
Simultaneous Localization and Mapping
with Stereo Vision

Matthew N. Dailey
Computer Science and Information Management

Asian Institute of Technology
Pathumthani, Thailand

Email: mdailey@ait.ac.th

Manukid Parnichkun
Mechatronics

Asian Institute of Technology
Pathumthani, Thailand

Email: manukid@ait.ac.th

Abstract— In the simultaneous localization and mapping
(SLAM) problem, a mobile robot must build a map of its environ-
ment while simultaneously determining its location within that
map. We propose a new algorithm, for visual SLAM (VSLAM), in
which the robot’s only sensory information is video imagery. Our
approach combines stereo vision with a popular sequential Monte
Carlo (SMC) algorithm, the Rao-Blackwellised particle filter, to
simultaneously explore multiple hypotheses about the robot’s
six degree-of-freedom trajectory through space and maintain a
distinct stochastic map for each of those candidate trajectories.
We demonstrate the algorithm’s effectiveness in mapping a large
outdoor virtual reality environment in the presence of odometry
error.

Keywords—Localization, mapping, stereo vision, Rao-
Blackwellised particle filter, visual landmarks

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is the
problem of a mobile robot constructing a metric map from
noisy sensor readings while simultaneously estimating its
location from the partial map and noisy odometry measure-
ments. SLAM is one of the fundamental challenges for mo-
bile robotics research. Altough recent years have seen great
advances in 2D mapping with laser range finders, exclusively
vision-based SLAM (VSLAM) is still limited to relatively
small scale, highly structured indoor environments.

We are interested in taking VSLAM beyond the typical
office building environment into larger, but still structured,
environments such as college campuses, office parks, and
shopping malls. Potential application areas include security,
inspection, landscape maintenance, agriculture, and personal
service.

Achieving this goal without giving the robot an a-priori
map requires new technology. The majority of vision-based
SLAM research to date has focused on automatic construction
of occupancy grids or topological maps (see [8] for a survey),
both of which are inappropriate for large-scale metric mapping.
The ideal approach would construct a sparse 3D representation
of the environment.

Early VSLAM systems did use sparse features, but they
typically compressed the map to 2D. For example, Kriegman,
Triendl, and Binford’s system [11] uses a stereo sensor to
extract vertical lines from the environment. Observed lines
are used to reduce odometric uncertainty using an extended

Kalman filter (EKF), then the observations are in turn used
to update an environment map containing 2D point features
representing the observed vertical lines. Yagi, Nishizawa, and
Yachida’s system [21] took a similar approach but used a single
omnidirectiona vision sensor and accumulation of measure-
ments over time, rather than stereo, to determine the positions
of vertical line landmarks. These systems and others have
amply demonstrated the efficacy of VSLAM based on line
landmarks in constrained indoor environments with smooth
floors.

Faugeras and colleagues [1], [22] were the first to develop
a VSLAM system storing a sparse 3D map. Their system first
constructs a “local” 3D line segment map of the current scene
using trinocular stereo. It explicitly represents the uncertainty
about each feature’s robot-relative pose in the form of a
covariance matrix. The new local map is registered against
the current global map and used to update an estimate of
the robot’s position using an EKF. Finally, assuming the
robot’s position, the global map is be updated with the freshly
observed features, again using EKFs.

Se, Lowe, and Little [16] demonstrate the use of SIFT
(scale invariant feature transform) point features as landmarks
for the VSLAM problem. Their system also uses a trinocular
stereo camera rig and models the positional uncertainty of the
landmarks with Kalman filters.

Sim and Dudek [17] take a different approach; rather than
prespecifying the features (lines, points, corners, and so on)
that should be used for map building and localization, their
system learns generative models for the appearance of salient
features during exploration.

