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Abstract We propose a method that detects and segments
multiple, partially occluded objects in images. A part hier-
archy is defined for the object class. Both the segmentation
and detection tasks are formulated as binary classification
problem. A whole-object segmentor and several part detec-
tors are learned by boosting local shape feature based weak
classifiers. Given a new image, the part detectors are applied
to obtain a number of part responses. All the edge pixels in
the image that positively contribute to the part responses are
extracted. A joint likelihood of multiple objects is defined
based on the part detection responses and the object edges.
Computation of the joint likelihood includes an inter-object
occlusion reasoning that is based on the object silhouettes
extracted with the whole-object segmentor. By maximizing
the joint likelihood, part detection responses are grouped,
merged, and assigned to multiple object hypotheses. The
proposed approach is demonstrated with the class of pedes-
trians. The experimental results show that our method out-
performs the previous ones.
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1 Introduction

Detection and segmentation (i.e. accurate delineation) of ob-
jects of one or more given classes is of fundamental inter-
est in computer vision. Traditionally, one would segment
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an image into regions, and then try to classify these re-
gions as belonging to one of the desired classes. This ap-
proach works well when objects of interest have relatively
homogeneous properties in some image attributes, such as
intensity, color, or texture. For example, many early meth-
ods attempt to detect faces by segmenting skin color regions.
However, for many common objects of interest, e.g. humans,
the surfaces are not uniform and the texture can be arbitrarily
complex due to clothing. In such cases, effective algorithms
for bottom-up segmentation are difficult to devise; existing
methods tend to over or under segment an image.

When multiple objects are present in the image and over-
lap one another, the problem becomes even more difficult,
because the image appearance of multiple inter-occluded
objects is not independent. If objects of interest are mov-
ing, motion-based segmentation can be more reliable, but
even here, merging of motion blobs with adjacent objects
and with shadows and reflections can be problematic.

In recent years, methods for direct detection of objects
have become popular, and promising results have been
achieved for several object classes, including faces (Viola
and Jones 2001; Huang et al. 2007), pedestrians (Wu and
Nevatia 2005, 2007c; Sabzmeydani and Mori 2007; Tuzel
et al. 2007; Gavrila 2007; Viola et al. 2003; Zhu et al. 2006;
Mikolajczyk et al. 2004), and cars (Wu and Nevatia 2007a;
Schneiderman and Kanade 2000). In these methods, no prior
segmentation is applied; rather, the image is scanned by win-
dows of various size and a determination as to the presence
of the desired object is made in this window. While such
methods show good performance at the detection level, ob-
ject segmentation is not very precise; typically a bounding
box which contains the object as well as some of the back-
ground is detected. A more accurate delineation process may
then be applied inside the bounding box, as in Leibe et al.
(2005).
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Fig. 1 Local shape features in Opelt et al. (2006), Shotton et al.
(2005), Wu and Nevatia (2005): (a) Edgelets selected for people (Wu
and Nevatia 2005); (b) Boundary fragments selected for cows (Opelt

et al. 2006); (c) Feature responses of a face (Shotton et al. 2005);
(d) Feature responses of a cow (Opelt et al. 2006)

Fig. 2 Examples of part detection responses for pedestrians

Many existing methods select informative shape oriented
features to model the appearance of the objects, such as
the contour fragment features in Opelt et al. (2006), Shot-
ton et al. (2005), and our edgelet features in Wu and Neva-
tia (2005). The selected features lie on the object boundary;
their responses on the query image help to delineate the ob-
ject (see Fig. 1). Based on this observation, we formulate the
segmentation task as a binary classification problem, and de-
sign classifiers for both detection and segmentation based on
local shape features.

For the cases with partial, inter-object occlusions, part
based representations can be used. For each part, a detec-
tor is learned and the part detection responses are combined
to form object hypotheses. The part detectors are typically
applied to overlapping windows and the windows are clas-
sified independently. Consequently, one local feature may
contribute to multiple overlapped responses for one object
(see Fig. 2). Some false detections may also occur, as local
features may not be discriminative enough. Because of poor
image cues or partial occlusions, some object parts may not
be detected. To get a one-to-one mapping from part detec-
tion responses to object hypotheses, we need to group the
responses and explain inconsistency between the observa-
tion and the hypotheses.

