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Abstract— Affective information is vital for effective human-to-
human communication. Likewise, human-to-computer communi-
cation could be potentiated by an “affective barometer” able to
infer human affect using a machine vision system. For instance,
during a classroom lecture, an affective barometer might provide
useful feedback that a real or virtual instructor could use to
improve pedagogical strategies. In this paper, we explore the
feasibility of using students’ unintentional hand gestures during
a classroom lecture to predict their affective state. We propose
a maximum a posteriori classifier based on a simple Bayesian
network model. We then evaluate the classifier’s ability to predict
one of four affective states from five hand gestures observed in
video recordings of a classroom lecture. Using four-fold cross
validation, we find that the model’s generalization accuracy is
100% over cases where the student reported an affective state,
and 79.4% when we include cases where the student reported
no affective state. The experiment demonstrates that there is a
strong relationship between human affect and visually observable
gestures. Future work will explore the applicability of these
results in practical applications.

Index Terms— Behavior recognition, Intelligent tutoring sys-
tems, Human-computer interaction, Probabilistic affect predic-
tion, Unintentional hand gestures.

I. I NTRODUCTION

Imagine the following situation: a student is attending a
lecture through videoconferencing. During the class, he starts
rubbing his eyes. What might be the reason for this motion?
Is he tired, or having a problem with his eyes? Suppose that
later, in a question and answer session, he often scratches his
head. Is he confused, having a hair problem, or suffering from
a headache?

If the instructor in this scenario possessed an “affective
barometer” capable of transducing student body movements
into their likely affective states, she could use this information
to adapt her teaching strategy in real time.

Affective barometers capable of interpreting unintentional
cues such as hand movement, facial expressions, and body
posture would be extremely useful across a variety of live
classroom situations and intelligent tutoring applications.

Real-world applications that interpret affective cues are
indeed beginning to emerge [1], [2]. However, the relationship
between visible cues and affect is not onlyuncertain, but also
context-dependent.

To solve the problems of uncertainty and context depen-
dency in estimating affect from visual cues, we advocate

a probabilistic approach. The idea is to first formulate a
parametric statistical model expressing thepossiblecause and
effect relationships between affect and action in a particular
situational context such as a classroom. Then, given the form
of the model, we estimate its parameters from a training
set acquired through video recording and interviews with
the recorded students. This approach solves the problem of
uncertainty by providing an estimated probability distribution
over possible affective states rather than committing to any
one affective state. It also solves the problem of context-
dependency by learning from observations recorded in the
actual context rather than presupposing what a particular
observation might mean in a particular situation.

In this paper, we describe a preliminary application of the
method to a data set we previously acquired from a real-
world student-instructor interaction [3]. The data set contains
recorded activities of four students during a classroom lecture
along with associated self-reported affective states as described
in a post-experiment interview. Using this data set for training,
we build a Bayesian network model able to estimate a posterior
distribution over four affective states given a student’s ob-
served hand gestures. Using four-fold cross validation, we find
that the model’s generalization accuracy is 100% over cases
where the student reported an affective state, and 79.4% when
we include cases where the student reported no affective state.
The experiment demonstrates the feasibility of our approach.

II. RELATED WORK

Long ago, scientists realized that in many situations, visual
clues can be more important than verbal communication in
human-human interactions [4]. Gestures such as pointing to
an object or waving hands to show denial often appear in
human-human communication; these gestures are thought to
be important for communicating intentions.

In human-machine interaction, gesture understanding is
widely used to facilitate effective communication via sign
language and in tasks such as robot control and graphical user
interface control. Useful gestures include both whole body and
partial body movements, especially hand movements [5].

Gestures often convey important affective information.
Wallbott [6] finds that body movements help people cope with
emotional situations. Meijer [7] claims that surprise, shame
and fear are correlated with movements such as backward



body motion. Similarly, Richmond and McCroskey [8] find
that knees shake and hands tremble when someone experiences
fear.