Until quite recently, most VSLAM systems limited them-
selves by separating the motion estimation and map estimation
problems. Typically, at each step, the robot’s location would
be estimated via Bayesian inference or some other estimation
technique, then that position would be assumed for the map
update. While this approach leads to fast algorithms, not
considering alternative robot poses when estimating landmark
positions is suboptimal. Other researchers in the robotics
community took a formal probabilistic approach and explored
the possibility of representing, at each point in time, the full
joint posterior distribution over robot trajectories and landmark

1–4244–0342–1/06/$20.00 c© 2006 IEEE ICARCV 2006

positions. Smith, Self, and Cheeseman [19] introduced the
“stochastic map,” which represents not only the positions of
landmarks in the world with their associated uncertainties, but
also the uncertainty of the robot’s position, the covariance be-
tween each pair of landmarks, and the covariance between the
robot’s position and each landmark. This seminal theoretical
work inspired many successful SLAM systems, e.g. [2], [7],
[12]. In a particularly impressive demonstration of the power
of the stochastic map approach, Davison and colleagues [5],
[6] have solved the VSLAM problem with point landmarks
extracted from a single camera without odometry. Their system
runs in real time at 30 Hz.

While the stochastic map very accurately represents all of
the available information about landmark and robot positions
(within the limits of the Gaussian approximation), the method
unfortunately cannot scale to the thousands of landmarks
needed for large-scale environments, due to the size of the
full covariance matrix.

Murphy [13], however, recognized that in SLAM, map
elements are conditionally independent given the robot’s tra-
jectory through time. He used this insight in the design of
the Rao-Blackwellised particle filter (RBPF), in which the
joint posterior over robot trajectories and maps is represented
by a set of samples or particles, each particle containing
one possible robot trajectory and the corresponding stochastic
map. The fact that the robot’s trajectory is fixed for a given
particle has an important consequence: all of the covariances
between different map elements in the stochastic map become
0. For a landmark map, this means the covariance matrix for
each individual landmark is sufficient to represent all of the
available knowledge of the environment.

Murphy only demonstrated the RBPF on a toy problem, but
more recent work has applied the technique to the real world
with immense success. Montemerlo, Thrun, and colleagues
[20] use the RBPF and 2D point landmarks measured by a
laser scanner to construct large-scale 2D maps. In their system,
each particle represents a possible robot trajectory, set of data
associations, and landmark map. The maps are stored in a
tree structure that allows sharing subtrees between particles,
allowing a real-time implementation that scales to thousands
of landmarks. Eliazar and Parr [9] also use the RBPF and
a laser scanner for SLAM, but build a 2D occupancy grid
rather than a landmark database. Their algorithm also requires
a sophisticated data structure that allows sharing maps between
particles.

Even more recently, researchers have begun to apply the
RBPF to the VSLAM problem. Sim et al. [18] extract SIFT
point features from stereo data and combine the observations
with visual odometry to build 3D landmark maps. According
to the authors, this state-of-the art system has constructed the
largest and most detailed VSLAM map ever, in a large indoor
laboratory environment.

In our work, we take a similar approach, combining the
RBPF with vision sensors, except that we use 3D line seg-
ments for localization and map building, rather than the more
commonly used point features [18], [20]. Line parameters can

be estimated more accurately than points, since the estimate in-
corporates more observed data. This means it may be possible
to obtain more accurate robot localization from line landmarks
than point landmarks, depending on the characteristics of the
robot’s workspace. Lines also provide more information about
the environment’s geometry than do points, allowing more
sophisticated inference about the structure of the world. How-
ever, lines also have an important disadvantage with respect
to points: they are less distinctive, making it more difficult to
find correct correspondences between a set of observed lines
and the lines in a stored model. We overcome this difficulty
by sampling many possible poses from the robot’s motion
model, obtaining a different possible observation-model cor-
respondence given each robot pose, and allowing the “fittest”
correspondences to survive in the particle filter.

Our algorithm is called VL-SLAM (Visual Line-based
SLAM). Here we describe VL-SLAM and demonstrate its
effectiveness in a series of experiments. The main contri-
butions of this paper are 1) an effective sensor model for
line landmarks obtained from a stereo camera rig, 2) a new
proposal distribution for the RBPF that overcomes the limi-
tations imposed by highly uncertain correspondences, and 3)
experimental evidence of the feasibility of VL-SLAM using
realistic, albeit synthetic, data.