When objects are close to one another, both the one-
object-multiple-response problem and the part-object as-
signment problem require joint consideration of multiple ob-
jects, instead of treating them independently. One important
component of the joint consideration is the analysis of the
occlusion relation between multiple objects in the 2-D im-
age space. To obtain an accurate occlusion model, pixel level
segmentation of objects is necessary. We propose a unified
framework using segmentation based joint analysis of mul-

tiple objects to group, merge and assign part responses. We
demonstrate this approach with the object class of pedestri-
ans. The experimental results show that our methods outper-
forms the previous ones.

Our previous work published in Wu and Nevatia (2005)
and Wu and Nevatia (2007c) also addresses the problem of
pedestrian detection. This paper describers several improve-
ments and enhancements to the major components, includ-
ing the part detectors, and joint analysis of multiple objects.
Experimental results show that the new method significantly
outperforms the old one. Additionally, the output of the ear-
lier method consists only of bounding boxes of the objects,
while the new method outputs pixel level segmentation.

The rest of this paper is organized as follows: Section 2
introduces the related previous works; Section 3 gives an
outline of our approach; Section 4 describes our part detec-
tion module; Section 5 presents our segmentation method
for individual separate objects; Section 6 presents our part
based joint detection and segmentation method for multiple,
inter-occluded objects; Section 7 shows the experimental re-
sults; some conclusions and discussions are given in the last
section.

2 Related Work

The literature on object detection and segmentation in im-
ages is large and a complete survey would be difficult. As
we take pedestrians as the class of interest for demonstra-
tion, we focus the introduction of related work mainly on
the pedestrian related methods.
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2.1 Detection of Individual, Separated Objects

Many previous efforts on object detection and segmentation
focus on individual separate objects. These methods assume
appearance independence between multiple objects, there-
fore they attempt to classify and estimate the status of each
object independently.

For detection, many recent methods (e.g. Viola and Jones
2001; Huang et al. 2007; Sabzmeydani and Mori 2007;
Tuzel et al. 2007; Dalal and Triggs 2005; Viola et al. 2003;
Zhu et al. 2006; Schneiderman and Kanade 2000) learn
object classifiers, whose input is a rectangular image sub-
window and whose output is a prediction of the pres-
ence/absence of an object in this window. To capture the
salient image characteristics of the objects class, a large va-
riety of image features has been developed.

Some of these features are spatially global, e.g. the edge
template in Gavrila and Philomin (1999), Gavrila (2000,
2007). However, most recent methods use local features,
because the local features are less sensitive to occlusions
and other types of partially missing observations. Some ex-
amples are the wavelet descriptors in Schneiderman and
Kanade (2000), the Haar like features in Viola and Jones
(2001), the sparse rectangle features in Huang et al. (2006,
2007), the SIFT like orientation features in Mikolajczyk
et al. (2004), the Histogram of Oriented Gradients (HOG)
descriptors in Dalal and Triggs (2005), the code-book of lo-
cal appearance in Leibe et al. (2004, 2005), the boundary
fragments in Opelt et al. (2006), the biologically-motivated
sparse, localized features in Mutch and Lowe (2006), the
shapelet features in Sabzmeydani and Mori (2007), the co-
variance descriptors in Tuzel et al. (2007), the motion en-
hanced Haar features in Viola et al. (2003), the Internal Mo-
tion Histograms (IMH) in Dalal et al. (2006), and the edgelet
features used in our previous work (Wu and Nevatia 2005,
2007c). The above features are mostly shape oriented, be-
cause shape is the most consistent and salient image cue for
many object classes.

