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Abstract

There is strong evidence that face processing in the brain is localized. The double dissociation between prosopagnosia, a face recognition
deficit occurring after brain damage, and visual object agnosia, difficulty recognizing other kinds of complex objects, indicates that face and
non-face object recognition may be served by partially independent neural mechanisms. In this paper, we use computational models to show
how the face processing specialization apparently underlying prosopagnosia and visual object agnosia could be attributed to (1) a relatively
simple competitive selection mechanism that, during development, devotes neural resources to the tasks they are best at performing, (2) the
developing infant’s need to perform subordinate classification (identification) of faces early on, and (3) the infant’s low visual acuity at birth.
Inspired by de Schonen, Mancini and Liegeois’ arguments (1998) [de Schonen, S., Mancini, J., Liegeois, F. (1998). About functional cortical
specialization: the development of face recognition. In: F. Simon & G. Butterworth,The development of sensory, motor, and cognitive
capacities in early infancy(pp. 103–116). Hove, UK: Psychology Press] that factors like these could bias the visual system to develop a
processing subsystem particularly useful for face recognition, and Jacobs and Kosslyn’s experiments (1994) [Jacobs, R. A., & Kosslyn, S. M.
(1994). Encoding shape and spatial relations—the role of receptive field size in coordination complementary representations.Cognitive
Science, 18(3), 361–368] in the mixtures of experts (ME) modeling paradigm, we provide a preliminary computational demonstration of how
this theory accounts for the double dissociation between face and object processing. We present two feed-forward computational models of
visual processing. In both models, the selection mechanism is a gating network that mediates a competition between modules attempting to
classify input stimuli. In Model I, when the modules are simple unbiased classifiers, the competition is sufficient to achieve enough of a
specialization that damaging one module impairs the model’s face recognition more than its object recognition, and damaging the other
module impairs the model’s object recognition more than its face recognition. However, the model is not completely satisfactory because it
requires a search of parameter space. With Model II, we explore biases that lead to more consistent specialization. We bias the modules by
providing one with low spatial frequency information and the other with high spatial frequency information. In this case, when the model’s
task is subordinate classification of faces and superordinate classification of objects, the low spatial frequency network shows an even
stronger specialization for faces. No other combination of tasks and inputs shows this strong specialization. We take these results as support
for the idea that something resembling a face processing “module” could arise as a natural consequence of the infant’s developmental
environment without being innately specified.q 1999 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Two complementary deficits, prosopagnosia (impaired
recognition of faces) and visual object agnosia (impaired
recognition of common objects), together form a classic
neuropsychological double dissociation. This might be
taken as evidence for a domain-specific face processing

mechanism in the brain that is distinct from the mechanisms
serving general object recognition. However, two issues
have led to a long-running debate on this view: (1) it is
not entirely clear how specific or independent prosopagno-
sia and visual object agnosia are, and (2) double dissocia-
tions do not necessarily implicate separate, domain-specific
mechanisms. In this section, we first briefly review the data
on prosopagnosia and visual object agnosia; these data
support the view that the mechanisms underlying facial
identity recognition are at least somewhat different from
those underlying most other object recognition tasks. We
then review the theories attempting to explain the seemingly
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remarkable dissociation and motivate the current computa-
tional modeling studies.

1.1. Is prosopagnosia really specific to faces?

Prosopagnosia is almost always accompanied by other
visual impairments, so it is difficult to determine the extent
to which a prosopagnosic’s deficit is limited to face proces-
sing. We limit discussion here to so-called “associative”
prosopagnosics who may have normal ability in face detec-
tion tasks (is it a face?) but whose primary deficit is that they
cannot recognize theidentity of familiar faces (De Renzi,
1986). This condition is usually associated with either
unilateral right hemisphere or bilateral lesions in the fusi-
form gyrus area. For reviews that include lesion locations,
see De Renzi, Perani, Carlesimo, Silveri and Fazio, (1994);
Farah (1990).

Although many prosopagnosics have difficulty perform-
ing difficult subordinate (within-class) classification tasks
with objects other than faces, in some cases, the condition
can be remarkably face-specific. De Renzi’s (1986) “case 4”
was profoundly prosopagnosic but claimed to have no trou-
ble with day-to-day within-class discrimination of common
objects such as keys and automobiles. However, there have
been objections that perhaps this patient was not tested
extensively enough to determine whether his deficit was
truly face specific.

McNeil and Warrington (1993) report that W.J., a patient
with severe prosopagnosia but apparently normal recogni-
tion of famous buildings, dog breeds, car makes, and flower
species, had acquired a flock of sheep and learned to recog-
nize the individuals from their markings. In a test with
unfamiliar sheep of a breed unfamiliar to W.J., a control
group performed significantly better on recognition of
human faces than of the sheep faces, indicating the advan-
tages humans normally have in identifying human faces.
But W.J. performed significantly better on the sheep face
task than on the human face task. The unfamiliar sheep face
recognition task was in many ways as difficult in terms of
complexity and confusability as face recognition, yet W.J.
performed well.

Martha Farah and her colleagues have performed two
important experiments providing further evidence that
face processing can be impaired with little impact on
within-category discrimination of objects. In the first, they
constructed a within-class discrimination task involving
faces and visually similar eyeglasses (Farah, Levinson &
Klein, 1995a). Normal subjects were significantly better at
discriminating the faces than the eyeglasses, but the proso-
pagnosic patient L.H. did not show this effect. His face
discrimination performance was significantly lower than
that of the control group, but his eyeglass discrimination
performance was comparable to that of the controls. In the
other experiment, the researchers compared L.H.’s perfor-
mance in recognizing inverted faces to that of normals
(Farah, Wilson, Drain & Tanaka, 1995b). The surprising

result was that whereas normal subjects were significantly
better at recognizing upright faces than inverted ones, L.H.
performed normally on the inverted faces but was actually
worse at recognizing the upright faces than the inverted
ones. We must be cautious in interpreting these results,
however. de Gelder, Bachoud-Levi and Degos (1998) report
on an agnosic patient with a similar inversion effect for both
facesand shoes, challenging the idea of an “inverted inver-
sion effect” for faces as a face-specific phenomenon. Also,
prosopagnosic patients may show no object processing defi-
cit when the performance measure is classification accuracy,
but other measures, such as response time and sensitivity,
may actually reveal impairments in their performance
(Gauthier, Behrmann & Tarr, 1999).

Thus with important caveats, it appears that brain damage
can disproportionately impair processing of normal, upright
faces. On the other hand, studies of several patients have
shown that visual object recognition can be severely
impaired while face recognition is spared. Associative
visual agnosia sparing face recognition is normally asso-
ciated with left occipital or bilateral occipital lesions and
usually coincides with alexia, in which patients have diffi-
culty reading because they cannot rapidly piece letters into
words (Farah, 1990). It seems to reflect an impairment in
decomposing complex objects into parts (Feinberg, Schind-
ler, Ochoa, Kean & Farah, 1994). Although it is difficult to
assess exactly what is impaired and what is preserved
(researchers obviously cannot test patients onall objects),
Farah’s (1990) review cites many such cases. Perhaps the
most dramatically impaired and well-known visual agnosic
without prosopagnosia is C.K. (Behrmann, Moscovitch &
Winocur, 1994). This patient has a striking deficit in part
integration; he can identify the component parts of objects
but cannot put them together to recognize the whole. His
face processing abilities, however, are largely spared, to the
point that he can see faces in “composite” images where a
face is composed of or hidden amongst other objects, but
cannot see the objects themselves. Moscovitch, Wincour &
Behrmann (1997) show in a series of experiments that
C.K.’s ability to recognize (upright) famous faces, family
resemblances, caricatures, and cartoons is completely
normal, as is his ability to match unfamiliar faces. On the
other hand, he is impaired at tasks involving inverted faces,
which presumably activate his damaged “object processing”
mechanisms.