II. VL-SLAM
VL-SLAM is based on the “FastSLAM” family of algo-

rithms proposed by Montemerlo, Thrun and colleagues [20].
At each point t ∈ 1 . . . T , the robot performs an action ut

taking it from position st−1 to st and uses its sensors to obtain
an observation zt. We seek a recursive estimate of

p(s0:t,Θ | u1:t, z1:t) (1)

where Θ is a map containing the positions of each of a set
of point landmarks. Rather than estimate the distribution (1)
analytically, we approximate the posterior with a discrete set
of Mt samples (sometimes called particles){

< s
[m]
0:t ,Θ[m]

0:t >, where each index m ∈ 1 . . .Mt

}
. (2)

Here s
[m]
0:t is the specific robot trajectory from time 0 to time t

associated with particle m, and Θ[m]
0:t is the stochastic landmark

map associated with particle m (the map is derived from s
[m]
0:t ,

z1:t, and u1:t). FastSLAM (and VL-SLAM) use the sequential
Monte Carlo techniques of sequential importance sampling
and importance resampling. First, for each particle, we sample
from some proposal distribution

π(s0:t,Θ0:t | z1:t, u1:t) (3)

to obtain a temporary set of particles for time t, then evaluate
the importance weight w[m] for each temporary particle, where

w(s0:t,Θ0:t) =
p(s0:t,Θ0:t | u1:t, z1:t)
π(s0:t,Θ0:t | u1:t, z1,t)

. (4)

The importance weights are normalized to sum to 1, then we
sample Mt particles, with replacement, from the temporary
particle set according to the normalized weights.

VL-SLAM extends FastSLAM with a new sensor model for
3D line segments and a new proposal distribution π(·) appro-
priate for environments with highly ambiguous observation-
model correspondences. We first describe the 3D line segment
sensor model then VL-SLAM proposal distribution.

A. VL-SLAM 3D Line Segment Sensor Model

After each robot motion ut, a set of trinocular stereo images
is captured, and a set zt of landmark measurements (line
segments) is extracted from those images. These line segment
measurements, along with the measured motion ut, are used
to update each particle’s map and position estimate.

Our system assumes a calibrated stereo camera rig with
three pinhole cameras. It can handle general fundamental
matrices (the images need not be perfectly rectified), but we
do assume that one camera is roughly horizontally displaced
and a second camera is roughly vertically displaced from a
third (reference) camera.

The basic 2D feature in our system is the line segment.
We extract line segments using Canny’s method [4] following
the implementation in VISTA [14]. The edge detector first
performs nonmaxima suppression, links the edge pixels into
chains, and retains the strong edges with hysteresis. Once edge
chains are extracted from the image, we approximate each
chain by a sequence of line segments. Short line segments,
indicating edges with high curvature, are simply discarded in
the current system.

We use a straightforward stereo matching algorithm similar
to the approach of [22]. For each line segment in the reference
image, we compute the segment’s midpoint, then consider
each segment intersecting that midpoint’s epipolar line in
the horizontally displaced image. Segments not meeting line
orientation and disparity constraints are discarded. Each of
these potential matches determines the location and orientation
of a segment in the third image. If such a consistent segment is
indeed found in the third image, the potential match is retained;
otherwise it is discarded. If at the end of this process, we
have one and only one consistent match, we assume it correct;
otherwise, the reference image line segment is simply ignored.

Now our goal is to estimate a three-dimensional line from
the three observed two-dimensional lines. Infinite lines have
four instrinsic parameters, so it would make sense to use
a four-dimensional representation of a lines. However, since
VL-SLAM uses a Kalman filter to combine landmark obser-
vations, we require a linear parameterization of landmarks,
and no linear four-dimensional representation of lines exists
[1]. Instead we represent lines with six components: a 3D
point representing the midpoint of the observed line segment
and a 3D vector whose direction represents the direction of
the line and whose length represents the distance from the
line segment’s midpoint to one of its endpoints. This 6D
representation behaves well under linear combination, so long
as the direction vectors are flipped to have a positive dot
product.