To reduce the inner-class variation, the size and position
of the object w.r.t. the rectangular sub-window are usually
normalized. Therefore, to detect multiple objects, the ob-
ject classifier needs to be applied to sub-windows of dif-
ferent sizes and positions. As the number of sub-windows
to process is usually large, a cascade classifier structure pro-
posed by Viola and Jones (2001) is widely adopted to im-
prove the computational efficiency. One cascade classifier
consists of a series of classifiers, called layers. If and only
if one sub-window is classified as object by all layers, it is
accepted as object; if and only if one sub-window is classi-
fied as non-object by any layer, it is rejected as non-object.
Most of the non-object sub-windows are rejected by the first
few layers. The layer classifiers can be learned by differ-
ent learning methods, such as an SVM in Dalal and Triggs

(2005), Dalal et al. (2006) and AdaBoost in Viola and Jones
(2001), Viola et al. (2003), Huang et al. (2007), Zhu et al.
(2006), Tuzel et al. (2007), Sabzmeydani and Mori (2007).

However, the sub-window classification results are not
the final outputs of a detection system. One main post-
process is to “merge” the positive responses having large
overlap and expect that each of the resulting clusters corre-
sponds to one object, e.g. the aggregate clustering algorithm
used in Rowley et al. (1998) and the adaptive bandwidth
mean-shift used in Tuzel et al. (2007). Usually, thresholding
on overlap is used to determine if two responses are from
the same object. Setting this threshold can be tricky when
objects are close to one another.

Some other methods attempt to generate human hypothe-
ses by directly grouping image features, e.g. the recent work
by Sharma and Davis (2007). This method classifies and
groups the edges in a sub-window of interest to form ob-
ject hypothesis by an MRF-based approach. The output is a
prediction of the presence of an object and its contour. How-
ever, the method has been applied to isolated human objects
only. It is unclear as to how the method may be extended to
the case of multiple, inter-occluded objects. An MRF based
model of image edges for multiple objects would be very
complicated, and searching for the best solution in a high
dimensional joint space could be difficult.

2.2 Detection of Multiple, Occluded Objects

When there are multiple objects partially inter-occluding
one another in the scene, the independent appearance as-
sumption is not valid any more. Although the local feature
based methods can work with partial occlusions to some
extent, when the occlusion is significant, the whole-object
classifier tends to miss the object, and the response cluster-
ing and object segmentation tend to merge close-by objects
into one. (For static images, we do not expect to detect fully
occluded objects, as no observation is available.)

Recently, part based representations and joint analysis of
multiple objects have been adopted to solve partially oc-
cluded cases (e.g. Wu and Nevatia 2005, 2007c; Shet et al.
2007; Lin et al. 2007, 2004). In these methods, objects are
represented as an assembly of several parts. Mohan et al.
(2001) divide human body into four parts: head-shoulder,
legs, left arm, and right arm. Shashua et al. (2004) divide
human body into nine overlapping sub-regions. Some of the
sub-regions correspond to natural human body parts, such as
head, torso, arms, and legs; some do not. Mikolajczyk et al.
(2004) divide human body into seven parts, face/head for
frontal view, face/head for profile view, head-shoulder for
frontal and rear view, head-shoulder for profile view, and
legs. Lin et al. (2007) divide human body into four parts:
head, torso, legs, and feet. Shet et al. (2007) divide human
body into three parts: head, torso, and legs, besides a full-
body model. Most of the existing methods do the partition
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based on natural human body structure, mainly because the
natural body parts have relatively consistent appearance and
are well defined.

For object parts, detectors are learned by supervised
learning. One way to build a set of part detectors is to train
them independently, like in Wu and Nevatia (2005, 2007c),
Shet et al. (2007). However, this increases the time com-
plexity of training linearly w.r.t. the number of parts. An-
other way is to build one part detector as a true subset of the
whole-object detector. For example, in Lin et al. (2004) each
sub-region detector use a subset of features of the whole-
region detector and only the decision thresholds are differ-
ent. The main limitation of this method is that a subset of
features of the whole-object model may not be sufficient to
construct a good part model.

