Recognizing Human Action in Time-Sequential Images
using Hidden Markov Model

Junji YAMATO

Jun OHYA*

Kenichiro ISHII

NTT Human Interface Laboratories.
Take 1-2356, Yokosuka, Japan

Abstract

This paper proposes a new human action recognition method
based on a Hidden Markov Model (HMM). We do not adopt
model-based top-down approach because our purpose is not to re-
construct a geometric representation of the human body but to
recognize human action. We use a feature based bottom up ap-
proach with HMMs that is characterized by its learning capability
and time-scale invariability. To apply HMMs to our aim, one
set of time-sequential images is transformed into an image fea-
ture vector sequence, and the sequence is converted into a sym-
bol sequence by vector quantization. In learning human action
categories, the parameters of the HMMs, one per category, are
optimized so as to best describe the training sequences from the
category. To recognize an observed sequence, the HMM which
best matches the sequence is chosen. Ezperimental results of real
time-sequential images of sports scenes show recognition rates
higher than 90%. We confirm that the recognition rate is im-
proved by increasing the number of people used to generate the
training data. This indicates the possiblity of establishing a per-
son independent action recognizer. This method can be easily
applied to other fields because no domain knowledge is used.

1 Introduction

In recent years, motion related topics have been major con-
cerns in computer vision. Considering moving objects in real
scenes, human beings are very important recognition targets,
since human action recognition algorithms can greatly contribute
to the realization of automatic monitoring systems for various
important applications. This paper introduces a new algorithm
for recognizing human action from time-sequential images. The
observed human action can be classified as one human action
category.

Existing approaches related to human action recognition
include the top-down methods based on geometric body
reconstruction[1, 7, 16] and the bottom-up methods based on
low-level image features[8, 4].

Most systems based on the top-down approach employ a ge-
ometrical model of the human body; human body parts are
described as cylinders[3], super quadrics[l}, and so on. Us-
ing spatio-temporal analysis[16], constraint propagations(7] or
modal analysis(1], model parameters are determined from im-
ages. That means the posture of the human is extracted from
the images and a representation is obtained. Model parameters
are obtained from the sequence of images. Reconstructing the
human body shape (i.e. extracting model parameters) yields rich
and useful representations such as joint angle parameters if the
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reconstruction is successful. However, the reconstruction proce-
dures are neither robust nor reliable for real images. This is be-
cause real images are usually too noisy to permit easy model fit-
ting. Thus extracting successful high-level representations from
images is very difficult. Therefore, almost no result on human
action recognition by the model-based approach has been re-
ported, while pattern classification techniques can be used to
recognize a sequence of model parameters extracted from image
sequences. Improving the robustness of reconstruction is impor-
tant in this kind of approach, because failure in reconstruction
prevents successful recognition. However, as the qualitative vi-
sion paradigm[5] points out, is reconstruction really necessary
for human action recognition? Our purpose is to recognize hu-
man action from time-sequential images, not obtaining geometric
representations of human bodies. Since we focus on recognition,
we avoid reconstruction because the representation obtained by
geometric reconstruction is not essential. Instead, we utilize low-
level image features in a bottom-up manner.

Bottom up approaches which heuristically utilize low-level
features extracted from real images have been the subject of var-
ious studies[4, 8]. Low-level image features such as the areas of
human candidate regions have been used for counting the num-
ber of pedestrians in real scenes. In general, low-level features
do not provide descriptions as rich as those of model based rep-
resentation, but their extraction proceses are more robust than
model fitting procedures.

We emphasize the robustness of the bottom-up approach ,
but existing studies have only been able to count the number
of people, not recognizing their actions. Another problem with
bottom.up approaches is that to describe action categories in a
low-level representation is more difficult than in a high-level (
model-based ) representation. This is because relations between
dimensions of the feature vector and the high-level description
of category are not explicit. Furthermore, the dimension of the
feature vector is usually too large to be understood intuitively.

There are two problem in applying the bottom-up approach.
How can we enable the system to recognize more complicated ac-
tions? How can we describe the definitions of categories without
a model-based high-level representation?

These problems can be eliminated with a learning procedure
that uses low-level image features. Our goal is to classify ob-
served low-level image feature sequences into human action cat-
egories. Usually, this kind of task is formalized as a supervised
learning problem in the pattern classification field. Unlike most
classical pattern classification techniques, the data to be classi-
fied is time sequential data.