These complementary patterns of brain damage constitute
a double dissociation between face and object recognition
and provide evidence that the visual system contains
elements specialized for (or merely very useful for) face
processing. However, double dissociations certainly do not
imply that two tasks are served by entirely separate and
distinct “modules”. As Plaut (1995) points out, two
seemingly independent tasks might not be independent at
all, but simply rely more heavily or less heavily on particu-
lar mechanisms. In the worst case, the apparent distinction
between face and object processing could simply reflect the

M.N. Dailey, G.W. Cottrell / Neural Networks 12 (1999) 1053–10731054



expected outliers in a random distribution of patterns of
brain damage (Juola & Plunkett, 1998). However, there
are independent reasons, other than the patterns of brain
damage, to believe that prosopagnosia reflects damage to
a system that is specialized for face processing (and possibly
certain other types of stimuli): we next review the beha-
vioral distinctions between face processing and general
object processing.

1.2. How might face recognition differ from general object
recognition?

Given that the neuropsychological data indicate there
may be something special about faces, one issue of debate
is whether there is an innate, mandatory, domain-specific
module (Fodor, 1983) for face processing. Moscovitch et al.
(1997), for instance, give a convincing argument for modu-
larity based on their experiments with C.K., the object agno-
sic. At the same time, many other researchers have
attempted to find a more parsimonious explanation for the
face/object double dissociation that places face recognition
at some extreme end of a continuum of mechanisms.

There are many ways in which prosopagnosia could
reflect damage to a general-purpose object recognition
system yet appear to be face specific. One early explanation
was that face recognition is simply more difficult than other
types of recognition, so mild damage to a general-purpose
recognition system could affect face recognition more than
non-face object recognition (Damasio, Damasio & Van
Hoesen, 1982; Humphreys & Riddoch, 1987). Although
most if not all prosopagnosic patients also have some
level of impairment at subordinate-level classification, a
strict interpretation of this hypothesis is ruled out by the
fact that many visual object agnosic patients have impaired
recognition of common objects but spared face recognition
(see the previous section).

Currently, there are at least two related classes of plau-
sible theories attempting to characterize the differences
between face and object processing. The first posits that
faces are perceived and represented in memory “holisti-
cally” with little or no decomposition into parts, whereas
most other object recognition tasks require part-based repre-
sentations. Farah, Wilson, Drain and Tanaka (1998) review
the literature on this topic and provide new evidence for
holistic perceptual representations. Biederman and Kalocsai
(1997) propose a computational basis for such representa-
tions. They show that the outputs of an array of overlapping
local spatial filters similar to some of the receptive fields in
visual cortex, as used in Wiskott, Fellous, Kruger & von der
Malsburg’s (1997) face recognition system, can account for
human performance in experiments using face stimuli but
cannot account for human performance in other object
recognition tasks. Clearly, such simple representations
would be holistic at least in the sense that there is no explicit
encoding of the parts of the face independent of the whole
face.

Theories in the second, related class suggest that the main
reason for the seemingly special status of face recognition is
that it involves expert-level subordinate classification within
a relatively homogeneous object class. In this view, faces
are only special in that they are very similar to each other,
and we must acquire a great deal of sensitivity to configural
differences between them. Tanaka and Sengco (1997) have
shown that subtle configuration information, such as the
distance between the eyes in a face, plays a crucial role in
face processing but not in processing other objects types.
But face processing is not necessarily the only task that
engages this type of processing. It appears that the acquisi-
tion of expertise in subordinate classification of a novel
synthetic object class, “Greebles”, leads to a similar sensi-
tivity to configuration information (Gauthier & Tarr, 1997).
Gauthier, Tarr, Anderson, Skuklarski and Gore (1998) have
also observed in fMRI studies that expert-level Greeble
classification activates an area in fusiform gyrus thought
by some to be specialized for faces (McCarthy, Puce,
Gore & Allison, 1997; Sergent, Ohta & MacDonald, 1992).

Thus the main observable differences between face
processing and general object processing (in the most
common cases) involve holistic representations and our
level of expertise with subordinate-level classification of
faces. In this paper, we propose a theoretical model that
explains how such specialized representations and mechan-
isms might develop, and describe preliminary computa-
tional modeling experiments that support the theory. The
next section outlines some of the important data on the
development of face recognition in infants, which we use
to inform the construction of our computational models.

1.3. Developmental data and a possible low spatial
frequency bias

In the previous sections, we have outlined evidence from
neuropsychology and adult behavior that faces (and possibly
other similar classes of stimuli) are processed by specialized
mechanisms. Experiments exploring the development of
face recognition abilities in human infants have also
provided important clues to the organization of the putative
face processing system and how that organization arises.

Experiments have shown that at birth, an infant’s visual
attention is spontaneously directed toward face-like stimuli
(Johnson, Dziurawiec, Ellis & Morton, 1991). An infant can
visually discriminate between his or her mother’s face and a
stranger’s face, but only external features such as hairline
and head contours are salient to the task at an early age
(Pascalis, de Schonen, Morton, Deruelle & Fabre-Grenet,
1995). Later, around the age of 6–8 weeks, infants begin
to use the face’s internal features to discriminate their
mothers from strangers (de Schonen & Mancini, 1998). A
possibly related developmental factor is the fact that the
newborn infant’s acuity and contrast sensitivity are such
that they can only detect large, high contrast stimuli; at
one month of age, infants are typically insensitive to spatial
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frequencies greater than 2 cycles/degree (Teller, McDonald,
Preston, Sebris & Dobson, 1986).

It is not clear whether the infant’s shift to the use of
internal features for distinguishing his or her mother from
strangers represents the use of an entirely new system or a
gradual refinement of the old system (Johnson, 1997). But
the experimental data on the development of face recogni-
tion capabilities make it seem likely that the infant visual
system begins training a cortical “face processor” utilizing
external facial features very early on. At the same time,
these capabilities must develop on the basis of extremely
low resolution stimuli. de Schonen and Mancini (1998)
propose a scenario accounting for some of the known
data. The scenario holds that several factors, including
different rates of maturation in different areas of cortex,
the infant’s tendency to track faces, and the infant’s
initially low acuity, all conspire to force an early
specialization for face recognition in right hemisphere.
This specialized mechanism would necessarily be based
on a “configurational” as opposed to a “componential”
approach, due to the low resolution involved. Later in
life, the adult visual system might then be biased to
favor the same holistic subsystem when faced with tasks
involving new stimuli having similar computational
requirements.

de Schonen and Mancini’s scenario resonates with some
of the recent experimental data showing a low spatial
frequency bias in adult face processing. Costen, Parker
and Craw (1996) showed that although both high-pass and
low-pass image filtering decrease face recognition accuracy,
high-pass filtering degrades identification accuracy more
quickly than low-pass filtering. Also, Schyns and Oliva
(1999) have shown that learning the identity of a set of
faces later biases subjects’ perception toward low spatial
frequency information. The bias is tested by briefly present-
ing a hybrid image combining a low-pass filtered image of
one individual’s face and a high-pass filtered image of
another person’s face and requiring them to categorize the
face they perceive according to its gender, expressiveness,

or type of expression. The identity learning stage shifted the
subjects’ perception toward the low-pass filtered face
compared to subjects without prior exposure. These studies
provide evidence that low spatial frequency information
may be relatively more important for face identification
than high spatial frequency information.