For detection, the part detectors are applied to the in-
put image and the detection responses are merged with
some clustering method, as in the case of single object de-
tector. After obtaining the part detection responses, some
early methods (e.g. Mohan et al. 2001; Shashua et al. 2004;
Mikolajczyk et al. 2004) do the part combination indepen-
dently for each human. The combination is usually based on
majority voting (e.g. checking if more than half of the parts
are detected) or weighted sum (thresholding the weighted
sum of the part detection confidences, where the weights are
determined by the performance of the part detectors) of the
part detection results. This type of methods does not con-
sider the occlusion relation of multiple humans.

Recently, several methods are developed (Lin et al. 2007;
Shet et al. 2007) to do joint part combination of multiple
humans to detect humans with inter-occlusions. In these
method, a joint image likelihood of multiple objects is com-
puted by awarding successful part detection and penalizing
missed detection of visible parts and false alarms. Differ-
ent hypotheses configurations are tested, and the one with
the highest likelihood is kept as the final interpretation of
the image. The input of the part combination stage are the
bounding boxes of parts. These are relatively coarse repre-
sentations from which we can not get an accurate occlusion
model. In addition, the errors from the overlap threshold-
ing at the response merging stage are difficult to correct at
the part combination stage. Different from the part com-
bination methods, Leibe et al. (2005) propose an Implicit
Shape Model (ISM) based approach to detect multiple hu-
mans. Joint analysis is performed to cover occluded objects.

Compared to the whole-object detector, the part based
detection system has better performance on partially oc-
cluded cases. However, for very crowded situations, the per-
formance of the current detection and segmentation methods
is far from perfect. It is difficult to segment multiple humans
in a large, dense crowd, because for each individual human,
the visible part is usually very small. Some recent methods
(e.g. Kong et al. 2006; Chan et al. 2008) attack this prob-
lem by reducing the objective from localization to counting,

i.e. given an input image, estimate the number of present
objects without explicitly telling their locations and sizes.
These methods consider the crowd as a textured region, and
estimate the number of objects by a regression method. One
major assumption is that the crowd is homogeneous, i.e. the
crowd only contains the objects of the interested class. This
assumption limits the application of such methods.

2.3 Segmentation of Objects

The output of the object detection methods is a set of bound-
ing boxes of the objects, which can be seen as a rough seg-
mentation. However, an accurate pixel-level figure-ground
segmentation is necessary for a number of high level tasks.
For example, for tracking, we need to build appearance mod-
els for individual objects, which requires the knowledge of
which regions in the image belong to the objects of interest.
The main difference between the general image segmenta-
tion methods (e.g. Tu et al. 2001), and the segmentation of
objects of a known class is the use of the prior knowledge,
i.e. an object model, of the concerned class. In addition to
guiding segmentation, the object models can also function
as discriminative models for recognition and detection (e.g.
Winn and Shotton 2006; Todorovic and Ahuja 2006; Opelt
et al. 2006; Shotton et al. 2006; Kapoor and Winn 2006;
Winn and Jojic 2005; Leibe et al. 2004; Pawan Kumar et al.
2005) or generative models for pose estimation (e.g. Bray
et al. 2006).

Similar to the problem of object detection, many recent
object segmentation methods build the object models based
on some global or local image features instead of pixel inten-
sity. Unlike the dominating popularity of shape oriented fea-
tures in object detection, color, e.g. the mixtures of Gaussian
color model in Shotton et al. (2005, 2006) and the kernel
density estimation of color distribution in Zhao and Davis
(2005), and texture, e.g. the texton in Shotton et al. (2006),
are two other commonly used cues for segmentation.