First we obtain a maximum likelihood estimate of the
infinite 3D line’s parameters assuming Gaussian measurement

error in the image using Levenberg-Marquardt minimization
[15]. As an initial estimate of the line’s parameters, we use the
3D line (uniquely) determined by two of the 2D line segment
measurements. Once the infinite line has been estimated, we
find the segment’s extrema and midpoint using the observed
data.

Through each step of the 3D line estimation process,
we maintain explicit Gaussian error estimates. We begin by
assuming spherical Gaussian measurement error in the image
with a standard deviation of one pixel. Arranging the n (x, y)
coordinates of the pixels in a line as a column vector x, the
covariance of x is simply Σx = I2n×2n. Since the vector of
parameters l describing the 2D line best fitting x is a nonlinear
function l = f(x), the covariance of l is Σl = JΣxJT , where
J is the Jacobian matrix ∂f

∂x evaluated at x.
The maximum likelihood estimate of the 3D line obtained

from the three 2D line segments l = (l1, l2, l3) is clearly
not a simple function, since it is computed by an iterative
optimization procedure. However, if l = f(L) is the function
mapping from the parameter space to the measurement space,
it turns out that, to first order, L̂ is a random variable with
covariance matrix (JT ΣlJ)−1, where J is the Jacobian matrix
∂l
∂L [10]. The rank of the resulting covariance matrix is only
four, however, so to constrain the remaining two degrees of
freedom, we add to the rank-deficient covariance matrix a
covariance matrix describing the expected error in our estimate
of the segment’s midpoint and another covariance matrix
describing the expected error in our estimate of the segment’s
length. This gives us a full-rank covariance matrix that restricts
matching line segments to not only be similar in terms of their
supporting infinite line, but also to overlap and have similar
length.

Once the six-dimensional representation of an observed 3D
line is estimated from a trinocular line correspondence, it is
necessary to transform that line from camera coordinates into
robot coordinates, since the reference camera is in general
translated and rotated relative to the robot itself. It is also
necessary to transform landmarks from robot coordinates into
world coordinates, when the robot’s position is determined,
for instance, and from world coordinates back to robot coordi-
nates, when a landmark in the map is considered as a possible
match for an observed (robot coordinate) landmark. In each
of these cases, the transformed line L′ = t(L) is computed as
a nonlinear function of the original line, and the transformed
line’s covariance is propagated by ΣL′ = JΣLJT , where J is
the Jacobian matrix ∂t

∂L evaluated at L.

B. VL-SLAM Proposal Distribution

The proposal distribution π(·) (3) can be any distribution
that is straightforward to sample from. However, it is best if
π(·) closely approximates the full joint posterior (1), in which
case the importance weights will be nearly uniform, and most
particles will “survive” the resampling step. In FastSLAM 1.0
[20], the proposal distribution is simply p(st | st−1, ut), i.e. the
motion model predicting st given a previous position st−1 and
action ut. The authors observe that this proposal distribution,

(a) (b) (c)
Fig. 1. Sample trinocular image set captured in simulation. (a) Reference image. (b) Horizontally aligned image. (c) Vertically aligned image.

while simple to sample from, does not take into account the
current observation zt. This leads to FastSLAM 2.0, in which
the proposal distribution is p(st | s

[m]
0:t−1,Θ

[m]
0:t−1, u1:t, z1:t).