Other researchers have focused onunintentionalcommuni-
cation of affect through gestures. Coulson [9] finds that a non-
deliberate shoulder shrug can indicate uncertainty. Burgoon et
al. [10] find that a contracted body can indicate fear. Pollick
et al. [11] investigate the affective content of movements such
as drinking and knocking. Atkinson [12] explores the effect of
kinematics of body postures for perception of affect. Bernhardt
and Robinson [13] find that it is possible to infer emotions
such as sadness, anger, and happiness from motions such as
knocking and walking.

Another central focus of research on the affective content
of gestures is multimodal affect analysis, in which gestures
are analyzed in combination with another communication
channel. Ambady and Rosenthal [14] report findings from
a human study indicating that body gesture information can
help improve emotional facial expression recognition accuracy.
Balomenos et al. [15] and Gunes et al. [16] reach similar
conclusions from work combining machine recognition of
facial expressions with hand gesture analysis.

Thus far, the research on predicting affect from gestures
has primarily focused ontask-independentinference. As such,
the typical approach is to begin with a set of pre-defined
emotional concepts then attempt to find signals that provide
evidence for the presence or absence of those emotions. The
premise is that the gesture is part of the physiological response
to an affect-evoking stimulus, and that the response is more
or less independent of the situational context. As already
discussed, we advocate a very different approach: rather than
presupposing any affective categories, we observe students
behaving in context, identify the gestures that they make,
then determine, through interviews, what they were feeling.
Our previous study of a classroom situation [3] found that
unintentional gestures such as head scratching and eye rubbing
tend to co-occur with affective states such as recalling and
weariness.

Although to our knowledge, this is the first attempt to
tackle the specific problem of extracting affective information
from students’ gestures in a classroom situation, there has
been a great deal of related research on the importance of
understanding student affect in educational contexts.

Wentzel [17] reports that students using a tutoring system
able to adapt to their level of frustration show more improve-
ment than students using a system indifferent to their affective
state. Conati’s educational game system [18] predicts player
emotions from their performance and uses that information
to adapt its instructional style and content. Vicente and Pain’s
intelligent tutoring system [19] uses questionnaires to estimate
student motivational state and uses that information to modify
the teaching method. Dadgostar et al.’s intelligent tutoring
system [20] is assisted by non-verbal information. The authors
observe how childrens’ gestures are related to their learning
skills.

As previously discussed, we model the stochastic relation-

Fig. 1. Proposed system architecture.

(a) (b)

Fig. 2. Classroom experiment. (a) Recording setup. (b) Post-experiment
interview with a student.

ship between gesture and affect using probabilistic methods.
Specifically, we use a Bayesian network in which presence
or absence of a gesture is represented by an evidence node
depending causally on a set of hidden parent nodes (see Fig. 1
and Fig. 4). We estimate the parameters of the model using
training data collected in context and ground truth obtained
through post-experiment interviews with students. Details are
provided in Section IV.

A few researchers have proposed probabilistic methods
for estimating affect in intelligent tutoring and classroom
scenarios. For example, Hernández et al. [21] and Conati
and Maclaren [22] propose probabilistic models for estimating
students’ affective state based on interactive questionnaires.
McQuiggan et al. [23] predict student frustration and anxi-
ety during interaction with intelligent tutoring systems. We
propose to estimate affect based on the unintentional hand
gestures students use during a classroom session. To our

Fig. 3. Examples of gestures observed in the classroom experiment.



Fig. 4. Proposed model showing cause-affect relationship between affective states and observable gestures.

TABLE I

DISTRIBUTION OF SELF-REPORTED AFFECTIVE STATES FOR EACH

STUDENT IN A REAL-WORLD CLASSROOM SCENARIO(IN PERCENT).

Student

Affective State A B C D Average

Thinking 57.14 65.71 58.06 64.00 61.60

Recalling 9.54 0.00 0.00 12.00 4.5

Tired 4.76 11.42 6.45 0.00 6.25

Satisfied 14.28 8.57 3.22 4.00 7.12

Nothing 14.28 14.28 32.25 20.00 20.53

knowledge, this is the first attempt to extract affective state
from hand gestures such as head scratching and eye rubbing.

