
Pint
T i

from template T i, for each point pj 2Poutl
T i

, we
compute two shape context histograms. The first
histogram, used for point correspondence estima-
tion, only includes information about the outline of
the template. The outline-only histogram makes
point matching robust to the amount of detail in
the interior of the sketch. The second histogram,
used for the final assessment of similarity between
the template and sketch, also includes information
about the interior of the template. This makes the
total similarity assessment sensitive to the details in
the interior of the template, so that given two
templates with similar outlines, the best match
for a sketch will be the one whose interior details
are most similar to those of the sketch.

To obtain the outline-only histogram,
hSCð pj;Poutl

T i
Þ, used for point correspondence esti-

mation, we count the number of pixels within Poutl
T i

falling into each of a set of log-polar bins around pj
and normalize the bin counts (so the sum of the bin
counts is 1). The width of the bin template is
adjusted to be proportional to the mean squared
distance between points, to make the resulting
histograms invariant to the scale of the image.
See Fig. 4 for an example. The second histogram

hSCð pj;Poutl
T i
[Pint

T i
Þ;

used to calculate total dissimilarity between the
sketch and T i, is calculated the same way but
incorporates information about both outline and
interior points.

3.1.2. Online sketch processing
When a UNAS user draws a new sketch I, we must
obtain shape context histograms from I for compar-
ison with the templates. Our prototype does not yet
Please cite this article as: Peter Haddawy et al., Anatomical
structure, Artificial Intelligence in Medicine (2006), doi:10.
have the ability to automatically segment a sketch
into outline and interior regions, so we simply obtain
a single samplePi from the thinned version of I. The
sample size is the same as for the templates, i.e.:

jPI j ¼ b csjI thinj c
For each point pj 2 PI, we compute the shape

context histogram hSCð pj;PiÞ using all of the
sampled points.

After computing the shape context histograms for
the sampled sketch points, we assess the similarity
of I to each template. For each template T i, we
first find an optimal correspondence between the
sketch sample points Pi and the template’s exterior
points Poutl

T i
. Following Belongie et al. [4], we intro-

duce a set of ‘‘dummy’’ points to model null corre-
spondences. The cost of matching two points is the
dissimilarity between their normalized shape con-
text histograms, as measured by the x2-test statis-
tic. For dummy points we set a cost threshold uSC so
that any point not matching a legitimate point with
cost below uSC will instead be mapped to a dummy
point, indicating a null match.

Given the augmented dissimilarity matrix for the
sketch and template points, the optimal correspon-
dence is the permutation of the sketch points mini-
mizing the summed dissimilarity of the matched
points. This corresponds to a weighted bipartite
sketch understanding: Recognizing explicit and implicit
1016/j.artmed.2006.07.010
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graphmatching problem solvable inO(N3) time using
the Hungarian method [14]; following [4], we use
the more efficient algorithm of [15].

Once we obtain the optimal correspondence
between sketch points Pi and template outline
points Poutl

T i
, we use the full shape context histo-

grams:

hð pj;Poutl
T i
[Pint

T i
Þ

in the computation of the point dissimilarity com-
ponent of the SC dissimilarity measure. As explained
earlier, the outline-only histogram gives us robust-
ness to the level of interior detail when determining
point correspondences, and the full histogram gives
us sensitivity to the level of interior detail when
assessing overall similarity.

Note that the optimal correspondence between
sketch points and template points is rotation depen-
dent. As an example, consider the skull anterior
outline sample points in Fig. 4. If the sample points
were rotated a large amount, say 908 (without
rotating the histogram template), the resulting
shape context histogram would be completely dif-
ferent, preventing correct matching. If, on the
other hand, the sample points were rotated a small
amount, say 108, the resulting shape context histo-
gram would barely change at all. For anatomical
sketches, this is precisely the desired behavior.
Since no sketch will ever be perfect, the technique
needs to be tolerant to small deformations; how-
ever, since anatomical sketches are always drawn in
roughly the same orientation, it would usually be
incorrect to match a template point with a sketch
point looking locally similar when rotated by a large
angle.

