
Multiple Human Tracking in High-Density
Crowds

Irshad Ali and Matthew N. Dailey

Computer Science and Information Management
Asian Institute of Technology,

Bangkok, Thailand
Irshad.Ali@ait.ac.th,

mdailey@ait.ac.th

Abstract. In this paper, we present a fully automatic approach to mul-
tiple human detection and tracking in high density crowds in the pres-
ence of extreme occlusion. Human detection and tracking in high density
crowds is an unsolved problem. Standard preprocessing techniques such
as background modeling fail when most of the scene is in motion. We
integrate human detection and tracking into a single framework, and in-
troduce a confirmation-by-classification method to estimate confidence
in a tracked trajectory, track humans through occlusions, and eliminate
false positive detections. We use a Viola and Jones AdaBoost cascade
classifier for detection, a particle filter for tracking, and color histograms
for appearance modeling. An experimental evaluation shows that our
approach is capable of tracking humans in high density crowds despite
occlusions.

Key words: Human detection, head detection, pedestrian tracking, crowd
tracking, AdaBoost detection cascade, particle filter

1 Introduction

As public concern about crime and terrorist activity increases, the importance
of public security is growing, and video surveillance systems are increasingly
widespread tools for monitoring, management, and law enforcement in public
areas. Since it is difficult for human operators to monitor surveillance cameras
continuously, there is a strong interest in automated analysis of video surveillance
data. Some of the important problems include pedestrian tracking, behavior
understanding, anomaly detection, and unattended baggage detection. In this
paper, we focus on pedestrian tracking.

The pedestrian tracking problem is very difficult when the task is to monitor
and manage large crowds in gathering areas such as airports and train stations.
There has been a great deal of progress in recent years, but still most state-of-
the-art systems are inapplicable to large crowd management situations because
they rely on either background modeling [1–3], body part detection [3, 4], or
body shape models [5, 6, 1]. These techniques make it impossible to track large



numbers of people in very crowded scenes in which the majority of the scene
is in motion (rendering background modeling useless) and most of the humans’
bodies are partially or fully occluded. Under these conditions, we believe that
the human head is the only body part that can be robustly detected and tracked,
so in this paper we present a method for tracking pedestrians by detecting and
tracking their heads rather than their full bodies.

Our system assumes a single static camera placed a sufficient height that the
heads of people traversing the scene can be observed. For initial detection we use
a standard Viola and Jones Haar-like AdaBoost cascade [7], and for tracking we
use a particle filter [8, 9] for each head that incorporates a simple motion model
and a color histogram-based appearance model.

Although this basic approach works very well in many cases, it suffers from
two major issues: 1) shadows and other objects often cause false head detections,
and 2) tracked heads are frequently lost due to partial or full occlusion. To
address these issues, we introduce a confirmation-by-classification method that,
on each frame, first uses the Viola and Jones classifier to confirm the tracking
result for each live trajectory, then eliminates any live trajectory that has not
been confirmed for some number of frames. This process allows us to minimize
the number of false positive trajectories without losing track of heads that are
occluded for a short period of time.

In an experimental evaluation with our current implementation, we find that
on cheap hardware, the system requires approximately 2 seconds per frame to
process a 640 × 480 video stream containing an average of 35.35 individuals
per frame using 20 particles per head. We achieve a hit rate of 76.8% with an
average of 2 false positives per frame. To our knowledge, this is the largest-scale
human tracking experiment performed thus far, and the results are extremely
encouraging. In future work, with further algorithmic improvements and run
time optimization, we hope to achieve robust, real time pedestrian tracking for
even larger crowds.

2 Human head detection and tracking

In this section we first provide a summary of our tracking algorithm and then
provide the details for each step. A block diagram is shown in Fig. 1.

2.1 Summary

1. Acquire input crowd video V .
2. In first frame v0 of V , detect heads. Let N0 be the number of detected heads.
3. Initialize trajectories Tj , 1 ≤ j ≤ N0 with initial positions xj,0.
4. Initialize occlusion count Oj for each trajectory to 0.
5. Initialize the appearance model (color histogram) hj for each trajectory from

the region around xj,0.
6. For each subsequent frame vi of input video,

(a) For each existing trajectory Tj ,



Fig. 1. Block diagram of the tracking algorithm. D is the distance between a newly
detected head and a the nearest predicted location, and C is a threshold (in pixels)
less than the width of the tracking window.



i. Use motion model to predict the distribution p(xj,i | xj,i−1), over
locations for head j in frame i, creating a set of candidate particles
x

(k)
j,i , 1 ≤ k ≤ K.

ii. Compute the color histogram h(k) and likelihood p(h(k) | x(k)
j,i ,hj)

for each particle k using the appearance model.
iii. Resample the particles according to their likelihood. Let k∗ be the

index of the most likely particle.
iv. Perform confirmation by classification: run the head detector on the

location x(k∗)
j,i . If the location is classified as a head, reset Oj ← 0;

else increase Oj ← Oj + 1.
v. If Oj is greater than threshold, remove trajectory j.