III. D ATA ACQUISITION

Here we briefly summarize the data set we acquired in
an earlier experiment [3]. We installed two video cameras in
a classroom as shown in Fig. 2a, and in two sessions, we
recorded students as they listened to a lecture. After recording,
we manually isolated the gestures and facial expressions
the students performed during the session. After segmenting
the videos, in post-experiment interviews (see Fig. 2b), we
asked each student what they were feeling at the time they
performed each gesture. We recorded the students’ free-form
responses and clustered them using Geneva Affect Label
Coding (GALC) [24], [25]. Details can be found in the original
report [3].

In the original data, we observed 14 distinct gestures, but
in this paper, we focus on 5 involving hand motion around the
face: Head Scratch, Chin Rest, Eye Rub, Lip Touch, and Nose
Itch. Some examples of the gestures we observed are shown in
Fig. 3. The distribution over affective states for each student
is shown in Table I, and the gestures with corresponding self-
reported affective states, collapsed over all students, are shown
in Table II.

To our knowledge, there has been relatively little study of
unintentional hand gestures and their possible interpretations.
The field would certainly benefit from a standard taxonomy
and coding system similar to Ekman and Friesen’s [26] Facial
Action Coding System. However, the labels listed in Table II
suffice for the purposes of the current experiment.

TABLE II

SELF-REPORTED AFFECT AND CO-OCCURRING HAND GESTURES.

PERCENTAGES INDICATE THE PROPORTION OF THE TIME THAT THE

GESTURE WAS ASSOCIATED WITH THE CORRESPONDING AFFECTIVE

STATE.

Gesture Reported Affective States

Head Scratch Recalling (100%)

Chin Rest Thinking (90%), Nothing (10%)

Eye Rub Tired (81%), Nothing (19%)

Lip Touch Thinking (88.75%), Nothing (11.25%)

Nose Itch Satisfaction (77.5%), Nothing (22.5%)

IV. PROPOSEDMODEL

To model the stochastic relationship between affect and
gesture, we propose the Bayesian network shown in Fig. 4.
We represent each observable gesture (Head Scratch, Nose
Itch, Lip Touch, Eye Rub, and Chin Rest) with a binary
random variable depending probabilistically on the affective
states (Tired, Thinking, Satisfied, Recalling). We also represent
the affective states with binary random variables.

The model makes explicit the assumptions that the gestures
are conditionally independent given the affective states and
that the affective states are independent of each other. The
first assumption (conditional independence of the evidence)
is quite reasonable. The second assumption is clearly inac-
curate: presumably some affective states are more likely to
co-occur than others. However, without a substantial amount
of co-occurrence data, we have little choice but to make this
independence assumption.

For inference, we observe the values of the evidence vari-
ables (Nose Itch, Lip Touch, Eye Rub, and Chin Rest) then
calculate the posterior distribution over the affective states.
We denote the random variables for the gestures byGi, i =
1..n, where n is the number of gestures in the model, in
our case 5. We denote the observed value of gestureGi

by gi ∈ {true, false}. We use the shorthand notationsi to
denote the eventSi = true andgj to denote the eventGj =
gj . With perfect detection of gestures and the independence
assumptions just described, the posterior estimate of affective
stateSi simply follows the naive Bayes model:



Fig. 5. Network trained on data from students B, C, and D. Each probability table shows the marginal prior distribution for one affective state or gesture
over the training data.

Fig. 6. Response of the network shown in Fig. 5 when the “Lip Touch” gesture is observed. The highest posterior probability is for affective state “Thinking,”
which agrees with student A’s ground-truth self-reported affective state for this gesture.

P (si | g1, . . . , gn) ∝ P (g1, . . . , gn | si)P (si)

= P (si)
∏
j

P (gj | si). (1)

Training the model amounts to counting occurrences of each
affective statei to obtain the priorsP (si) and counting co-
occurrences of each gesturej with affective statei to obtain
the class-conditional probabilitiesP (gj | si).

We use Hugin [27] to visualize our network. An example
of trained network, showing the marginal prior distribution for
each affective state and gesture variable, is shown in Fig. 5.