In addition to computing the cost of the point
correspondences (the sum of the x2 differences in SC
histograms for each matched point), we also com-
pute the cost of aligning I with T i. Following
Belongie et al., we estimate a thin-plate spline
(TPS) model of the transformation from the sketch
points to their corresponding template points. The
alignment cost is the ‘‘bending energy’’ of the
model [4]. However, whereas Belongie et al. then
perform additional iterations of correspondence
estimation and alignment, to improve runtime effi-
ciency, we stop after the first iteration. In our case,
the SC dissimilarity function, dSCðI ; T iÞ, is simply
the sum of the initial point matching costs and the
initial TPS model’s bending energy cost.

Finally, after computing the dissimilarities xi ¼
dSCðI ; T iÞ between sketch I and each template T i,
UNAS forms the feature vector xI ¼ ½x1; . . . ; xn�T,
which is then input to the sketch classification
SVM ŷ ¼ hðxÞ. We describe the sketch classification
SVM next.
Please cite this article as: Peter Haddawy et al., Anatomical
structure, Artificial Intelligence in Medicine (2006), doi:10.
3.1.3. SVM classifier
As previously described, the UNAS sketch classifier is
a support vector machine (SVM) h : Rm 7! f1; . . . ;Ng
mapping the feature vector:

xI ¼ ½dSCðI ; T 1Þ; . . . ; dSCðI ; T mÞ�
T

to a category ŷ. The standard SVM [16] only performs
binary classification, so our classifier actually uses
several separate SVMs, each separating some classes
of sketches from others. We use the n-SVM [17] and
the ‘‘one-against-one’’ multi-class method as imple-
mented by LIBSVM [18] and described in [19]. The
idea is, for N classes (N = 15 in our case), to train
(N(N � 1))/2 n-SVMs to separate each pair of classes
I and j. Then, given a new input sketch I with
feature vector xI, we let the ‘‘vote’’ of classifier hij
be

hi jðxI Þ ¼
i if

P
kai jkKgðxI ;xi jkÞ � bi j� 0;

j otherwise:

�
(1)

Once we have the vote of each classifier, the final
classification hðxI Þ is simply the class that received
the most votes. In Eq. (1), k indexes the ‘‘support
vectors’’ xijk for the classifier separating class i from
class j. Weights aijk, bij and support vectors xijk are
established by the n-SVM training algorithm [17].
Our classifier uses the radial basis function kernel:

Kgðx;yÞ ¼ e�gjjx�yjj2 ;

in which g, the kernel width, is a hyperparameter
that must be set a priori. The n-SVM requires one
other hyperparameter, n, which expresses the
experimenter’s willingness to tolerate incorrectly
classified training set items. In the work reported in
this paper, we hand-tuned g and n to maximize
performance on the test set.

Once UNAS obtains the SVM’s prediction y for the
class of I, the next step is to segment the sketch
into regions corresponding to anatomical parts. We
describe the details of the segmentation procedure
next.

3.2. Sketch segmentation

As previously described, the first step in segmenta-
tion is to align sketch I with the canonical labeled
template T �ŷ for class ŷ. To align the sketch with the
template, UNAS first uses shape context to find a set
of Ns point correspondences ðxi; yiÞ$ ðx0i; y0iÞ
between the sketch and the template. Our current
prototype does not distinguish between outline and
interior points for purposes of sketch segmentation.
The correspondences are then used to fit a thin plate
spline (TPS) model [11] mapping T �ŷ to I. TPS fits a
smooth function fx(x, y) mapping the template
points (xi, yi) to the x coordinates x0i of the sketch
sketch understanding: Recognizing explicit and implicit
1016/j.artmed.2006.07.010
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points, and another smooth function fy(x, y) map-
ping the template points to the y coordinates y0i of
the sketch points. The fitted functions fx and fy
model the deformation of thin steel plates con-
strained to interpolate the observed values x0i and
y0i, respectively. However, since sampling intro-
duces noise, and the Hungarian assignment
method does not attempt to impose any spatial
regularity constraints, strict interpolation is not
desirable. Belongie et al. [4] introduce a regular-
ization factor into the minimization that penalizes
excessively warped transformations. The quality
of the final transform can be iteratively improved
by repeating the correspondence estimation and
transform estimation steps, using the results of
the previous step as a starting point. In our experi-
ments, we iterate the process six times. The result
is a smooth mapping from every point in T �ŷ to a
point in I.