1.4. Outline

In a series of computational modeling studies, we have
begun to provide a computational account of the face
specialization data. We propose that a neural mechanism
allocating resources according to their ability to perform a
given task could begin to explain the apparent specialization
for face recognition evidenced by prosopagnosia. We have
found that a model based on the mixture of experts archi-
tecture, in which a gating network implements competitive
selection between two simple homogeneous modules, can
develop a specialization such that damage to one module
disproportionately impairs face recognition compared to
non-face object recognition.

We then consider how the availability of spatial
frequency information and the task to be performed affects
face recognition specialization given this hypothesis of
neural resource allocation by competitive selection. We
find that when high and low spatial frequency information
is “split” between two modules in our system, and the task is
to identify the faces while simply classifying the
objects, the low-frequency module consistently specializes
for face recognition. After describing the models in more
detail, we present our experimental results, and discuss their
implications.

2. The modeling paradigm

We have performed two computational modeling experi-
ments designed to explore the ways in which a general-
purpose learning mechanism might specialize for face
recognition vs. object recognition, such that localized
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random “damage” to the model results in decreased face
recognition performance or decreased object recognition
performance. Both of the models are feed-forward neural
networks with special competitive “modular” architectures
that allow us to conveniently study the conditions under
which specialization arises. In this section, we describe
the computational models then describe how we acquired

and preprocessed the object/face image data used in both
experiments.

2.1. The theoretical model

Our basic theoretical model for face and object
recognition is displayed in Fig. 1. We generally assume
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that prosopagnosia (sparing object recognition) and visual
object agnosia (sparing face recognition) are symptoms of
damage to subsystems that are more or less specialized for
face recognition or object recognition. We imagine an array
of general-purpose “processing units” that compete to
perform tasks and a “mediator” that selects processing
units for tasks. This mediator could be intrinsic to the
processing unit architecture itself, as in the self-organizing
map (Kohonen, 1995) or a more external, explicit mechan-
ism, as in the mixture of experts (ME) (Jordan & Jacobs,
1995). We instantiate this theoretical model with modular
neural networks by presenting modular networks with
various face/object classification tasks. We then study the
conditions under which, through competition, one expert or
module specializes for faces to the extent that “damaging”
that model by removing connections results in a “prosopag-
nosic” network. By allowing the networks to learn and
discover potentially domain-specific representations on
their own, we can gain some insight into the processes
that might lead to such specializations in the brain.
Although we make no claims that our models are biologi-
cally plausible in any significant way, the experts or
modules in a given network could be interpreted as repre-
senting, for instance, analogous regions in the left and right
hemispheres, or two nearby relatively independent proces-
sing units in the same region of the brain.

2.2. The network architectures

The first model’s network architecture is the well-known
“mixture of experts” (ME) network (Jacobs, Jordon,
Nowlan & Hinton, 1991). The ME network contains a popu-
lation of simple linear classifiers (the “experts”) whose
outputs are mixed by a “gating” network. During learning,
the experts compete to classify each input training pattern,
and the gating network directs more error information (feed-
back) to the expert that performs best. Eventually, the gating
network learns to partition the input space such that expert 1
“specializes” in one area of the space, expert 2 specializes in
another area of the space, and so on.

The second network architecture we use is inspired by the

ME network but is slightly more complicated. The main
difference between it and ME is that it contains separate
hidden layers for each module and a gating network that
essentially learns to decide which hidden layer representa-
tion to “trust” in classifying a given input stimulus. Fig. 2
summarizes the differences between the two architectures;
Appendices A and B describe their operation and learning
rules in detail.

Modular networks like the mixture of experts can be
useful in a variety of engineering applications, but as Jacobs
(1997) argues, they have also been very useful tools for
exploring hypotheses about brain function. Jacobs and
Kosslyn (1994), for instance, showed that if one expert in
a two-expert network was endowed with large “receptive
fields” and the other was given smaller receptive fields, one
expert specialized for a “what” task whereas the other
specialized for a “where” task. As another example, Erick-
son and Kruschke (1998) have successfully used the mixture
of experts paradigm to model aspects of human categoriza-
tion of visual stimuli. Thus the mixture of experts approach
is a potentially powerful computational tool for studying
functional specialization in the brain.

2.3. Measuring specialization and effects of local “brain
damage”

Since these modular networks naturally decompose given
problems in a data-driven way, we can explore hypotheses
about the modularity of face and object recognition by train-
ing the models to perform combined face/object classifica-
tion tasks. In both of the network models we have described,
the gating network assigns a weight to each expert or
module given an input pattern; this weight is the gate
network’s estimate of the probability the given pattern
was drawn from the expert’s area of expertise. To determine
whether expert or modulen is a “face specialist”, we can
present the face patterns in the test set to the network, record
gate unitn’s activation for each of the patterns, and average
them. If that average is high, we can say that expert or
modulen is indeed a face specialist.

We can model localized brain damage by randomly
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eliminating some or all of the connections in one of the
experts or modules. If one expert or module is specialized
for a task, such as book classification, but not other tasks,
eliminating its connections will degrade the overall model’s
performance on that task, with less impact on performance
of other tasks.

2.4. Face/object stimuli

Our studies utilized static images of 12 individuals’ faces,
12 different cups, 12 different books, and 12 different soda
cans. See Fig. 3 for examples from each class.

For the faces, we collected 5 images of each of 12 indi-
viduals from the Cottrell and Metcalfe database (1991). In
these images, the subjects attempt to display various
emotions, while the lighting and camera viewpoint is held
constant. For the 36 objects, we captured 5 images of each
with a CCD camera and video frame grabber. We performed
minor, pseudorandom perturbations of each object’s posi-
tion and orientation while lighting and camera viewpoint
remained constant. After capturing the 640× 480 gray-
scale images, we cropped and scaled them to 64× 64, the
same size as the face images.

2.5. Preprocessing with Gabor wavelet filters

In order to transform raw 64× 64 8-bit gray-scale images
into a representation more appropriate for a neural network
classifier, we preprocessed the images with a Gabor wave-
let-based feature detector. von der Malsburg and colleagues
have been using grids of these wavelet filters to extract good
representations for face recognition for several years. The
2-D Gabor filter (Daugman, 1985) is a two-dimensional
sinusoid localized by a Gaussian envelope; it can be tuned
to a particular orientation and spatial frequency. The filter is
biologically motivated—it is a good model of observed
receptive fields of simple cells in cat striate cortex (Jones
& Palmer, 1987). von der Malsburg and colleagues form a
“jet” by concatenating the response of several filters with
different orientation and spatial frequency tunings. As an
image feature detector, the jet exhibits some invariance to
background, translation, distortion, and size (Buhmann,
Lades & von der Malsburg, 1990).