V. M ODEL EVALUATION

We tested the model using four-fold cross validation. That
is, we performed four experiments in which one student’s data
was held out for testing and the other three students’ data were
used for training.

Since the human student interview protocol only requested
a self-reported affective state at each point in time when
we observed a gesture, we followed the same scheme when
computing the priorsP (si) and class-conditional probabilities
P (gj | si) for the model in Equation 1. There were 21 gestures
for student A, 35 for student B, 31 for student C, and 25 for
student D. Fig. 5 shows the marginal priors over gestures and
affective states according to the network trained on students
B, C, and D. The class-conditional probabilities, not shown,

simply indicate the ratio of how many times gesturegj co-
occurred with affective statesi compared to the total number
of occurrences of affective statesi.

For testing, at each point in time where a gesture occurred,
we manually coded the gesture using a binary representation
(e.g. when “Lip Touch” is observed, we code the evidence
as P (g1) = 0, P (g2) = 0, P (g3) = 0, P (g4) = 0, P (g5) =
1) then observe the inferred distribution over affective states
according to the model in Equation 1. Response of network
to one such input is shown in Fig. 6.

Table III shows the response of the network trained on
student A, C, and D for all 35 gestures we observed for
student B. Note that the forced-choice response of the net-
work (obtained by finding the affective state with the highest
estimated posterior probabililty) is always correct except for
the “Nothing” state, which is not explicitly modeled by our
network.

Table IV shows the test results averaged over all test folds
and gestures as a confusion matrix. Table V shows the forced-
choice version of the confusion matrix, wherein we select
the affective state corresponding to the network’s maximum
estimated posterior probability and compare it to the student’s
reported ground truth for that gesture.

The confusion matrices show that when the ground truth is
one of the four modeled affective states, the network’s forced-
choice classification accuracy is 100%, compared to a base rate
of 77.5% that a trivial classifier always responding “Thinking”
would obtain. This should not be entirely surprising given



TABLE III

POSTERIOR AFFECTIVE STATE ESTIMATES FOR NETWORK TRAINED ON

STUDENTSA, C, AND D, IN RESPONSE TO THE GESTURES OBSERVED FOR

STUDENT B. COLUMN “T RUTH” SHOWS THE THE CORRESPONDING

GROUND-TRUTH SELF-REPORTED AFFECTIVE STATE.