(b) Search for new heads in frame vi and compute the Euclidean distance
Dj,k between each newly detected head k and each existing trajectory
Tj . When Dj,k > C for all j, where C is a threshold (in pixels) less
than the width of the tracking window, initialize a new trajectory for
detection k.

2.2 Detection

For object detection, there are many possibile algorithms; we use the Viola and
Jones technique [7, 10]. We train an AdaBoost cascade using Haar-like features
off line. Then, at run time, we use the classifier in two ways, 1) as a detector,
running a sliding window over the image at the specific range of scales expected
for the scene, or 2) as a confirmer, to check whether the maximum likelihood
head position predicted by the particle filter is sufficiently head-like to continue
tracking.

2.3 Particle filter

For tracking we use a particle filter [8, 9]. The particle filter is well known to
enable robust object tracking (see e.g. [11, 12]). We use the standard approach
in which the uncertainty about an object’s state (position) is represented as a
set of weighted particles, each particle representing one possible state. The filter
propagates particles particles from frame i− 1 to frame i using a motion model,
computes a weight for each propagated particle using a sensor or appearance
model, then resamples the particles according to their weights. The initial dis-
tribution for the filter is centered on the location of the object the first time it
is detected. Here are the steps in more detail:

1. Predict: we predict p(xj,i | xj,i−1), a distribution over head j’s position in
frame i given our belief in its position in frame i − 1. The motion model is
described in the next section.

2. Measure: for each propagated particle k, we measure the likelihood p(h(k) |
x

(k)
j,i ,hj) using a color histogram-based appearance model. After computing

the likelihood of each particle we treat the likelihoods as weights, normalizing
them to sum to 1.



3. Resample: we resample the particles to avoid degenerate weights. Without
resampling, over time, the highest-weight particle would tend to a weight of
one and the other weights would tend to zero. Resampling removes many
of the low weight particles and replicates the higher-weight particles. We
thus obtain a new set of equally-weighted particles. We use the resampling
technique described in [13].

2.4 Motion Model

Our motion model is based on a second-order auto-regressive dynamical model.
The autoregressive model assumes the next state yt of a system is a function of
some number of previous states and a noise random variable εt:

yt = f(yt−1, yt−2, ..., yt−p, εt).

In particular, we assume the simple second-order linear autoregressive model

xj,i = 2xj,i−1 − xj,i−2 + εi

in which εi is distributed as a circular Gaussian.

2.5 Appearance Model

Our appearance model is based on color histograms. We compute a color his-
togram hj in HSV space for each newly detected head and save it to compute
particle likelihoods in future frames. To compute a particle’s likelihood we use
the Bhattacharyya similarity coefficient between model histogram hj and ob-
served histogram h(k) as follows, assuming n bins in each histogram:

p(h(k) | x(k)
j,i ,hj) ∝ e−d(hj ,h(k)),

where

d(hj ,h
(k)) = 1−

n∑
b=1

√
hj,bh

(k)
b

and hj,b and h
(k)
b denote bin b of hj and h(k), respectively. A more sophisti-

cated appearance model based on local histograms along with other information
such as spatial or structural information would most likely improve our tracking
performance, but we currently use a global histogram computed over the entire
detection window because of its simplicity.

2.6 Confirmation-by-classification

To reduce tracking errors, we introduce a simple confirmation-by-classification
method, described in detail in this section.



Recovery from misses. Due to occlusion and appearance variation, we may
not detect all heads in the first frame or when they initially appear. To solve this
problem in each image, we search for new heads in all regions of the image not
predicted by the motion model for a previously tracked head. Any newly detected
head within some distance C of the predicted position of a previously tracked
head is assumed to be associated with the existing trajectory and ignored. If the
distance is greater than C, we create a new trajectory for that detection. We
currently set C to be 50% of the width of the detection window.