Early versions of their face recognition system (Lades et
al., 1993) stored square meshes of these jets at training time
and used them as deformable templates at recognition (test)
time to match a test face. More recent versions (Wiskott et
al., 1997) place the jets over particular facial features (fidu-
cial points) for greater accuracy. Biederman and Kalocsai
(1997) show how Wiskott et al.’s representation can account
for psychological phenomena in face recognition, and the
system was recently the top performer in the U.S. Army’s
FERET Phase III face recognition competition (Okada, et
al., 1998). Thus the Gabor wavelet jet is a good representa-
tion for face recognition. We use a simple version of the
square mesh (Buhmann et al., 1990) as described below.
Since we use prealigned images and phase-invariant filter

responses, the more complicated fiducial point techniques
are unnecessary.

The basic kernel function is:

G�~k; ~x� � exp�i~k·~x� exp 2
k2~x·~x

2s2

 !
;

where

~k � �kcosf; ksinf�T

andk ; u~ku controls the spatial frequency (scale) of the filter
function G, ~x is a point in the plane relative the wavelet’s
origin, f is the angular orientation of the filter, ands is a
constant. As in Buhmann et al. (1990), we lets � p, let f
range over {0; �p=8�; �p=4�; �3p=8�; �p=2�; �5p=8�; �3p=4�;
�7p=8�} ; and we let

ki � 2p
N

2i

whereN is the image width andi an integer. In the first
series of experiments, we used 6 scales�i [ {1 ;…; 6}�;
and in the second series we used 5 scales�i [ {1 ;…; 5}�:
See Fig. 4 for examples of the filters at three particular
orientation/scale combinations.

Again as in Buhmann et al. (1990), for each of the orien-
tation/spatial frequency pairs, we convolveG�~k; ~x� with the
input imageI �~x�:

�WI��~k; ~x0� �
Z

G~k�~x0 2 ~x�I �~x� d2~x

then normalize the response values across orientations:

�TI��~k; ~x0� � u�WI��~k; ~x0�uRR
u�WI��~k; ~x� ud2~x df

:

With eight orientations and six scale factors, this process
results in a vector of 48 complex values at each point of an
image (see Fig. 5 for example filter responses). We
subsampled an 8× 8 grid of these vectors and computed
the magnitude of the complex values, resulting in a large
vector (3072 elements for the 6-scale representation in
Model I or 2560 for the 5-scale representation in Model
II) representing the image.

3. Model I: mixture of experts network

Our first model, reported in Dailey, Cottrell and Padgett
(1997), was designed to explore the extent to which specia-
lization could arise in a simple competitive modular system
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in which the expert networks’ inputs were not biased in any
way. The network model was a mixture of experts (Jacobs et
al., 1991). Fig. 2(a) shows our two-expert network schema-
tically, and Appendix A describes the network and its learn-
ing rules in detail. In short, the “experts” are simple single-
layer linear networks, and the gating network learns an input
space partition and “trusts” one expert in each of these
partitions. The gate network’s learning rules attempt to
maximize the likelihood of the training set assuming a
Gaussian mixture model in which each expert is responsible
for one component of the mixture.

We trained the ME model with a simple face/object clas-
sification task, observed the extent to which each expert
specialized in face, book, cup, and can classification, and
finally observed how random damage localized in one
expert affected the model’s generalization performance.
As described in the Face/Object Stimuli section (Section
2.4), we preprocessed each image to generate a 3072-
element vector representing the image. The rest of this
section describes the training procedure and specializa-
tion/damage results.

3.1. Dimensionality reduction with principal components
analysis

The feature extraction method described above produced
240 input patterns of 3072 elements. Since neural networks
generalize better when they have a small number of inde-
pendent inputs, it is desirable to reduce the input pattern
dimensionality. To accomplish this, we first divided them
into a training set composed of four examples for each indi-
vidual face or object (192 patterns total) and a test set
composed of one example of each individual (48 patterns
total). Using the efficient technique for PCA described by
Turk and Pentland (1991), we projected each pattern onto
the basis formed by the 192 eigenvectors of the training set’s
covariance matrix, resulting in 192 coefficients for each
pattern. As a final step, we normalized each pattern by

dividing each of its coefficients by its maximum coefficient
magnitude so all coefficients fell in the range [21,1].

With the resulting representation, our networks exhibited
good training set accuracy and adequate generalization, so
we did not further reduce the pattern dimensionality or
normalize the variance of the coefficients. Note that with
192 patterns and 192 dimensions, the training set is almost
certainly linearly separable.

3.2. Network training

In these experiments, the network’s task was to recognize
the faces as individuals and the objects as members of their
class. Thus the network had 15 outputs, corresponding to
cup, book, can, face 1, face 2, etc. For example, the desired
output vector for the “cup” patterns was
�1; 0;0;0; 0;0;0; 0;0;0; 0;0;0; 0;0�T, and the pattern for
“face 5” was�0;0; 0;0;0; 0;0;1; 0;0;0; 0;0;0; 0�T.

After removing one example of each face and object (48
patterns) from the training set for use as a validation set to
stop training, we used the following training procedure:

1. Initialize network weights to small random values.
2. Train each expert network on 10 randomly chosen

patterns from the (reduced) training set. Without this
step, both networks would perform equally well on
every pattern and the gating network would not learn
to differentiate between their abilities, because the gate
weight update rule is insensitive to small differences
between the experts’ performance.

3. Repeat 10 times:

(a) Randomize the training set’s presentation order.
(b) Train the network for one epoch.

4. Test the network’s performance on the validation set.
5. If mean squared error over the validation set has not

increased two consecutive times, go to 3.
6. Test the network’s performance on the test set.

The training regimen was sufficient to achieve near-
perfect performance on the test set (see Fig. 7 results for
0% damage), but we found that the a priori estimates (g1 and
g2 in Appendix A) learned by the gate network were extre-
mely sensitive to the learning rate parameters (hg andhe in
Appendix A) and momentum parameters (ag and ae in
Appendix A). If the gate network learns too slowly relative
to the experts, they generally receive the same amount of
error feedback and thegi never deviate far from 0.5. If the
gate network learns too quickly relative to the experts, it
tends to assign all of the input patterns to one of the experts.

To address this problem, we performed a search for para-
meter settings that partition the training set effectively. For
270 points in the four-dimensional parameter space, we
computed the variance of one of the gate network outputs
over the training set, averaged over ten runs. This variance
measure was maximal whenhe � 0:05, hg � 0:15,
ae � 0:4, andag � 0:6.
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Fig. 5. Original image and Gabor jets at five scales. Each pixel’s intensity
in the processed images represents the log of the sum of the magnitudes of
the filter responses in each of the eight directions.



Maximizing the gate output variance is a reasonable strat-
egy for selecting the model’s learning parameters. It
encourages a fairly sharp partition between the experts’
areas of specialization without favoring one partition over
another. On the other hand, it may have been preferable to
include a term penalizing low gate value variance in the
network’s objective function, since this would eliminate
the need for a parameter search; we experimented with
this technique and found that the results (as reported in
the next section) were robust to this change in the training
procedure.

3.3. Model I results

Fig. 6 summarizes the division of labor performed by the
gate network over 10 runs withhe � 0:05, hg � 0:15,
ae � 0:4, andag � 0:6. The bars denote the weights the
gate network assigned to whichever expert emerged as
face-dominant, broken down by stimulus class, and the
error bars denote standard error. Fig. 7 illustrates the perfor-
mance effects of damaging one expert by randomly remov-
ing connections between its input and output units.
Damaging the face-specializing network resulted in a
dramatic decrease in performance on the face patterns.
When the network not specializing in faces was damaged,
however, the opposite effect was present but less severe.
Clearly, the face specialist learned enough about the object
classes during early stages of training (when the gating
network estimates all prior probabilities at about 0.5) to
correctly classify some of the object patterns.