Network Response

Gesture Thinking Recalling Tired Satisfied Truth

Lip Touch 62.77 1.18 0.72 1.18 Thinking

Lip Touch 62.77 1.18 0.72 1.18 Thinking

Chin Rest 75.22 0.47 0.28 0.47 Thinking

Lip Touch 62.77 1.18 0.72 1.18 Thinking

Lip Touch 62.77 1.18 0.72 1.18 Thinking

Eye Rub 13.45 5.82 62.13 5.82 Nothing

Nose Itch 7.78 3.37 2.05 61.41 Nothing

Nose Itch 7.78 3.37 2.05 61.41 Nothing

Eye Rub 13.45 5.82 62.13 5.82 Tired

Eye Rub 13.45 5.82 62.13 5.82 Nothing

Eye Rub 13.45 5.82 62.13 5.82 Nothing

Nose Itch 7.78 3.37 2.05 61.41 Satisfied

Chin Rest 75.22 0.47 0.28 0.47 Thinking

Chin Rest 75.22 0.47 0.28 0.47 Thinking

Chin Rest 75.22 0.47 0.28 0.47 Thinking

Lip Touch 62.77 1.18 0.72 1.18 Thinking

Chin Rest 75.22 0.47 0.28 0.47 Thinking

Chin Rest 75.22 0.47 0.28 0.47 Thinking

Chin Rest 75.22 0.47 0.28 0.47 Thinking

Chin Rest 75.22 0.47 0.28 0.47 Thinking

Chin Rest 75.22 0.47 0.28 0.47 Thinking

Chin Rest 75.22 0.47 0.28 0.47 Thinking

Chin Rest 75.22 0.47 0.28 0.47 Thinking

Chin Rest 75.22 0.47 0.28 0.47 Thinking

Eye Rub 13.45 5.82 62.13 5.82 Tired

Nose Itch 7.78 3.37 2.05 61.41 Satisfied

Eye Rub 13.45 5.82 62.13 5.82 Tired

Lip Touch 62.77 1.18 0.72 1.18 Thinking

Lip Touch 62.77 1.18 0.72 1.18 Thinking

Chin Rest 75.22 0.47 0.28 0.47 Thinking

Chin Rest 75.22 0.47 0.28 0.47 Thinking

Eye Rub 13.45 5.82 62.13 5.82 Tired

Chin Rest 75.22 0.47 0.28 0.47 Thinking

Chin Rest 75.22 0.47 0.28 0.47 Thinking

Nose Itch 7.78 3.37 2.05 61.41 Satisfied

TABLE IV

CONFUSION MATRIX OVER ALL FOUR TEST STUDENTS.

Network Response

Ground Truth Thinking Recalling Tired Satisfied

Thinking 77.87 0.84 0.96 1.07

Recalling 12.17 59.01 5.08 5.37

Tired 10.67 4.41 53.51 4.61

Satisfied 6.92 2.46 2.48 51.33

Nothing 49.89 9.83 11.41 12.12

TABLE V

FORCED-CHOICE CONFUSION MATRIX OVER ALL FOUR TEST STUDENTS.

Network Response

Ground Truth Thinking Recalling Tired Satisfied

Thinking 69 0 0 0

Recalling 0 5 0 0

Tired 0 0 7 0

Satisfied 0 0 0 8

Nothing 14 2 4 3

the tight relationship between gestures and affective states
shown in Table II, but we should note that the results reported
here are on thetest set. This means that the students are
consistent enough in making the gestures that learning from
three students is always sufficient to correctly estimate the
affective state of the fourth student.

Aggregated over the situations where our test students
reportedno affective state, however, we see that the network’s
response is diffuse. The total accuracy of the model is 79.4%
correct overall, compared to a base rate of 61.6%. This is
also unsurprising, as the network has no explicit concept of
lack of affective state. But modeling lack of affect would
not be as simple as adding a fifth affective state called
“Nothing,” because this state and the other affective states
would clearly be strongly dependent on each other. The best
way to model “Nothing” would be as a child of the four
other affective states, as shown in Figure 7. Unfortunately,
however, adding said “Nothing” node to the network in the
current experiment, would have little effect on the network’s
forced choice behavior because it is infrequent. For example,
referring to Table II, we see that in the training data, it
happens to be the case that whenever a student was touching
his or her lips, he or she reported an affective state of
“Thinking” or “Nothing.” The augmented network, of course,
would learn this relationship, but when forced to make a
choice without any additional information, it would always
choose “Thinking” as the estimated affective state. Reliable
classification of “Nothing” would clearly require additional
contextual information, such as other aspects of the student’s
observable behavior, or some way of aggregating information
over time.

VI. CONCLUSION

In this paper, we have demonstrated the feasibility of
estimating students’ affective state from visually observable
gestures such as “Lip Touch” during a classroom lecture. We
propose a simple Bayesian network incorporating observation
of five hand gestures, and, using cross validation with a small
training set, we find that a maximum a posteriori classifier
based on the Bayes net obtains 100% accuracy over the cases
where students report an affective state. When the gestures
for which students reported no affective state are included, we
obtain 79.4% accuracy.

Beyond the need for an explicit model of a “Nothing” state,
which was already discussed, there are three main limitations



Fig. 7. One possible way to extend the model used in this paper account for the affective state “Nothing.”

to our study. First, the experiment was small in scale; we
only recorded four students in a single lecture. Second, we
coded the gestures manually. Automatic gesture classification
is a difficult problem in and of itself [28], so the uncertainty
introduced by an automatic gesture recognition module would
undoubtedly affect the model’s performance in affective state
classification. Finally, the statistical model we propose has
no concept of building evidence for an affective state over
time; it simply treats each observed gesture as a discrete event
and attempts to classify it. In future work, we will focus on
addressing these limitations and explore integrating the model
into a pedagogical application.
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