The canonical templates T �ŷ are derived from
drawings in medical atlases, for which the ground
truth segmentation is known. When we sample and
compute the SC histograms for each canonical tem-
plate, we also associate (by hand) a set of labels
with each sampled point. The labels indicate which
regions (anatomical parts) each point belongs to.
Since the sampled points correspond to edges in the
original image, they often delineate boundaries
between two regions; in these cases, the points
are assigned the labels of both regions.

We initiate the segmentation process by simply
copying the labels of the template points (xi, yi) to
the corresponding points (x0i; y

0
i) in I. Now the task is

to use these points to compute a closed boundary for
each region of I. Under certain conditions, solutions
to the traveling salesperson tour problem (TST)
accomplish exactly this task. The goal in the 2D
TST problem is to find a shortest-length closed path
through a set of points in the plane. Giesen [20] has
shown that if the points are samples from a regular
closed curve, and the points are sampled densely
enough, then the TST correctly orders the points
along the curve. He also shows that the edges in the
TST under these conditions are also edges in the
Delaunay triangulation of the point set. He uses
these insights to design an O(n log n) algorithm that
also computes the correct polygonal reconstruction
of the curve, again provided that the point set is
sampled densely enough.

We use Giesen’s insight for curve reconstruction
in UNAS. For each anatomical part label
zi 2f1; . . . ; Lŷg for view ŷ, UNAS collects the set of
projected boundary points for region zi and runs a
traveling salesperson algorithm [12] to ‘‘connect the
dots.’’ The result is a simple polygonal approxima-
tion to the boundary of region zi in I.
Please cite this article as: Peter Haddawy et al., Anatomical
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The only difficulties with the traveling salesper-
son approach occur when Giesen’s conditions are
not met. When insufficiently many corresponding
points are found along a contour (the samples are
not dense enough), or when an incorrect correspon-
dence is established by shape context (some of the
points are not in fact samples from the true closed
curve of interest), we obtain noticeably irregular
region boundaries and poorly proportioned sketch
regions. UNAS incorporates one simple heuristic,
distance-based elimination, that aims to eliminate
incorrect correspondences prior to calculation of
the region boundaries.

The distance-based elimination (DBE) heuristic
works by eliminating the correspondence between
template point (xi, yi) and sketch point (x0i; y

0
i) when-

ever the distance between sketch position ( fx(xi,
yi), fy(xi, yi)) predicted by the current thin-plate
spline model and the actual sketch position (x0i; y

0
i) of

the corresponding sketch point is above some fixed
threshold. Rather than apply some arbitrary dis-
tance threshold across all sketches, however, we
first z-scale each distance before comparing to the
threshold (z-scaling simply subtracts the mean dis-
tance over all correspondences then divides by the
standard deviation). We find that a DBE threshold of
+1.0 standard deviation appreciably improves our
segmentation results.

The final step, after the region boundaries have
been determined, is to use those boundaries to
assign a unique label z to each pixel of I. UNAS
tests each pixel for membership in each polygonal
region using the technique of segment intersec-
tions: if an arbitrary ray from pixel p intersects
an odd number of the polygon’s sides, it is inside
the polygon; otherwise, it is outside the polygon.

This concludes our description of the classifica-
tion and segmentation algorithms employed by
UNAS. In the next section, we describe an empirical
evaluation of the approach.
4. Evaluation