When global features are used, the object models are
sometimes equal to the features, e.g. the edge template mod-
els in Gavrila and Philomin (1999), Zhao and Davis (2005).
When local features are used, we need some mechanism to
organize the features to form the object models. Many exist-
ing segmentation methods use random field approaches, e.g.
the Layout Consistent Conditional Random Field in Winn
and Shotton (2006), the Located Hidden Random Field in
Kapoor and Winn (2006), the texton based CRF in Shotton
et al. (2006), the pose-specific MRF in Bray et al. (2006), the
Pictorial Structure enhanced MRF in Pawan Kumar et al.
(2005). The inference of the CRF models usually requires
loopy belief propagation or sequential tree-reweighted mes-
sage passing; while graph cut is a widely used solution for
inference in the MRF models. These techniques are compu-
tationally expensive.
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Although the random field based methods are usually
for multiple classes of objects, they do not segment multi-
ple objects of the same class. For example, the method in
Shotton et al. (2006) gives a single label to several cows in
an image. Segmenting individual objects is obviously nec-
essary for many tasks. The segmentation accuracy of the
method in Shotton et al. (2006) is also rather low for spe-
cific categories; for example, the accuracy on humans is only
about 62.1%.

Some other methods use constellation type models to
organize the local features, e.g. the Boundary-Fragment-
Model in Opelt et al. (2006), and the Implicit Shape Model
in Leibe et al. (2004, 2005). These models are star-shaped,
which can be inferred efficiently by a Hough Transforma-
tion much more efficiently. However, both the random field
methods and the constellation methods usually assume a
fixed object size so that the solution space is greatly re-
stricted. Some of these methods (e.g. Todorovic and Ahuja
2006; Winn and Shotton 2006; Opelt et al. 2006; Kapoor
and Winn 2006; Shotton et al. 2006; Winn and Jojic 2005;
Zhao and Davis 2005; Pawan Kumar et al. 2005) result in
simultaneous detection and segmentation.

Unlike the random field based approaches and the con-
stellation model based approaches, the boosting methods
originally proposed for detection encode the shape of the
objects by including a number of local features within the
sample window. The relative positions of these local fea-
tures model the global shape implicitly. Although some ex-
isting methods (e.g. Opelt et al. 2006; Shotton et al. 2006)
use boosting as feature selector for segmentation, none of
them directly learn the ensemble classifier as a segmen-
tor.

Segmentation is usually performed after object detection,
because a known location and size facilitate the segmen-
tation operation. However, some existing methods utilize

segmentation to improve detection in a feedback loop. For
example, Zhao and Davis (2005) utilize color based seg-
mentation to reduce the effect of background clutters on
edge template matching; Leibe et al. (2004, 2005) utilize
the top-down segmentation to refine and verify object hy-
potheses with a Minimal Description Length (MDL) based
approach.

3 Outline of Our Approach

Figure 3 shows an overview diagram of our approach. We
define a part hierarchy for an object class, in which each
part is a sub-region of its parent, except for a whole-object
node. Because building part detectors independently is time
consuming and building them as sub-set of the whole-object
detector may not achieve a desirable accuracy, we choose
a tradeoff between these two approaches. For each part, a
detector is learned by a Cluster Boosted Tree (CBT) method
(Wu and Nevatia 2007a). The image features used are the
edgelet features (Wu and Nevatia 2005). A child node in the
hierarchy inherits image features from its parent node and
if a target performance can not be achieved only from the
inherited features, more features are selected and added to
the child node.

For the whole-object node, in addition to the detector, a
pixel-level segmentor is learned. We formulate segmentation
as a binary classification problem and train the segmentor
by a supervised learning algorithm. In the training proce-
dure, for each feature in a large feature pool, a pair of weak
classifiers for detection and segmentation is built. A boost-
ing algorithm is adopted to select informative features from
the pool. The input of the segmentor is an image sample
and a pixel location within the sample window; the output

Fig. 3 Overview diagram of
our approach
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is the figure-ground prediction. We define an effectiveness
measure of an edgelet feature for its local neighborhood.
A figure-ground distribution weighted by the effectiveness
measure is learned, based on which a local weak segmentor
is determined. The final boosted ensemble classifier with a
cascade decision strategy works as a detector as well as a
segmentor.