This distribution takes not only the previous robot pose st−1

and current action ut into account, but also considers the
current map Θ0:t−1 and new observation zt. In the general
case, this distribution could be quite difficult to sample from,
but the authors find that by linearizing the sensor model and
applying the Markov assumption, the proposal distribution can
be approximated to first order by a Gaussian distribution whose
mean and covariance can be calculated from known quantities,
if the correspondence between the observation zt and the
current map Θ0:t−1 is known. When the correspondences are
unknown (the usual case in SLAM), FastSLAM 2.0 assumes
the maximum likelihood correspondence or draws a sample
from a probability distribution over all possible correspon-
dences. When the observations and landmarks are sparse, as is
the case in the FastSLAM environment, this is straightforward,
and FastSLAM 2.0 is much more successful than FastSLAM
1.0, since it uses the available set of particles wisely [20].

In VL-SLAM, however, each observation consists of on the
order of 100 individual 3D line segments, and typically the
landmark database contains several potential matches for each
observed line. This means that it is impossible to consider
even a small fraction of the possible correspondences for each
particle. In practice, to limit the computational complexity, we
must draw a single correspondence from the set of all possible
correspondences without considering too many alternatives.
But how can we choose a likely correspondence for a given
observation?

In VL-SLAM, when propagating a particle forward from
time t − 1 to time t, we first fraw a sample s′t from the
robot’s motion model to establish a correspondence between
the observed line segments and the current map (resembling
FastSLAM 1.0), then from that intermediate sample point,
assuming the established correspondence, sample again, from
the FastSLAM 2.0 proposal distribution. As in FastSLAM 2.0,
the proposal distribution is closer to the full joint posterior
distribution, concentrating more of the temporary particles in
regions of high probability according to the full joint posterior.

To calculate the importance weights for the the VL-SLAM
proposal distribution, we first introduce random variables nt

indicating the correspondence between the line segments ob-
served at time t and the map. In VL-SLAM, the mth particle’s
map Θ[m]

0:t is a deterministic function of the sampled trajectory
s
[m]
0:t , the sampled correspondences n

[m]
1:t , and the observations

z1:t, so we rewrite the desired full joint posterior as

p(s0:t, n1:t | u1:t, z1:t). (5)

Now, assuming we have a good estimate of the full joint
posterior at time t − 1, the VL-SLAM proposal distribution
can be written as the product

p(s[m]
t | n[m]

t , s
′[m]
t , s

[m]
0:t−1, n

[m]
0:t−1, z1:t, u1:t)×

p(n[m]
t | s′[m]

t s
[m]
0:t−1, n

[m]
1:t−1, z1:t−1, u1:t)×

p(s′[m]
t | s[m]

0:t−1, n
[m]
1:t−1, z1:t−1, u1:t)×

p(s[m]
0:t−1, n

[m]
0:t−1 | u1:t−1, z1:t), (6)

where s′t represents the intermediate sample drawn from the
motion model. For the mth particle, the importance weight is
the ratio of the expressions in (5) and (6), which, with several
applications of Bayes’ rule and the Markov assumption, can
be closely approximated as (details ommitted):

w
[m]
t =

p(s[m]
t | s[m]

t−1, ut)p(zt | s[m]
0:t , n

[m]
1:t , z1:t−1)

p(s[m]
t | zt, s

′[m]
t , n

[m]
1:t , s

[m]
0:t−1, z1:t−1, u1:t)p(s′[m]

t | s[m]
t−1, ut)

(7)

Following [20], we linearize the sensor model and motion
model, which leads to straightforward Gaussian approxima-
tions for each of the terms in (7).

Except for the sensor model and proposal distribution just
described, VL-SLAM is similar to FastSLAM (see [20] for
details). Once correspondences and the sampled pose are
determined for an individual particle, each observed landmark
is combined with its corresponding map landmark using an
extended Kalman filter, or initialized as a new landmark in the
map. To achieve fast search for landmarks corresponding to a
given observation, each particle’s map is stored in a binary k-
D tree whose leaves are the 3D line segments with associated
Gaussian uncertainties. However, to minimize total memory
requirements and to enable constant-time copying of maps

during the resampling stage, the particles are allowed to share
subtrees.