To realize this learning capability for time-sequential image
data, we employ the Hidden Markov Model (HMM) [15], which



can deal with time-sequential data and can provide time-scale
invariability as well as learning capability for recognition. Al-
though HMMSs have been successfully used in speech recognition,
HMMs have been applied to only a few problems in computer
vision field: planar shape classification[2, 14], handwritten word
recognition[6] and modeling eye movement[10]. In other words,
HMMs have never been applied to motion recognition.

In our proposed approach, time-sequential images expressing
human action are transformed to an image feature vector se-
quence by extracting a feature vector from each image. In our
current implementation, the mesh feature[13] is used as the low-
level image feature. Each feature vector of the sequence is as-
signed to a symbol which corresponds to a codeword in the code-
book created by Vector Quantization[15]. The feature vectors of
the sample data set for training are vector quantized. Conse-
quently, the time-sequential images are converted to a symbol
sequence. In the learning phase, the model parameters of the
HMM of each category are optimized so as to best describe the
training symbol sequences from the categories of human actions
to be recognized. For human action recognition, the model which
best matches the observed symbol sequence is chosen as the rec-
ognized category.

Section 2 details the HMMs and the recognition and learning
procedures. Section 3 illustrates how a set of time-sequential
images are converted to a symbol sequence that the HMMs can
process. Section 4 gives experimental results using tennis action
scenes. Section 5 summarizes our method.

2 Hidden Markov Model
2.1 Outline
HMMs, which have recently been applied with particular
success to speech recognition, are a kind of stochastic state
transit model(9). HMMs make it possible to deal with time-
sequential data and can provide time-scale invariability in recog-
nition. Moreover, HMMs are characterized by their learning
ability which is achieved by presenting time-sequential data to a
HMM and automatically optimizing the model with the data.
A HMM consists of a number of states each of which is as-
signed a probability of transition from one state to another state.
With time, state transitions occur stochastically. Like Markov
models, states at any time depend only on the state at the pre-
ceding time. One symbol is yielded from one of the HMM states
according to the probabilities assigned to the states. HMM states
are not directly observable, and can be observed only through a
sequence of observed symbols. To describe a discrete HMM! ,
the following notations are defined.
T = length of the observation sequence.
Q ={4i,932,...,gn}:set of states.
N = number of states in the model.
V = {v1,v2,...,vn}:set of possible output symbols.
M =number of observation symbols.
A = {aijlaij = Pr(seq1 = gj|se = ¢:)}: state transit probability,
where:
aij is the probability of transiting from state ¢; to state ¢;.
B = {b;(k)[b;(k) = Pr(vi|s: = ¢;)}: Symbol output probability,
where:
bj (k) is the probability of output symbol vy at state g;.

! There are several types of HMM according to the formulations
used. This paper refers only to discrete HMMs which output sym-
bol sequences. In continuous HMMs, which output continuous feature
vectors, quantization error caused by the vector quantization proce-
dure can be avoided, but unfortunately, the learning process is more
complicated.
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7 = {xi|xi = Pr(s1 = ¢:)} Initial state probability.

A = {A,B,r} complete parameter set of the model.

Using this model, transitions are described as follows:

§ = {s}, t = 1,2,...,T: State s, is the t th state (un-
observable)

0 = 01,03,...,0r . Observed symbol sequence (length=T)

Figurel illustrates the concept of the a with a transition
graph. There are four states in this example indicated as circles.
Each directed line is a transition from one state to another, where
the transition probability is indicated by the character alongside
the line.

Note that there are also transition paths from states to them-
selves. These paths can provide the HMM with time-scale invari-
ability because they allow the HMM to stay in the same state
for any duration.

Each state of the HMM stochastically outputs a symbol. In
state ¢;, symbol vy is output with a probability of bj(k). If there
are M kinds of symbols, bj(k) becomes an N x M matrix. The
HMM outputs the symbol sequence O = 04,03,...,0r from
time 1 to T. We can observe the symbol sequences output by
the HMM but we can not observe the HMM states. The initial
state of the HMM is also determined stochastically by the initial
state probability x. A HMM is characterized by three matrices:
state transit probability matrix A, symbol output probability
matrix B , and initial state probability matrix .

The parameters of A,B, and 7 are determined during the
learning process described in 2.3. As described in 2.2, one HMM
is created for each category to be recognized. Recognizing time-
sequential symbols is equivalent to determining which HMM pro-
duced the observed symbol sequence. 2.2 and 2.3 explain the
recognition and learning procedures are explained.