We evaluated the sketch classification algorithm by
building an SVM classifier for the standard views of
six anatomical structures: brain, heart, lungs, kid-
neys, stomach, and skull, for a total of 15 different
classes of sketches, as shown in Fig. 2. We then
evaluated the accuracy of the SVM in classifying
sketches. We chose this particular set of anatomical
structures to provide a challenging test for the
system. It contains some structures with great detail
(e.g. heart anterior) and somewith little detail (e.g.
stomach exterior). It also contains structures that
look quite similar (e.g. skull basal and brain basal).
sketch understanding: Recognizing explicit and implicit
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We collected sketches of all 15 views from 80
medical students in their second to sixth years of
study. The sketches were vetted for quality by a
physician and we eliminated those that the physi-
cian could not identify. Thiswas done becausewedo
not expect our recognition algorithm to perform
better than an experienced physician and because
low quality sketches are unlikely to be useful as
templates. We used the 15 drawings shown in Fig. 2,
chosen by visual inspection, as templates, i.e. fea-
tures for the SVM. We then randomly selected 70
sketches for each view from the remaining
sketches, for a total of 1050 sketches. For each
view we randomly separated the sketches into 70%
(49 sketches) for training and 30% (21 sketches) for
testing. To determine good n-SVM hyperpara-
meters, we first fixed n to its default value of 0.5
and tried various values of g. For each candidate
hyperparameter setting, we trained a set of
(N(N � 1))/2 n-SVMs and evaluated the resulting
classifier on the test set. After obtaining the best
value for g, we fixed its value and searched for a
good value of n. We repeated this procedure until
we found a local minimum in the test set error. We
evaluated the system with approximately 20
experiments in all. Here we report the best results
over all experiments, obtained with g = 0.0005 and
n = 0.3.
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Figure 5 Confusion matrix for the SVM classifi
The SVM classifier had an overall classification
accuracy of 75.5% on the test set, far above the
baseline random classification accuracy of 6.7%. The
accuracy over the various views ranged from a low of
67% for the brain sagittal, heart interior, heart
posterior, kidney internal, and kidney external
views to a high of 90% for the skull basal view.
The detailed results are shown as a confusion matrix
in Fig. 5. From the matrix we can see that many of
the errors are due to confusing different views of the
same structure, e.g. brain sagittal and brain parietal
or stomach internal and stomach external.

The system required between 4 s and 7 s to clas-
sify each sketch. We found that the execution time
was dominated by the estimation of point corre-
spondences in the shape context similarity score
calculation (for each sketch, UNAS must estimate
point correspondences with every template). One
straightforward way to improve the run time would
be to reimplement the prototype in an efficient
compiled language such as C (currently the SC cal-
culation is implemented in Matlab).

As explained in Section 3.1.2, UNAS separates
template sample points into two sets: a set of out-
line points and a set of interior points. Only the
outline points are used for sketch-to-template cor-
respondence estimation. In principle, this technique
makes correspondence estimation robust to the
sketch understanding: Recognizing explicit and implicit
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Figure 6 Confusion matrix for the classification judgment of 10 sixth-year medical students. The sample size for each
view is 10 � 21 = 210.
level of detail in the sketch. Better point correspon-
dence should in turn improve classification perfor-
mance. To assess the effect of the technique
empirically, we reran the evaluation without separ-
ating the template sample points into separate out-
line and interior point sets. Under this condition,
UNAS obtained a classification accuracy of 72.0%,
compared to 75.5% with interior point removal. The
modest improvement due to interior point removal
suggests the importance of accurate point corre-
spondence estimation for classification accuracy. It
also indicates that further improvement might be
obtained if we eliminate the sketch’s interior points
automatically prior to correspondence estimation,
as previously discussed. Interior point removal
would have the additional benefit of improving
UNAS’s run time performance.

To provide a reference against which to compare
the accuracy of the SVM, we asked 10 sixth-year
medical students to classify the sketches in the test
set. In order to make the comparison with the SVM
fair, we used a forced classification, permitting
them to choose only among the 15 classes. The
mean classification accuracy over the 10 students
and 15 views was 93.8%. The accuracy over the
various views ranged from a low of 80.5% for heart
anterior view to a high of 99.0% for the skull anterior
Please cite this article as: Peter Haddawy et al., Anatomical
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view. The high value for the skull anterior view is not
surprising since people are particularly good at
recognizing faces. The confusion matrix for the
group of 10 students is shown in Fig. 6. We can
see that while the error rate for the students is
lower than for the SVM, the types of errors are
similar. For example, the students also often con-
fuse the brain sagittal and brain parietal views and
the stomach internal and stomach external views.