As we shall see in the next section, the diversity of possible
correspondences introduced by the first sampling step (as
in FastSLAM 1.0), combined with the use of the current
observation zt in the proposal distribution (as in FastSLAM
2.0), allows VL-SLAM to outperform both FastSLAM 1.0 and
FastSLAM 2.0 on a challenging synthetic testbed.

III. EXPERIMENTAL RESULTS

To enable rigorous testing of VL-SLAM in an environment
with a precisely known ground truth, we implemented a virtual
reality simulation allowing a virtual robot to move through a
virtual world rendered with OpenGL from a VRML model.
We chose as an environment a publically-available 3D model
of Housestead’s fort, a Roman garrison from the 3rd century
A.D. on Hadrian’s Wall in Britain [3]. A sample view from
our virtual trinocular stereo rig is shown in Figure 1.

We teleoperated our virtual robot through this virtual world
in a long loop of about 300m. At approximately 1m intervals,
the virtual camera rig was instructed to capture a set of stills
from its three cameras. The virtual camera models a real 10cm
baseline, 70◦ field of view trinocular rig we recently built in
our lab. To make the dataset somewhat challenging, we simu-
lated the effects of a traveling on an imperfect outdoor surface,
so that the robot’s vertical (Z) position varied approximately
±0.04m from 0, its pitch and roll varied ±2.5 degrees from
0, and its yaw varied ±3 degrees from its expected course.

This environment is an interesting testbed for VL-SLAM
because, on the one hand, it generates many long, strong,
straight edges that should be useful for localization. On the
other hand, it is highly textured, creating a large number of
edges, and the textures are highly repetitive in many places,
leading to many ambiguities for correspondence algorithms.
It is also large enough to preclude fine-grained grid-based
techniques and noisy enough to preclude the use of flat-earth
or three-degree-of-freedom assumptions.

We compared VL-SLAM with our own implementations of
FastSLAM 1.0 and 2.0. As previously discussed, FastSLAM
2.0 was not designed to handle large observations with highly
uncertain correspondences. In our implementation, we simply
obtain the maximum likelihood correspondence assuming the
robot is at the position obtained by propagating s

[m]
t−1 forward

in time according to odometry to obtain ŝ
[m]
t . With this

caveat about the FastSLAM 2.0 results, Figure 2 shows one
measure of each algorithm’s performance: the log-likelihood
of the observation data given the best particle’s robot trajectory
sample and map; Figure 3 shows the final map according to the
best VL-SLAM particle. All of the localization algorithms do
much better than the baseline (odometry-only) algorithm. Due
to its commitment to robot position ŝ

[m]
t when determining

correspondences in our implementation, FastSLAM 2.0 fares
rather poorly. Since FastSLAM 1.0 samples from the motion
model before obtaining a correspondence, it performs much
better, but VL-SLAM, which combines the best features of
both algorithms, outperforms them both.

IV. CONCLUSION

In this paper, we have demonstrated the feasibility of VL-
SLAM on a challenging synthetic data set. The VL-SLAM
proposal distribution improves on FastSLAM in environments
with large numbers of ambiguous observations. However,
Figure 2 shows that there is still improvement to be made: the
log-likelihood of the observations given perfect localization
is still much better than the log-likelihood of the observations
under VL-SLAM’s model. This means there is still information
about the robot’s position to be exploited in the observed data.
This is also evidenced in Figure 3, which compares the VL-
SLAM map to the map constructed with perfect knowledge
of the robot’s location. Although the map is locally fairly
accurate, global drift occurs throughout the run, preventing the
algorithm from closing the loop when the robot returns to its
starting position. This is most likely due to an impoverished
set of particles.

In future work, we plan to improve VL-SLAM’s loop
closing behavior and evaluate the algorithm on a variety of
indoor and outdoor real-world data sets.

ACKNOWLEDGMENTS

This research was supported by Thailand Research Fund
grant MRG4780209 to MND.

REFERENCES

[1] N. Ayache and D. Faugeras. Maintaining representations of the environ-
ment of a mobile robot. IEEE Transactions on Robotics and Automation,
5(6):804–819, 1989.