2.2 Recognition

To recognize observed symbol sequences, we create one HMM
for each category. For a classifier of C categories, we choose
the model which best matches the observations from C HMMs
Ai = {A;, B, x;},i=1...C. This means that when a sequence
of unknown category is given, we calculate Pr(};]O) for each
HMM ); and select A.+, where

c* = argmax(Pr();|0)) (1)

Given the observation sequence O = Oy,...O7 and the HMM
Ai, according to the Bayes rule, the problem is how to evaluate
Pr(O|Xi), the probability that the sequence was generated by
HMM );. This probability is calculated by using the ’forward
algorithm’[15].

The forward algorithm is defined as follows:

(i) = Pr(04,0s, .. (2)

ay(i) is called the forward variable and can be calculated re-
cursively as follows:

04, 3¢ = qi|A).

a(i) = {) ] ee-1(i)aij}5;(00) (3)

oy = 7:b;(O1) 4)
Then
Pr(O]) = Y ar(i)he,c" = arg max(Px(X:|0))

IESP

(5)



We can calculate the likelihood of each HMM using the above
equation and select the most likely HMM as the recognition re-
sult. Since the likelihood is calculated from the entire pattern
length as described above, time scale variance, time shifts and
some failure in vector quantization have little influence on the
accuracy of determining the likelihood. The advantage of HMMs
for time-sequential pattern recognition, which is robust to time
scale variance and shift, results from this factor.

2.3 Learning

In the learning phase, each HMM must be trained so that
it is most likely to generate the symbol patterns for its cate-
gory. Training an HMM means optimizing the model param-
eters (A, B,r) to maximize the probability of the observation
sequence Pr(O|)). The Baum-Welch algorithm is used for these
estimations.

Define:

ﬁg(i’)EP(Og.,.l,...,OT‘s' =q.~,A) (6)
Bu(3)is called the backward variable and can also be solved induc-
tively in a manner similar to that used for the forward variable

a(3).

M
(8)

7e(5)

P(s¢ = i|O1,...,01,2)

ae()Be(3)
PO -

&
(10)

P(s = ¢iyst41 = ‘1:'|01n ey O, A)
ay(1)a:5;(Oe41)Bes1(5)
P(O[X) ’

El(ivj)

Using these equations, HMM parameters A can be improved
to A. The re-estimation equations from A = (4, B,x) to A

(A, B, %) are:
T ()

“ ) (1)
bi(k) = Zgtuozmn 70, (12)

Z::x T 7(3)
#i =7(1). (13)

Learning converges if X = A\. The Baum-Welch algorithm
does not always find the global maximum, but it does find the
local maximum of Pr(O|)). Our experience shows that this is
not a significant problem.

3 Applying HMM to time-sequential im-
ages

To apply HMMs to time-sequential images I
{Li,I,...Ir}, the images must be transformed into symbol se-
quences O(Figure2) in the learning and recognition phases.
From each frame I; of an image sequence, a feature vec-
tor f; € R, (i = 1,2,...,T,n is the dimension of the fea-
ture vector) is extracted, and f; is assigned to a symbol v;
chosen from the symbol set V. It is necessary to associate the
symbol set V with the feature space R™. For this, the feature
space is divided into clusters by a pattern classification tech-
nique, and the symbols are assigned to the clusters. We used
vector quantization{15] here, as is usual in HMM applications.
For vector quantization, codewords g; € R" , which represent
the centers of the clusters in the feature R™ space, are needed.
Codeword g; is assigned to symbol v; . Consequently, the size
of the code book equals the number of HMM output symbols.
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Each feature vector f; is transformed into the symbol which
is assigned to the codeword nearest to the vector in the feature
space. This means f; is transformed into symbol wv; if j
arg min; d(f;,g;) ( d(z,y) :distance between z and y).

Image I; is transformed into the symbol which is assigned
to the codeword nearest to feature vector fi, and Oi(= v;) is
yielded.

We use mesh features[13] as the feature vectors because they
were successfully applied to complex 2D patterns such as multi-
font characters. Figure3 explains the calculation of mesh fea-
tures. Each binarized image (M1 x Np pixels) is divided into
M X Nas pixel meshes. The ratio of black pixels in each mesh
becomes an element of the feature vector,

f(i,7) = number of black pizels(i,)/(Mm x Nu) (14)
Thus, the feature vector sequence F extracted from an image
sequence I is transformed to a symbol sequence O by extract-
ing the mesh feature vector of each frame and vector quantizing
them.