Finally, we evaluated the sketch segmentation
algorithm by comparing its segmentation to that of
an experienced physician on three sketches each of
the external view of the lungs, the parietal view of
the brain, the anterior view of the heart, and the
parietal view of the skull. We chose three qualita-
tively different sketches for each organ. Each sketch
used was correctly recognized by UNAS. The segmen-
tation results are shown in Fig. 7. The first column
shows the sketches, the second column is the physi-
cian’s segmentation, and the last column is UNAS’s
segmentation. The segmentations produced by UNAS
and by the physician agree quite closely on all
sketches. For example, in the first sketch of the lung
(i) the student drew a protrusion below the superior
lobe of the left lung that is not normally drawn in the
external view. Both the physician and UNAS correctly
did not include this as part of the superior lobe.
sketch understanding: Recognizing explicit and implicit
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Figure 7 Medical student sketches (first column) with
corresponding segmentations produced by a physician
(second column) and by UNAS (third column). The tem-
plates used by the segmentation algorithm are shown in
the upper right corners.
Although the UNAS sketch segmentation system
performs very well when a given sketch is similar in
proportion and detail to the canonical template
used as a reference, differences between UNAS
and the human expert arise when sketch details
are incorrect or missing. In these cases, UNAS is
sometimes unable to establish correct point corre-
spondences, causing distorted region boundaries
compared to the expert-drawn boundaries. We find
that UNAS makes two main kinds of mistakes. The
first type occurs when the sketch contains a line,
intended as a region boundary, that is in an incorrect
position relative to the rest of the sketch. Under
these circumstances, the shape context histograms
may be so dissimilar for points on the sketch line and
putatively corresponding template line that they
are not matched. Without being guided by point
correspondences for a given boundary, the thin
plate spline transformation can only map the bound-
ary points from the template to the ‘‘correct’’
position in the sketch, effectively correcting the
user’s incorrectly drawn boundary. The physician’s
boundaries, in contrast, normally follow the lines in
the sketch as long as they are not too far off. This
can be seen by comparing the superior lobe of the
left lung in segmentations (viii) and (ix), and the
cerebellum in segmentations (viii) and (ix). The
second type of error occurs when one region bound-
ary in the canonical template needs to be distorted
in order to align with the corresponding boundary in
the sketch. Since the thin-plate spline transforma-
tion is global, distortion of the first boundary will
exert a distorting force on other neighboring bound-
aries unless there are correct point correspondences
to resist the distortion. This is particularly trouble-
some for very small parts, on whose boundaries
UNAS samples few points, leading to fewer correct
correspondences and potentially an insufficiently
constrained thin-plate spline mapping. One exam-
ple in Fig. 7 is the pons in segmentation (vi).
5. Conclusions and future research

The performance of the UNAS prototype provides
strong evidence that development of robust sketch
understanding systems for medical domains is an
attainable goal which could have significant impli-
cations for effectiveness of medical tutoring sys-
tems and usability of electronic patient records.
While the results from our prototype system are
encouraging, much work remains to be done in order
to realize the functionality described in our moti-
vating example. First the accuracy of the recogni-
tion and segmentation algorithms could be
improved. More accurate recognition could likely
sketch understanding: Recognizing explicit and implicit
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be obtained by explicitly detecting the outline of
the sketch and then using that to match the outline
of the template rather than using dummy points.
This should give amore accuratematch between the
two outlines. The results of the segmentation algo-
rithm could be improved by using local transforma-
tions to fit the template to the sketch. We have
obtained good preliminary results in this direction
with Rangarajan and colleagues’ robust point
matching algorithm [21,22].

In our prototype we have assumed that a sketch
includes only one anatomical structure, but
sketches often contain multiple structures as well
as incompletely drawn structures. A fully general
sketch recognition system should be able to handle
this. Extending our approach to cover this might
require adding spatial reasoning.

In addition to understanding the sketch, UNAS
shouldbeable to recognizeand interpret annotations
commonly used in medicine, such as arrows, circles,
crosses, darkened regions, and clusters of dots. For
the recognition we are exploring the use of hidden
Markov models, which tend to work well for such
relatively simple symbols. The interpretation of such
symbols is more difficult. A cluster of dots drawn on a
sketch of an arm might indicate a rash but the same
symbol drawn on a sketch of the sinuses might indi-
cate a diffuse area of infection. Interpreting such
annotations requires background knowledge. We are
exploring the use of the UMLS medical ontology to
provide such knowledge by linking anatomical parts
with commonly associated pathology and physiology.
The final step will be to incorporate UNAS as part of
our COMET intelligent tutoring system and evaluate
its impact on student learning outcomes.
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