3.4. Discussion of model I results

The results show that localized damage in a trained ME
network can model prosopagnosia: as damage to the “face”
module increases, the network’s ability to recognize faces
decreases dramatically. From this we conclude that it is
plausible for competition between unbiased functional
units to give rise to a specialized face processor. Since
faces form a fairly homogeneous class, it is reasonable to
expect that a system good at identifying one face will also be
good at identifying others. However, since the degree of
separation between face and non-face patterns in the
model is not clean and is sensitive to training parameters,
additional constraints would be necessary to achieve a face/
non-face division reliably. Indeed, as discussed earlier, such
constraints, such as the prevalence of face stimuli in the
newborn’s environment, different maturation rates in differ-
ent areas of the brain, and a possibly innate preference for
tracking faces, may well be at work during infant develop-
ment (Johnson & Morton, 1991).

Despite the lack of a strong face/non-face separation in
the network, damaging the “face expert” affects face recog-
nition accuracy disproportionately, compared with how
damage to the non-face expert affects object recognition
accuracy. This is most likely due to the fact that the network
is required to perform subordinate classification between
members of a homogeneous class (the faces) but gross
superordinate classification of the members of the other
classes.

This experiment shows how a functional specialization
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for face processing could arise in a system composed of
unbiased “expert” modules. The next modeling experiment
shows that adding simple biologically motivated biases to a
similar competitive modular system can make the effect
even more reliable.

4. Model II: modular hidden layer network

In the mixture of experts model just described, the experts
were very simple linear classifiers and the system was not
biased in any way to produce a face expert, although the
specialization was sensitive to parameter settings and was
not always strong. Our second model, reported in Dailey and
Cottrell (1998), was designed to explore the extent to which
the learning task and structural differences between modules
might strengthen the specializations we observed in the
earlier model. In order to allow the expert networks to
develop more sophisticated representations of the input
stimuli than a simple linear decision boundary, we added
hidden layers to the model. In order to make the gating
network more sensitive to the task at hand (and less sensitive
to the a priori structure of the input space), we trained it by
backpropagation of error instead of the ME’s Gaussian
mixture model. The connections to the modular network’s
output units come from two separate input/hidden layer
pairs; these connections are gated multiplicatively by a
simple linear network with softmax outputs. Fig. 2(b) illus-
trates the model’s architecture, and Appendix B describes
its operation and learning rules in detail. The model is very
similar to the ME in that it implements a form of competi-
tive selection in which the gating network learns which
module is better able to process a given pattern and rewards
the “winner” with more error feedback.

The purpose of the experiments described in this section
was to explore how two biases might affect specialization:
(1) the discrimination level (subordinate vs. superordinate)
of the task being learned, and (2) the range of spatial
frequency information available in the input. We used the
same stimuli as in the mixture of experts experiments and
trained the model with several different face/object classifi-
cation tasks while varying the range of spatial frequencies
available to the modules. In each case, we observed the
extent to which each module specialized in face, book,
cup, and can classification. We found that when the
system’s task was subordinate classification of faces and
superordinate classification of books, cups, and cans, the
module receiving only low spatial frequency information
developed a strong, reliable specialization for face proces-
sing. After describing this experiment and its results, we
repeat Model I’s damage experiments with the specialized
networks and analyze the contribution of the input represen-
tation to the results.

4.1. Preprocessing with principal components analysis

The Gabor wavelet filtering procedure we used produced

a 2560-element vector for each stimulus. As in the mixture
of experts model, it is desirable to reduce the input’s dimen-
sionality. In this experiment, however, we wanted to main-
tain a segregation of the responses from each Gabor wavelet
filter scale, so we performed a separate principal compo-
nents analysis on each spatial frequency component of the
pattern vectors. For each of the 5 filter scales in the jet, we
extracted the subvectors corresponding to that scale from
each pattern in the training set, computed the eigenvectors
of their covariance matrix, projected the subvectors from
each of the patterns onto these eigenvectors, and retained
the eight most significant coefficients. Reassembling the
pattern set resulted in 240 40-dimensional vectors.

4.2. Network training

Of the 240 40-dimensional vectors, we used four exam-
ples of each face and object to form a 192-pattern training
set, and one example of each face and object to form a 48-
pattern test set. We held out one example of each individual
in the training set for use in determining when to stop
network training. We set the learning rate for all network
weights to 0.1 and their momentum to 0.5. Both of the
hidden layers contained 15 units in all experiments. We
used the network’s performance on the hold out set to deter-
mine appropriate criteria for stopping training. For the iden-
tification tasks, we determined that a mean squared error
(MSE) threshold of 0.02 provided adequate classification
performance on the hold out set without overtraining and
allowed the gate network to settle to stable values. For the
four-way classification task, we found that an MSE thresh-
old of 0.002 was necessary to give the gate network time to
stabilize and did not result in overtraining. For all runs
reported in the results section, we simply trained the
network until it reached the relevant MSE threshold.

We trained networks to perform three tasks:

1. Four-way superordinate classification (4 outputs).
2. Subordinate book classification; superordinate face, cup,

and can classification (15 outputs).
3. Subordinate face classification; superordinate book, cup,

and can classification (15 outputs).

For each of these tasks, we trained networks under two
conditions. In the first, as a control, both modules and the
gating network were trained and tested with the full 40-
dimensional pattern vector. In the second, the gating
network received the full 40-dimensional vector, but
module 1 received a vector in which the elements corre-
sponding to the largest two Gabor filter scales were set to
0, and the elements corresponding to the middle filter scale
were reduced by 0.5. Module 2, on the other hand, received
a vector in which the elements corresponding to the smallest
two filter scales were set to 0 and the elements correspond-
ing to the middle filter were reduced by 0.5. Thus module 1
received mostly high-frequency information, whereas
module 2 received mostly low-frequency information,
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with de-emphasized overlap in the middle range, as shown
in Fig. 8.

For each of the 3× 2 experimental conditions, we
trained networks using 20 different initial random
weight sets and recorded the softmax outputs learned
by the gating network on each training pattern. As in
the ME model, this indicates the extent to which a module is
functionally specialized for a class of stimuli. To test perfor-
mance under localized random damage conditions, we
randomly removed connections from a module’s hidden
layer to the output layer.

4.3. Model II results

Fig. 9 displays the resulting degree of specialization of
each module on each stimulus class. Each chart plots the
average weight the gating network assigns to each module
for the training patterns from each stimulus class, averaged
over 20 training runs with different initial random weights.
The error bars denote standard error. For each of the three
reported tasks (four-way classification, book identification,
and face identification), one chart shows division of labor
between the two modules in the control condition, in which
both modules receive the same patterns, and the other chart
shows division of labor between the two modules when one
module receives low spatial frequency (LSF) information
and the other receives high spatial frequency (HSF) infor-
mation.

In the control condition, both modules receive the same
input, so averaged over many runs, each module wins the
competition for any given pattern about half the time. So
although on any single run, the modules would show a
pattern of specialization similar to the results from Model
I, on average, there is no reason for one module to specialize
for a pattern class consistently, and the gate weights are thus
symmetric.