These transformations have the merit that they are applicable
to various images without manual tuning because after extract-
ing the human area, this method uses no parameters except mesh
size, which can be decided from the size of the human.

As described in Section 2, the symbol sequences obtained from
the above procedures are used for both the recognition and learn-
ing phases. In recognition, the symbol sequence O obtained from
an observed image sequence is substituted into Egs.(1)-(5), and
the recognition result is obtained as the category C* which max-
imizes Eq.(5). In learning, the symbol sequences are obtained
from training with time-sequential image data and HMM’s pa-
rameters are optimized for each category by Eqs.(11)-(13).

4 Experimental results and discussions

4.1 Experimental conditions

We tested our algorithm on real time-sequential images. Our
experiment used tennis actions. The categories to be rec-
ognized were six tennis strokes: ’‘forehand stroke’,’backhand
stroke’,forehand volley’,’backhand volley’, ’smash’, and ’ser-
vice’.

Three persons performed each of the six tennis actions 10
times. The performances were captured by a TV camera (
NTSC, 30 frames/second) and digitized into 200 x 200 pixel 256
gray-level images. Figure4 shows an original image sequence of
the tennis action: *forehand volley’, where every fourth frame is
displayed.

As shown in Figure4, the original image sequence contains a
complicated background, and the positions of the player moves
during sequence. Thus, human area extraction and tracking are
needed. We used the image preprocessing operations described
below: 1)Preparing background image(Figure5-(b)) for its orig-
inal action images(Figure5-(a)).
2)Blurring both images with a low pass filter.
3)Extracting human area (Figure5-(c)) by the following condi-
tions:
if\la(z,y) — I(z,9)| < th, I(z,y)=0
else I(z,y) = L.(z,v).

I.:human extracted image, J,:original image

Iy:background image, th:threshold

We then binarized the extracted images so that the white and
black pixels corresponded to human areas and background re-
spectively. Figure7 shows binarized image examples of the six
tennis actions.



The mesh feature extraction described in Section 3 was per-
formed on the binarized images. The size Mas x Nas of the mesh
feature vector f; in Eq.(14) was 8 x 8pixels; consequently, the
dimension n of f; was 625. As the positions and sizes of human
areas varied in the binarized images, the mesh center was placed
at the center of gravity of each human area to avoid the influence
of grossbody displacement, in other words, to normalize the po-
sitions. The body size was also normalized by scaling cach frame
of the binarized images so as to equalize the mean radii of human
areas.

For vector quantization, we selected 12 images for each cat-
egory as codewords in the codebook for the experiment. Thus,
the number of HMM symbols was 72; symbols 0 to 11 represent
’backhand stroke’, 12 to 23 the ’backhand volley’, 24 to 35 the
’service’, 36 to 47 the ’smash’, 48 to 59 the ’forehand stroke’,
and 60 to 71 the forehand volley’.

As shown in Figure6, symbols were correctly assigned to
the binarized images, where each assigned symbol is one of the
symbols representing *forehand volley’.

In the HMMs used in our experiment, the number N of states
Q was set to 36. As the durations of the actions were not con-
stant, the length of the observed symbol sequences varied be-
tween 23 and 70. In training the HMMs, while the likelihood
converged after about 100 iterations, we performed 150 itera-
tions for each HMM.

4.2 Experiment 1
4.2.1 Experiment details

We recognized the actions performed by three people using
HMMs which were trained by the data of the subject. Three
subjects( person A, B, and C ) performed each of the six ac-
tions ten times. Five sequences were used to train the HMMs
while the remaining five sequences were used to test recognition
performance.

4.2.2 Results

The recognition results are shown in Tablel and Table2.
Tablel shows the likelihood of *forehand volley’ with six HMMs
trained with the data of subject C. The likelihood of the correct
category is the highest.

Table2 shows the recognition rates of the three subjects with
10 different combinations of five training sequences out of the 10
trials; that is, for each person, there are 300(= 10 x 5 x 6) test
data. The average for the three subjects was 96.0%.

Recognition performance worsens as the number of training
patterns decreases. We also tested the recognizer constructed by
HMMs trained by three training patterns in ten combinations.
For one combination, the recognition rate was 100%(42/42) but
for some other combinations it fell to 78.5%.

The performance of our recognition system depends not only
on the number of training patterns but also how well the training
patterns represent the category. When the number of training
patterns is small, the recognition rate becomes more unstable.
This is because the HMM parameters critically depend on the
selection of training patterns.