Given a new image, all the part detectors are applied. The
image edge pixels that positively contribute to the detection
responses are extracted. The part responses and the object
edges form an informative intermediate representation of the
original image. We do not divide the tasks of merging re-
sponses and part combination into two separate stages; in-
stead, we attempt to solve them under the same framework.
From the part detection responses, multiple object hypothe-
ses are proposed. For each hypothesis, a pixel-level segmen-
tation is obtained by applying the whole-object segmentor,
and the silhouette is extracted. We perform occlusion rea-
soning for multiple objects, and compute a 1-D silhouette
based visibility score, instead of the region based 2-D visi-
bility score in the previous methods (Wu and Nevatia 2005;
Shet et al. 2007; Lin et al. 2007). We define a joint image
likelihood of multiple objects, which gives rewards for suc-
cessful detection of visible parts, and penalties for missed
detections and false alarms. The likelihood also includes a
matching score between the visible silhouettes and the ob-
ject edges. Our joint analysis method enforces the exclusive-
ness of low level features, i.e. one image feature can con-
tribute to at most one hypothesis.

Our approach is a unified MAP framework that solves
part merging, grouping, and assigning together. The main
contributions of this method include:

1. a part hierarchy design that enables efficient learning of
part detectors by feature sharing,

2. an individual object segmentation method based on
boosted classifiers,

3. an accurate occlusion reasoning approach based on ob-
ject silhouettes, and

4. a joint image likelihood based on both the detection re-
sponses and the object edges, which are assigned to ob-
ject hypotheses exclusively.

We demonstrate our approach on the class of pedestrians.
Every module in our approach contributes to the robustness
of the whole system. Though the situations to the advantage
of any single module may not occur frequently, together they
result in a statistically significant improvement compared to
the previous methods.

Parts of the boosting based individual object segmen-
tation method have been published in Wu and Nevatia
(2007b); parts of the part based joint analysis method for
multiple, partially inter-occluded objects have been pub-
lished in Wu et al. (2008). This paper provides a unified and
detailed presentation, and additional experimental results.

Fig. 4 Hierarchy of human body parts. (P t0 is full-body; P t1,0
head-shoulder; P t1,1 torso; P t1,2 legs; P t2,0 left shoulder; P t2,1 head;
P t2,2 right shoulder; P t2,3 left arm; P t2,4 right arm; P t2,5 left leg;
P t2,6 feet; P t2,7 right leg. The left and right sides here are w.r.t. the
2-D image space)

4 Hierarchy of Body Part Detectors

We use the class of pedestrians to illustrate and validate our
approach. We define a part hierarchy for human body, which
consists of three levels including a full-body node and 11
body part nodes. See Fig. 4.

4.1 Learning Part Detectors

For each node, a detector is learned. Because we define the
part hierarchy such that the region of one child node is a sub-
region of its parent node, feature sharing between the parent
and child nodes is possible. For each part node, a boosting
algorithm is applied to select informative local shape fea-
tures and construct a classifier as detector.

Following our previous work (Wu and Nevatia 2005,
2007c), the image features used are edgelets. Based on one
edgelet, a weak classifier for detection task is defined. The
weak detection classifier is a function from the image space
X to a real valued object/non-object classification confi-
dence space. The definition of the weak detection classifiers
is the same as that in Wu and Nevatia (2007a). Given a la-
beled sample set S = {(xi , yi)}, where x ∈ X is the image
patch, and yi = ±1 is the class label of x, the weak detec-
tion classifier h(d) is defined as a piecewise function:

if f (x) ∈
[
j − 1

nd

,
j

nd

)
,

h(d)(x) = 1

2
ln

(
W

j
+ + ε

W
j
− + ε

)
, j = 1, . . . , nd

(1)
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Fig. 5 Illustration of feature sharing in part detector hierarchy. (The
black points are the inherited features, and the gray are the newly se-
lected features)

where nd is the number of sub-ranges of the feature value
for detection (in our experiment nd = 32), ε is a smooth-
ing factor (Schapire and Singer 1999), and W± is the prob-
ability distribution of the feature value for positive/negative
samples, implemented as a histogram:

W
j
± = P

(
f (x) ∈

[
j − 1

nd

,
j

nd

)
, y = ±1

)
,

j = 1, . . . , nd (2)

Before the regular boosting procedure, the detector of
one node, except for the whole-object node, inherits from
its parent node all the edgelet features that have a minimum
number of points (4 points in our experiments) falling in its
sub-region. For each inherited edgelet, the points that are
out of the part’s sub-region are removed. With the inherited
features fixed, the classification functions of the inherited
features and the cascade decision strategy are re-trained by
a boosting algorithm. The detector usually can not achieve
a desirable target accuracy from only the inherited features.
The regular boosting algorithm is then applied to add more
features to the classifier. Figure 5 gives an illustration of the
feature sharing.

In practice, the learning algorithm used is the CBT
method (Wu and Nevatia 2007a). This method builds tree
structured object classifier without a predefined sub-catego-
rization, such as viewpoint categories. (The detector learn-
ing algorithm is not the focus of this paper. More details of
the CBT method can be found in Wu and Nevatia 2007a.)
More details of the experimental setting are given later in
Sect. 7.1.

The difference between this part detection system and
that in our previous method (Wu and Nevatia 2005, 2007c) is
mainly twofold. First, in our previous method, only the first
two levels of the hierarchy (full-body, head-shoulder, torso,
and legs) are used; here, a finer partition enables the algo-
rithm to work with greater partial occlusions. Second, in our
previous method, the Vector Boosting Tree (VBT) method
(Huang et al. 2005) is used to learn view-based part classi-
fiers, and there is no feature sharing between parts; here, we
use the CBT learning method, which has better performance
than the view-based VBT method for pedestrian detection

(Wu and Nevatia 2007a), and we share features between dif-
ferent parts to improve the computational efficiency.

4.2 Detecting Body Parts and Object Edges

Given a new image, the part detectors are applied. In addi-
tion to part responses, we extract image edges that corre-
spond to objects. For each edgelet feature f in the classifier,
we call it a positive feature if it has higher average match-
ing score on the positive (object) class than on the negative
(non-object) class, i.e.

E{f (x)|x ∈ X+} > E{f (x)|x ∈ X−} (3)

where X± is positive/negative sample space. The average
matching scores are evaluated during the off-line learning
stage. For one sub-window that is classified as object, the
positive features in the sub-window are ranked according to
their matching scores. The positive features with the top 5%
scores are retained.

Because one detector usually contains about one thou-
sand positive features, a large number of edgelets are re-
tained for one image. Some of these edgelets correspond to
the same edge pixels. We apply a clustering algorithm to
prune redundant edgelets. An edgelet consists of a chain of
2-D points. Denote the positions of the points in an edgelet
E by {ui}ki=1, where k is the length of the edgelet. Given
two edgelets E1 and E2 with the same length, we define an
affinity between them by

A(E1,E2)
�= 1

k

k∑
i=1

〈
u1,i − ū1,u2,i − ū2

〉 · e− 1
2 ‖ū1−ū2‖2

(4)

where ū is the average position of {ui}. If the two features
have different numbers of points, k1 and k2, they are first
aligned by their center points, and the longer feature is then
truncated to the length of the shorter one by removing points
from the two ends. The affinity defined by (4) multiplied
by a factor of min{k1,k2}

max{k1,k2} is taken as the affinity for these
edgelets.

The clustering algorithm used is an iterative algorithm.
We find the edgelet with the highest feature response, and
then remove all edgelets with an affinity larger than a given
threshold (0.01 in our experiments) to it. This procedure is
repeated until all object edgelets are examined. The remain-
ing edgelets are the observations that support the putative
object hypotheses. See Fig. 6 for an example. Compared to
the general edge based image segmentation methods, where
all edges are retained, our edge extraction method attempts
to remove edges from background clutters and focuses on
object shapes. These object edges, together with the bound-
ing boxes, are the input for the joint analysis of multiple
objects.
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Fig. 6 Extracted object edgelet pixels

5 Segmentation of Individual Object

For the whole-object node, we learn a pixel-level figure-
ground segmentor in addition to the detector. Note that we
do not learn segmentors for the other body parts. Because
the whole-object segmentor is based on local features, even
when the object is partially occluded, the whole-object seg-
mentor can still segment the visible part well based on the
visible features. For the occluded parts, it tends to output a
prior shape that is learned from the training data.