When required to identify faces on the basis of HSF or
LSF information, compared with the four-way-classification
and same-pattern controls, the LSF module wins the compe-
tition for face patterns extremely consistently (lower right
graph). Book identification specialization, however, shows

considerably less sensitivity to spatial frequency. We have
performed the equivalent experiments with a cup discrimi-
nation and a can discrimination task. Both of these tasks
show a LSF sensitivity lowe than that for face identification
but higher than that for book identification.2 We have also
performed the same experiments providing different
patterns of spatial frequency information to the two
modules, and the pattern of face specialization is robust.
The full pattern contains filters with five different spatial
frequency ranges; if the LSF module receives the lowest
two ranges (range 1–2) and the HSF module receives either
range 3–4 or range 4–5, the face identification specializa-
tion is essentially the same.

As shown in Fig. 10, damaging the specialized face
identification networks provides a good model of proso-
pagnosia and visual object agnosia: when the face-
specialized (LSF) module’s ouput is “damaged” by
removing connections from its hidden layer to the
output layer, the overall network’s generalization perfor-
mance on face identification drops dramatically, while its
generalization performance on object recognition drops
much more slowly. When the non-face-specialized (HSF)
module’s outputs are damaged, the opposite effect occurs:
the overall network’s performance on each of the object
recognition tasks drops, whereas its performance on face
identification remains high.

4.4. Why does the low spatial frequency network specialize
for face processing?

In order to attain a better understanding of why the
LSF module specializes for face processing in model II,
we have performed two additional experiments invol-
ving the same stimuli but simpler classification models.
In the first, we train simple “monolithic” (as opposed to
modular) backpropagation neural networks on the same
face identification and book identification tasks under
three conditions. In the first condition, we train the networks
to perform their task given the full range of PCA’ed Gabor
filter responses. In the second and third conditions, we
present the networks with either the “low pass” patterns or
the “high pass” patterns. The monolithic network only has
difficulty when the task is face identification and the input
stimuli are high pass, i.e. when we attenuate the LSF infor-
mation in the representation.

In a second experiment, we used an even simpler classi-
fication algorithm, nearest neighbors. In this case, the clas-
sifier’s face accuracy is not impaired by attenuation of the
HSF information, but it is impaired by attenuation of the
LSF information. In this section, we present the methods
and results of the experiments, and in Section 4.5, we
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expect given the nearest neighbor analysis below.



discuss their implications together with those of the model II
results.

4.4.1. Monolithic network experiment
The goal of this experiment is to examine the contribution

of the low spatial frequency and high spatial frequency
information in our stimulus representation to classification
by a simple backpropagation neural network.

4.4.1.1. Methods. We used a 2× 2 design, manipulating

the classification task and input stimulus representations,
and trained 10 networks under each of the 4 conditions.
The two tasks were the same identification tasks used in
the model II experiment previously described:

1. Face identification: Train networks to perform identifi-
cation of the faces of 12 individuals (Bob, Carol, Ted,
Alice, …) while performing basic-level classification of
the books, cups and cans.

2. Book identification: Train networks to perform iden-
tification of the images of 12 books (Book1, Book2,
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Book3, …) while performing basic-level classification of
the faces, cups and cans.

We manipulated the stimulus representations in the same
manner as in Model II:

1. Low Pass: Train networks with high spatial frequency
information in their input patterns attenuated.

2. High Pass: Train networks with low spatial frequency
information in their input patterns attenuated.

Recall that there is overlap between the information present
in the low pass and high pass input conditions, i.e. the
response of the middle-scale Gabor filters is attenuated by
50% in each condition.

Each of the 40 networks were standard backpropagation
neural networks. We constructed the monolithic
networks to have approximately the same number of
weights as the model II networks, so each network
had a 40-unit input layer, a 31-unit hidden layer, and
a 15-unit output layer.

As in the previous experiments, we have five examples of
each individual face, cup, book, and can. One example of
each class was reserved for testing after training was
completed (a 48-pattern test set), one example of each
class was placed in a hold out set to determine when to
stop training (48 patterns), and the remaining three exam-
ples of each class formed a 144-pattern training set.

Network training was standard. We initialized each
network with small random weights. Each training epoch
consisted of one learning pass through the training set in a
random order with learning rate 0.1 and momentum 0.5.
After every 10 epochs, we tested the network’s performance
(measured with mean squared error) on the hold out set. We
continued this process until hold out set performance failed
to increase for 20 subsequent tests (200 training epochs).

4.4.1.2. Results. The graphs in Fig. 11 show how training
and hold out error decreases during training. The networks
in the high pass condition generally had a more difficult time
learning, though the impact was greater for the face
identification task than for the book identification task.

Once the networks reached criterion (of no-longer-
decreasing hold out set error), we tested their performance
on the test set. The graphs in Fig. 12 show the networks’
performance in terms of classification accuracy (% correct
on the test set). Clearly, the monolithic network finds it
impossible to generalize to unseen faces on the basis of a
high spatial frequency representation.

4.4.2. Nearest neighbor classification
The fact that the monolithic network shows the same

sensitivity to the presence of low spatial frequency informa-
tion in its input representation provides evidence that the
strong specialization for face processing in the modular
network of model II is not simply an artifact of the particular
architecture we chose for the competitive modular system.

To explore the issue of representation further, we examine
the impact of spatial frequency attenuation on an even
simpler system, a nearest-neighbor classifier. The goal of
this experiment is to evaluate the extent to which the
distance between test probes and learned exemplars in the
input space can account for the results in the modular and
monolithic network models.

4.4.2.1. Methods. In this experiment, we evaluated the
ability of a nearest neighbor classifier to correctly place
the 48 face, book, cup, and can stimuli in their
subordinate-level categories by finding, given a test
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Fig. 10. Effect of damaging the specialized face identification networks
from Fig. 9. Training on face specialization and splitting the spatial
frequency information between the two modules leads to a strong specia-
lization for faces in the low spatial frequency module.



pattern, the training example closest to it assuming a
Euclidean metric. We used three stimulus conditions:

1. Full pattern: the same representation used in previous
experiments, with the responses of all Gabor filter scales
intact.

2. LSF: the same set of patterns with attenuated high spatial
frequency information.

3. HSF: the same set of patterns with attenuated low spatial
frequency information.

4.4.2.2. Results. The simplified classifier performs better
than we expected; for all three object classes (books, cups,
and cans), under all three input representation conditions, its
accuracy is well above chance. As shown in Fig. 13, the LSF
classifier outperforms the HSF classifier on face
identification, cup identification, and can identification,
although for book identification, all input representations
lead to perfect accuracy. This shows that LSF information
is usually more diagnostic of subordinate-level class than is
HSF information, and that the face identification

specialization results for Model II are largely due to the
properties of the input representation. It also shows that
our model is able to select the proper network for a given
task.