To construct a robust recognition system, appropriate train-
ing patterns are important. This means training patterns should
cover the maximum test pattern scatter possible. If covering the
scatter with one HMM is difficult, we should divide the category
into sub-categories.

382

4.3 Experiment 2
4.3.1 Experiment details

In experiment (2), training and test subjects were completly dif-
ferent. The HMMs were trained with the sequences of one or
two subjects and tested with those of other subjects. The HMMs
were trained using 10 mixed data sets collected from one or two
subjects, and tested with those of other subjects.

In this experiment, learning subjects and recognition subjects
were different not only in HMM processing but also vector quan-
tization. The code book of vector quantization was constructed
using only training data. This experiment is more appropriate
for estimating the usefulness of this method in real situations
because a real world recognition system should be person inde-
pendent. To achieve this, data of many people must be collected
for learning. This reduced-scale experiment used mixed training
data collected from more than one person to recognize another
person’s actions.

4.3.2 Results

In experiment (2), as shown in Table3, the recognition rate of
the HMMs were not as good as recorded in experiment(1). This
is because test pattern subjects and training pattern subjects
were different. Each person has some uniqueness in his actions,
but the variance range is limited such that humans can recognize.
Thus we can improve the recognition rate by using mixed train-
ing data. The recognition rate of the HMMs trained with the
data of two subjects was improved to 70.8%. Thus performance
can be improved by collecting more training patterns which are
suitable for representing the category.

Our current implementation uses the mesh feature for its sim-
plicity. However, this does not match the human posture space
well because it is sensitive to position displacement. The HMM
learning capability is fairly well developed but we should further
improve the feature extraction technique.

5 Conclusion

This paper has presented a Hidden Markov Model based ap-
proach for human action recognition from a set of time-sequential
images. In our algorithm, a mesh feature vector sequence ex-
tracted from time-sequential images is converted to a sequence of
symbols which correspond to codewords in the codebook created
by vector quantization. In learning, symbol sequences obtained
from training image sequence data are used to optimize HMMs
for action categories. In recognition, a symbol sequence from an
observed image sequence is processed by HMMs, and the recog-
nition result is determined as the category which best matches
the observed sequence.

The main experimental results using tennis actions performed
by three subjects are as follows. When training data and test
data are those of the same subject, a recognition rate of over
90% was achieved. On the other hand, when training data and
test data are those of different subjects, the performance drops.
However, the recognition rate was improved by mixing the data
from two subjects for learning.

These results show that our method is promising to realize
human action recognition for various applications such as finding
shoplifters in department stores and dangerous behavior in a
kindergarten. To improve our current implementation, we will
try a large scale experiment and further refine feature extraction.

This method basically deals with 2D images but it can be ex-
tended to 3D object actions using , for example, aspect graphs
in assigning symbols or making HMMs. HMMs can be applied



to action recognition in other various ways. Ishikawa[ll] uses
HMMs to recognize words by analysing sound and the height of
lip data. This shows the applicability of HMMs to multi-modal
time-sequential pattern recognition. In other words, sensor fu-
sion problems. Future improvements in recognition accuracy and
recognizing complicated actions without any reduction in robust-
ness are now being sought.
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Figure 2: Processing flow
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1 Table 1: Likelihood (backhand volley )
| [ HMM [ Tog-likelikood |

! backhand volley(correct cat.) [ -29.8715
backhand stroke -431.7681

N forehand volley -233.9752
forehand stroke -442.1949

f=(aoo,aot,...,aij,...AMN) smash -221.7908

serve -466.5597

aj=number of black mesh(ij)/MmNm

Figure 3: Mesh feature

Table 2: Recognition rate (experiment 1)

[ Player [ rate(%) ]
player A | 90.66 (272/300)
player B | 97.33 (292/300)
player C | 100.00 (300/300)
Average | 96.00

2) b) <)
Figure 5: Human area extraction Table 3: Recognition rate (%) (experiment 2)
a)original, b)background, c)extracted Training data player
Test data player A B A+B C
C 61.2 | 66.8 | 70.8 | 100.0

| Symbol sequence | 60 61 61 62 62 62 63 63 64 64 65 66 66 66 67 68 68 69 69 70 70 70 71 71 |

Figure 6: Example of extracted tennis action and symbol
sequence(forehand volley).
( Underlined symbol is assigned to frame of above figure. )
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b)backhand stroke

c)forehand volley

d)forehand stroke

f)service

Figure 7: Sample actions

385