Reduction of false detections. Shadows and other non-head objects in the
scene tend to produce transient false detections and tracking errors. In order to
prevent transient false detections from being tracked through time, we use the
head detector to confirm the estimated head position for each trajectory and
eliminate any trajectory not confirmed for some number of frames. To imple-
ment this, we use a trajectory occlusion count. When head j is first detected
and its trajectory is initialized, we set the occlusion count Oj = 0. After updating
the head’s position in frame i, we confirm estimated position through detection.
Occlusion counts of trajectories not confirmed through classification are incre-
mented, and occlusion counts of confirmed trajectories are reset to Oj = 0.
Any trajectory that is not confirmed for some threshold number of frames is
eliminated.

Tracking through temporary occlusion. The occlusion counting scheme
just described also serves to help track a head through a partial or full occlusion.
When a tracked head becomes partially or fully occluded, it will typically fail
the confirmation by classification test, in which case we increase the trajectory’s
occlusion count. So long as an occlusion is brief and the motion model is not
severely violated, the trjactory can be recovered in a subsequent frame.

3 Experimental evaluation

3.1 Training data

To train the Viola and Jones Haar-like AdaBoost cascade detector, we cropped
4325 heads from videos collected from various places and scaled them to 20× 20
pixels. We also collected 2200 negative images. The detailed training parameters
are given in Table 1. The training process required about 72 hours on an Intel
Pentium 4 2.8GHz with 2GB RAM. We used the OpenCV haartraining utility
to train the classifier.

3.2 Test data

To evaluate our algorithm, we captured a video at 640×480 pixels and 30 frames
per second at the Mochit light rail station in Bangkok, Thailand. A sample frame



Table 1. Head detector training parameters.

Parameters Values Description

npos 4235 Number of positive samples

nneg 2200 Number of negative samples

nstages 20 Number of training stages

minhitrate 0.995 Minimum hit rate per stage (99.5%)

maxfalsealarm 0.5 Maximum false alarm rate per stage (50%)

mode All Use the full set of both upright and 45 degree rotated features

width, height 20 Training image patch width and height

boosttypes DAB Discrete AdaBoost.

Fig. 2. A sample frame from the Mochit station dataset.



is shown in Figure 2. We then hand labeled the locations of all heads at least
20×20 pixels in the first few frames and a sample of the subsequent frames with
gaps to test long tracking. We labeled a total of 40 frames containing a total of
1414 heads, for an average of 35.35 heads/frame. To evaluate our algorithm we
compare the tracked heads with the hand-labeled ground truth and determine
number of correctly tracked heads, missed heads and false positives.

Our algorithm is designed to track heads in high density crowds. The per-
formance of any tracking algorithm will depend upon the density of the crowd.
In order to characterize this relationship, we introduce the simple crowd density
measure

Crowd density =
Total number of pixels in all individuals’ bounding boxes

Total number of pixel in the frame
.

According to this measure, the highest crowd density in our test sequence is
0.63, which is higher than that of any publicly-available pedestrian tracking
video database.

Since the publicly available pedestrian tracking databases only contain low
density crowds, a direct comparison of our high-density tracking results with
other researchers’ low-density tracking results is unfortunately not possible. We
have also attempted to run the publicly available pedestrian tracking implemen-
tations on our data, but they fail due to different assumptions about the data.
In any case, to encourage other researchers to attempt tracking the pedestri-
ans in our data set, we make the data available at http://www.cs.ait.ac.th/
~mdailey/headtracking/acivs09-5950.zip.

3.3 Implementation details

We implemented the system in C++ with OpenCV without any special code
optimization. Our approach relies mainly on object detection without a need for
background subtraction. Our algorithm can thus track both moving and static
humans in the scene. We detect heads and create initial trajectories from the
first frame and then track heads from frame to frame. Further implementation
details are given in the following sections.

Trajectory initialization and termination. We use the head detector to
find heads in the first frame and create initial trajectories. To detect when new
heads appear in subsequent frames, we also run the detector to search for heads
in regions of each frame not predicted by the motion model for some existing
trajectory. We first try to associate new heads with existing trajectories; when
this fails for a new head detection, a new trajectory is initialized from the current
frame. Any head trajectory in the “exit zone” (close to the image border) for
which the motion model predicts a location outside the frame is eliminated.

Identity management. It is also important to assign and maintain object
identities (IDs) automatically during tracking. We assign a unique ID to each



trajectory during initialization. The tracking and confirmation-by-classification
processes maintain the object ID during tracking. Trajectories that are tem-
porarily lost due to occlusion are reassigned the same ID on recovery to avoid
identity changes.