4.5. Discussion of model II results

The results in Fig. 9 show a strong preference for LSF
information in the face identification task, empirically
demonstrating that, given a choice, a competition mediation
mechanism will choose a module receiving low spatial
frequency, large receptive field information for this task.
The experiments with the monolithic network and the near-
est neighbor classifier demonstrate that the large-scale
Gabor filters carry the most information relevant to face
identification given this particular set of stimuli. One
problem is that we have only trained our networks on
faces and objects at one distance from the camera, so the
concept of “low spatial frequency information” is relative to
the face or object, not to the viewer. Nevertheless, the result-
ing specialization in the network is remarkably strong. It
demonstrates dramatically how effective a bias in the
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Fig. 11. Monolithic network training/hold out set error over time for the four conditions. Per-pattern mean squared error at epocht is an average over the
networks that actually trained that long. (Networks stop training when they reach criterion.) Each graph is cut off at the point where fewer than threenetworks
were still training or at 1000 epochs.



relative usefulness of a particular range of spatial frequen-
cies can be. The result concurs with the psychological
evidence for configural face representations based upon
low spatial frequency information, and suggests how the
developing brain could be biased toward a specialization
for face recognition by the infant’s initially low visual
acuity.

Inspired by this result, we predicted that human subjects
performing face and object identification tasks would show
more degradation of performance in high-pass filtered
images of faces than in high-pass filtered images of other
objects. Costen et al. (1996) have investigated the effect of

high-pass and low-pass filtering on face images in isolation,
and Parker, Lishman and Huges (1996) have investigated
the effect of high-pass and low-pass filtering of face and
object images used as 100 ms cues for a same/different
task. Their results indicate that relevant high-pass filtered
images cue object processing better than low-pass filtered
images, but the two types of filtering cue face processing
equally well. Similarly, Schyns and Oliva’s (1999) results,
described earlier, suggest that the human face identification
system preferentially responds to low spatial frequency
inputs. Finally, Gauthier, Epstein and Gore (1999) have
recently provided some preliminary evidence more directly
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Fig. 12. Test set classification accuracy. Test set accuracy is averaged over ten networks. Only in the Face identification× High Pass condition did networks
fail to achieve good test set generalization. Errors bars denote anda � 0:05 confidence interval for the mean. Where error bars are not present, all 10 networks
had the same classification accuracy for the given set of test patterns.



supporting our hypothesis. Their fMRI experiment involved
detection of repetitions in a stream of faces, objects, and
scenes that were low-pass or high-pass filtered. Subjects
responded equally quickly to LSF versions of the stimuli,
but were slower at responding to HSF faces than the HSF
objects or scenes.

5. General discussion

Both of the models we have described show that localized
damage in modular systems can model brain damage result-
ing in face or object agnosia. In the mixture of experts
model, one expert tends to specialize for face recognition
because the face patterns are generally near each other, and
the gate module’s Gaussian mixture model assumption
encourages an a priori division of the input space.

Model II’s gate network, which we train by the general
technique of backpropagating error rather than imposing
restrictive constraints on its solution space, is more sensitive
to the requirements of the task at hand. The system adapts its
division of labor to the given task—this is evident in Fig. 9,
where the network’s division of labor varies dramatically
with the task we train it to perform. Our analysis of the low
and high spatial frequency stimulus representations in the
monolithic backpropagation network and the nearest
neighbor classifier shows in a more direct empirical manner
that for this set of stimuli, the low spatial frequency
information in the representation is critical for subordi-
nate-level face classification but no more useful for subor-
dinate-level object classification than the high spatial
frequency information.

The empirical analysis leads to two natural theoretical
questions: why should low spatial frequency information
be critical for face identification, and why should it be
less important for face detection (basic-level classification)
or subordinate-level identification of other objects? On the
one hand, the task of face detection is very simple for the
stimulus set we used in these experiments, so it should be no
surprise that high spatial frequency Gabor filter responses
can capture the difference between faces and cups, books, or
cans. The high spatial frequency components of a jet char-
acterize the local texture in an image, and PCA finds the
axes along which the filter responses vary the most. For
subordinate-level classification of the objects in our stimu-
lus set, local texture (as encoded by the high spatial
frequency filters) should be at least as diagnostic of identity
as are the low spatial frequency filter responses, which can
only encode the gross shape of features and relationships
between them. On the other hand, local texture (again, as
encoded in our representation) clearly does not provide
enough information for reliable face identification with
our stimulus set. We claim that in general, faces do not
vary much in local texture—we all have eyes, a nose, a
mouth, and a hairline with similar local contrast.Only the
low spatial frequency components of our representation,
then, can possibly encode the kinds of subtle configural
differences that Tanaka and Sengco (1997) found were
important in their subjects’ face perception and recognition.

Taken together, the models empirically demonstrate that
prosopagnosia could simply reflect random localized
damage in a system trained by competition. This competi-
tion could easily be biased by structural and environmental
constraints such as:
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Fig. 13. Subordinate-level classification accuracy for a nearest-neighbor classifier for the face/object dataset. The full patterns were generatedas described in
Section 4.1 by PCA of the responses of a bank of Gabor filters. The LSF patterns had attenuated high spatial frequency information, whereas the HSF patterns
had attenuated low spatial frequency information, as described in Section 4.2 and Fig. 8.



• infants appear to have an innate tendency to track faces at
birth;

• faces are the only class of visual stimuli for which subor-
dinate classification is important at birth;

• learning under these conditions would necessarily be
based on gross features and low spatial frequency infor-
mation due to the infant’s low acuity and contrast sensi-
tivity;

• low spatial frequency information is a suitable basis for
the holistic representations apparently at work in adult
face processing.

In contrast to prosopagnosia, however, localized damage
in our networks does not model visual object agnosia (spar-
ing face recognition) especially well. A lesioned network
with object processing as badly impaired as C.K.’s, with
intact face processing, would be an extremely rare occur-
rence. Of course, Juola and Plunkett (1998) might argue that
C.K.’s brain damage is nothing more than an outlier. But as
Moscovitch et al. (1997) point out, C.K. can perceive and
recognize the component parts of complex objects but
cannot put them together into a whole. The psychological
evidence seems to indicate that faces are different from most
other objects in that they are perceived and recognized holi-
stically, but our networks do not have much opportunity to
form part-based representations of the objects. Although the
hidden units in networks like those of Model II could
presumably discover parts for their intermediate representa-
tions of objects, that would probably require (at least) a
much larger training set and more difficult classification
tasks. Thus it seems that our models do not possess the
part-based representations presumably destroyed in severe
object agnosics without prosopagnosia.

As we stated in the introduction to this paper, one theo-
retical alternative to the “holistic hypothesis” is that faces
are merely the most important class of stimuli for which
expert-level subordinate classification within a homoge-
neous basic class is important.3 Gauthier and colleagues
have amassed a great deal of evidence for this hypothesis
(Gauthier & Tarr, 1997; Gauthier, Anderson, Tarr,
Skudlarski & Gore, 1997; Gauthier, Tarr, Moylan, Ander-
son & Gore, 1998; Gauthier, Tarr, Anderson, Skudlarski &
Gore, 1999). Our experiments do not address the issue
directly, but the nearest neighbor subordinate classification
results for cups and cans (and, in fact, cup identification and
can identification experiments we have not reported in
detail) suggest that in many cases, subordinate classification
may be biased toward low spatial frequency information.
Perhaps this bias is more general than suggested by our
preliminary experiments; we plan to explore it more directly
in future work.

Finally, we anticipate a few possible criticisms of our
model. First and perhaps foremost, the models and stimuli

are largely static. We have given our model both high and
low spatial frequency channels “from birth”. The develop-
ing infant’s environment is clearly dynamic, and its visual
acuity gradually improves. However, we are simply demon-
strating that given a choice, the low spatial frequencies are
preferable for face discrimination. It is interesting that
Nature has arranged for the neonates’ visual capabilities
to be matched to the task at a time when it is a salient
distinction to make. This could be another variant of
Elman’s observation that a reduced capacity system may
be necessary component of development in order to solve
certain problems (Elman, 1991a,b). In future work, we plan
to explore how the dynamics of these changing task require-
ments and an increasingly accurate sensory system might
interact with functional specialization in our models.