[2] S. Borthwick and H. Durrant-Whyte. Simultaneous localisation and
map building for autonomous guided vehicles. In Proceedings of
the IEEE/RSJ/GI International Conference on Intelligent Robots and
Systems (IROS), pages 1442–1447, 1994.

[3] British Broadcasting Corporation. Housestead’s Fort (3D model), 2004.
http://www.bbc.co.uk/ history/3d/houstead.shtml.

[4] J. Canny. A computational approach to edge detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 8(6), 1986.

[5] A. Davison. Real-time simultaneous localisation and mapping with
a single camera. In Proceedings of the International Conference on
Computer Vision (ICCV), pages 1403–1410, 2003.

[6] A. Davison, Y. Cid, and N. Kita. Real-time 3D SLAM with wide-angle
vision. In Proceedings of the IFAC Symposium on Intelligent Autonomous
Vehicles, 2004.

[7] A. Davison and N. Kita. 3D simultaneous localisation and map-building
using active vision for a robot moving on undulating terrain. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 384–391, 2001.

[8] G. DeSouza and A. Kak. Vision for mobile robot navigation: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(2):237–267, 2002.

[9] A. Eliazar and R. Parr. DP-SLAM 2.0. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2004.

[10] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. University Press, Cambridge, UK, 2000.

[11] D. Kriegman, F. Triendl, and T. Binford. Stereo vision and navigation
in buildings for mobile robots. IEEE Transactions on Robotics and
Automation, 5(6):792–803, 1989.

[12] P. Moutarlier and R. Chatila. Stochastic multisensory data fusion for
mobile robot location and environment modeling. In 5th International
Symposium on Robotics Research, 1989.

[13] K. Murphy. Bayesian map learning in dynamic environments. In
Advances in Neural Information Processing Systems (NIPS), 1999.

[14] A. Pope and D. Lowe. Vista: A software environment for computer
vision research. In IEEE Conference on Computer Vision and Pattern
Recognition, 1994.

[15] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical
Recipes in C. Cambridge University Press, Cambridge, UK, 1988.

0 200 400 600 800 1000
Number of particles

-700

-600

-500

-400

Lo
g

Li
ke

lih
oo

d

FastSLAM 1.0
FastSLAM 2.0
VL-SLAM
Perfect localization
Odometry only

Fig. 2. Log likelihood of line observations according to the best particle’s sampled robot position and map, averaged over 320 sets of observations.

(a) (b)
Fig. 3. Map constructed by VL-SLAM (a), compared to the the map assuming perfect knowledge of the robot’s trajectory (b).

[16] S. Se, D. Lowe, and J. Little. Mobile robot localization and mapping with
uncertainty using scale-invariant visual landmarks. The International
Journal of Robotics Research, 21(8):735–758, 2002.

[17] R. Sim and G. Dudek. Learning generative models of scene features.
International Journal of Computer Vision, 60(1):45–61, 2004.

[18] R. Sim, P. Elinas, M. Griffin, and J. Little. Vision-based SLAM using
the Rao-Blackwellised particle filter. In IJCAI Workshop on Reasoning
with Uncertainty in Robotics (RUR), 2005.

[19] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial
relationships in robotics. In I. Cox and G. Wilfong, editors, Autonomous
Robot Vehicles. Springer Verlag, 1990.

[20] S. Thrun, M. Montemerlo, D. Koller, B. Wegbreit, J. Nieto, and E. Nebot.
FastSLAM: An efficient solution to the simultaneous localization and
mapping problem with unknown data association. Journal of Machine

Learning Research, 2004. To appear.
[21] Y. Yagi, Y. Nishizawa, and M. Yachida. Map-based navigation for a mo-

bile robot with omnidirectional image sensor copis. IEEE Transactions
on Robotics and Automation, 11(5):634–648, 1995.

[22] Z. Zhang and O. Faugeras. 3D Dynamic Scene Analysis. Springer-Verlag,
1992.