3.4 Results

(a) Frame 2. (b) Frame 10.

(c) Frame 17. (d) Frame 22.

Fig. 3. Sample tracking results on the Mochit test video. Red rectangles indicate esti-
mated head positions, and green rectangles indicate ground truth head positions.

There were an average 35.35 individuals per frame over the 40 hand-labeled
ground truth frames, for a total of 1414 heads. We used 20 particles per trajec-
tory. The average correct tracking rate was 76.8%, with 2.05 false positives per
frame and 8.2 missing heads per frame. The processing time was approximately
2 seconds/frame for a frame size of 640×480 on an Intel Pentium 4 2.8GHz with
2GB RAM. A few sample frames with tracking results are shown in Figure 3.
Using a smaller frame size, a faster machine, parallelization or a GPU or multi-
core CPU, and/or code-level optimization, we expect that the processing time
could be reduced significantly. Detailed results are shown in Table 2.



Table 2. Tracking Results.

Total Heads Tracked False Positives Missed

1414 1086 (76.8%) 82 (2.05/frame) 328 (8.2/frame)

Finally, to determine the difficulty of our data set in comparison to other
existing pedestrian tracking datasets, we compared the density of our dataset
with the CAVIAR dataset [14] and the Campus Plaza sequence [1], using the
method described in Section 3.2. The results of the comparison are shown in
Table 3.

Table 3. Crowd density comparison results.

Mochit CAVIAR [14] Campus Plaza [1]

0.63 0.27 0.23

4 Discussion and Conclusion

Tracking people in high density crowds such as the one shown in Figure 2 is
a real challenge and is still an open problem. In this paper, we propose a new
algorithm based on a combination of head detection, appearance-based tracking
with a particle filter, and confirmation-by-classification. Our experimental results
demonstrate the promise of the method. It is particularly encouraging that the
particle filter works well with a very small number of particles (20).

To further understand the performance of the algorithm, we examined the
errors it makes on our test set more closely. We found that most of the missed
heads were those which were partially or fully occluded. We also found that most
of the false detections were shadows or human body parts other than heads. A
few false detections arose from background features such as holes in the ground.

In future work we plan a more extensive evaluation of the method and im-
provements in the appearance model using other image features such as contours.

Acknowledgments

We thank Tao Zhao for providing the Campus Plaza sequence to us. Irshad Ali
was supported by a graduate fellowship from the Higher Education Commission
(HEC), Pakistan.

References

1. Zhao, T., Nevatia, R., Wu, B.: Segmentation and tracking of multiple humans
in crowded environments. IEEE Transactions on Pattern Analysis and Machine
Intelligence 30(7) (2008)



2. Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans
by bayesian combination of edgelet based part detectors. International Journal of
Computer Vision 75(2) (2007) 247–266

3. Wu, B., Nevatia, R., Li, Y.: Segmentation of multiple, partially occluded objects
by grouping, merging, assigning part detection responses. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). (2008)

4. Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-
detection-by-tracking. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). (2008) 1–8

5. Ramanan, D., Forsyth, D.A., Zisserman, A.: Tracking people by learning their
appearance. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1)
(2007) 65–81

6. Zhao, T., Nevatia, R.: Tracking multiple humans in crowded environment. In:
Proceedings IEEE Conference Computer Vision and Pattern Recognition. Volume 2.
(2004)

7. Viola, P., Jones, M.: Robust real time object detection. International Journal of
Computer Vision(IJCV) 57 (2001) 137–154

8. Isard, M., Blake, A.: A mixed-state condensation tracker with automatic model-
switching. In: IEEE International Conference on Computer Vision. (1998) 107–112

9. Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice.
Springer, New York (2001)

10. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple fea-
tures. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
(2001) 511–518

11. Kang, H.G., Kim, D.: Real-time multiple people tracking using competitive con-
densation. Pattern Recognition 38 (2005) 1045–1058

12. Martnez, S.V., Knebel, J., Thiran, J.: Multi-object tracking using the particle
filter algorithm on the top-view plan. In: European Signal Processing Conference
(EUSIPCO). (2004)

13. Rui, Y., Chen, Y.: Better proposal distributions: Object tracking using unscented
particle filter. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Volume 2. (2001) II786–II793

14. CAVIAR: Data set available at http://homepages.inf.ed.ac.uk/rbf/

CAVIARDATA1.