Another potential criticism is that children do not appear
to recognize faces holistically (as operationalized by Farah
and Tanaka’s part–whole paradigm) until at least the age of
6 (Tanaka, Kay, Grinnell, Stansfield & Szechter, 1998).
Although the part–whole test is not the most direct way to
assess the existence of configural or holistic processing (the
advantage for wholes over parts alone has been observed for
both novice and expert-level recognition of non-face objects
including Greebles, cars, and cells (Gauthier & Tarr, 1997;
Gauthier, personal communication), and a more direct test is
Tanaka and Sengco’s (1997) second-order configuration
manipulation, the data could reflect a qualitative shift in
the way children process faces. Perhaps there is contention
between part-based processing and configural processing
that is not resolved until a few years after birth. This is
another topic for further research.

6. Conclusion

We have shown in two computational modeling studies
that simple data-driven competitive selection combined
with constraints and biases known or thought to exist during
visual system development can account for some of the
effects observed in normal and brain-damaged humans.
Our studies lend support to the claim that there is no need
for an innately specified face processing module—face
recognition is only “special” insofar as faces form a remark-
ably homogeneous category of stimuli for which within-
category discrimination is ecologically beneficial early in
life.

Note that we are not arguing that face recognition is
modular! In both models, the expert or module specializing
for face recognition also plays a role in classifying other
types of stimuli. Given that, it may be somewhat surprising
that localized but random damage in the networks cause
reliable double dissociations between face and object recog-
nition. But this is simply another demonstration of Plaut’s
(1995) observation that double dissociations do not neces-
sarily imply modularity.

Using competitive computational models to study
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functional specialization in face processing appears to be a
promising avenue for future research. In future work, we
plan to explore mechanisms that lead to functional specia-
lization and localization in unsupervised computational
models that are more biologically plausible. As another
route to increasing our models’ plausibility and predictive-
ness, we will make efforts to realistically incorporate the
time course of infant development. We also plan to study
other neuropsychological double dissociations, such as that
between facial expression and facial identity recognition,
with similar techniques.
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Appendix A. A mixture of experts learning rules

In this model, the output layers of an array of linear
classifiers is combined by a gating network, as shown in
Fig. 2(a). We trained this network with the maximum like-
lihood gradient ascent learning rules described by Jordan
and Jacobs (1995).

A.1. Feed-forward phase

In the feed-forward stage, each expert networki is a
single-layer linear network that computes an output vector
Oi as a function of the input vectorx and a set of parameters
ui .

We assume that each expert specializes in a different area
of the input space. The gating network assigns a weightgi to
each of the experts’ outputsOi. The gating network deter-
mines thegi as a function of the input vectorx and a set of
parametersw. Thegi can be interpreted as estimates of the
prior probability that experti can generate the desired output
y, or P�iux;w�. The gating network is a single-layer linear
network with softmax nonlinearity at its output. That is, the
linear network computes

ji �
X

j

xjwij

then applies the softmax function to get

gi � exp�ji�X
j

exp�jj�

Thus thegi are nonnegative and sum to 1. The final, mixed
output of the entire network is

O �
X

i

gioi :

A.2. Adaptation by maximum likelihood gradient ascent

We adapted the network’s estimates of the parametersw
and u i, using Jordan and Jacobs’ (1995) gradient ascent
algorithm for maximizing the log likelihood of the training
data given the parameters. Assuming the probability density
associated with each expert is Gaussian with identity covar-
iance matrix, they obtain the online learning rules

Dui � hehi�y 2 oi�xT

and

Dwi � hg�hi 2 gi�xT

wherehe andhg are learning rates for the expert networks
and the gating network, respectively, andhi is an estimate of
the posterior probability that experti can generate the
desired outputy:

hi �
giexp�2 1

2 �y 2 oi�T�y 2 oi��X
j

gjexp�2 1
2 �y 2 oj�T�y 2 oj��

:

This can be thought of as a softmax function computed on
the inverse of the sum squared error of each expert’s output,
smoothed by the gating network’s current estimate of the
prior probability that the input pattern was drawn from
experti‘s area of specialization.

As the network learns, the expert networks “compete” for
each input pattern, while the gate network rewards the
winner of each competition with stronger error feedback
signals. Thus, over time, the gate partitions the input
space in response to the expert’s performance. We found
that adding momentum terms to the update rules enabled the
network to learn more quickly and the gate network to parti-
tion the input space more reliably. With this change, ifc is a
weight change computed as above, the update rule for an
individual weight becomesDwi�t� � c 1 aDwi�t 2 1�: We
found that setting the learning parametershg;he;ag; andae

was not a simple task, as described in the text.

Appendix B. Mixed hidden layer network learning rules

This model is a simple modular feed-forward network.
The connections to the output units come from two separate
input/hidden layer pairs; these connections are mixed multi-
plicatively by a gating network similar to that of the mixture
of experts. The architecture is shown in Fig. 2(b). We used
standard backpropagation of error to adjust the network’s
weights, but since the multiplicative gating connections add
some complexity, we give the detailed learning rules here.

B.1. Feed-forward phase

In the feed-forward stage, the hidden layer unitsuij (i is
the module number andj is the unit number in the layer)
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compute the weighted sum of their inputs:

Iij �
X

k

wijkxk

then apply the sigmoid function to the sum:

zij � s�Iij � � 1
1 1 e2Iij

:

Softmax uniti in the gate network computes the weighted
sum of its inputs:

ji �
X

k

uikxk

then applies the softmax function to that weighted sum:

gi � exp�ji�X
j

exp�jj�
:

Thegi are positive and sum to 1. The final output layer then
computes the weighted sum of the hidden layers of the
modules, weighted by the gating valuesgi :

oi �
X
m

gm

X
j

wimjzmj

0@ 1A:
B.2. Adaptation by backpropagation (generalized delta
rule)

The network is trained by on-line back-propagation of
error with the generalized delta rule. Each of the network’s
weightswij for a connection leaving uniti and feeding unitj
is updated in proportion todj ; the error due to unitj, andxi ;

the activation of uniti, with the addition of a momentum
term.

For output uniti,

doi
� 22�yi 2 oi�;

whereyi is theith component of the desired output andoi is
unit i‘s actual output.

For hidden nodeuij ; the jth unit in modulei’s hidden
layer,

duij
� s0�Iij �

X
p

dop
giwpij ;

wheres0 is the derivative of the sigmoid function,Iij is the
weighted sum ofuij ’s inputs,gi is theith softmax output unit
of the gating module, andwpij is the weight on the connec-
tion from uij to output unitop:

Finally, the error due to the softmax unit that gates
modulei is

dgi
� �gi 2 g2

i �
X
p

dop

X
j

zij wpij

0@ 1A
wherezij is the output activation of hidden nodeuij andwpij

is the weight fromuij to output nodeop:

Thus the gating units both mix the outputs of each modu-
le’s hidden layer and give each module feedback during
learning in proportion to its gating value (viaduij

). The
architecture implements a simple form of competition in
which the gate units settle on a division of labor between
the modules that minimizes the entire network’s output
error.
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