5.1 Design of the Weak Segmentator

Similar to the learning of part detectors, we build the whole-
object segmentor by boosting simple feature based weak
classifiers. For one edgelet feature f , in addition to the weak
classifier for detection h(d) described in Sect. 4.1, we build a
weak classifier for segmentation h(s), i.e. a pair of classifiers
sharing the same feature.

Note that there are several feature sharing concepts in our
system. In the CBT method for detection (Wu and Nevatia
2007a), feature sharing is between the weak classifiers for
different sub-categories of the object class; in the learning of
part detector hierarchy, feature sharing is between different
overlapping parts; here, feature sharing is between the weak
detectors and the weak segmentors.

The weak segmentation classifier is a function from the
space X × U to a real valued figure-ground classification
confidence space, where U is the 2-D image coordinate
space, i.e. U = Z

+ × Z
+, where Z

+ is the set of all non-
negative integers. Intuitively, a local feature only contributes
to the shape around its neighborhood. It is inefficient to es-
timate the status of the feet from an edgelet falling on the
head-top. Based on this observation, we define an effective
field of the edgelet based on a saliency decay function. This
design is motivated by the tensor voting method for shape
grouping (Medioni et al. 2000). See Fig. 7(a) for an illustra-
tion. O is a point on an edgelet feature, whose normal n and

tangent v are known, P is a neighbor of O , and
�

OP is the

Fig. 7 Effective field: (a) definition of effectiveness; (b) effective field
bases of individual edge points; (c) effective field of an edgelet feature

arc of the osculating circle at O that goes through P . The
effect of O on P is defined by

DF(s, κ, σ ) = exp

(
− s2 + cκ2

σ 2

)
(5)

where l is the Euclidean distance between O and P , θ is

the angle between n and
−→
OP , s = lθ

2 sin θ
is the length of the

arc
�

OP , κ = 2 sin θ
l

is the curvature, c is a constant that con-
trols the decay with high curvature, and σ is the scale of
analysis, which determines the size of the effective field.
Note that σ is the only free parameter. In practice, σ is
quantized to five values, 2, 4, 6, 8, and 10, according to the
size of our training samples, and the normal orientation of
the edgelet point is quantized to six bins, [π

6 (i − 1), π
6 i),

i = 1, . . . ,6. There are thus overall 30 bases of the effective
field (see Fig. 7(b)). For a k point edgelet, denoted by Fi

the effective field of the i-th point, the effective field of the
whole feature is then defined by

F(u) = max{F1(u), . . . ,Fk(u)}, u ∈ U (6)

Figure 7(c) shows the effective field of an edgelet feature.
The definition of the weak segmentation classifiers is

similar to that of detection. For the positive training sam-
ples, their segmentation ground-truth are given as binary
masks. Let S+ = {(xi , yi = 1,mi )} be the positive sample
set, where m is the segmentation mask that has the same di-
mension as x. m(u) = +1 means that the pixel u belongs to
figure; m(u) = −1 means that the pixel u belongs to back-
ground. Assume that the effective field F of a feature f has
been determined (how to optimize the shape of the effective
field is described later in Sect. 5.2.2). Similar to the weak de-
tection classifier h(d), the weak segmentation classifier h(s)
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is also defined as a piecewise function:

if f (x) ∈
[
j − 1

ns

,
j

ns

)
,

h(s)(x;u) = 1

2
ln

(
Wj

+(u) + ε

Wj
−(u) + ε

)
, j = 1, . . . , ns

(7)

where ns is the number of sub-ranges of the feature value for
segmentation (in our experiments ns = 16), and W±(u) is
the feature value histogram of figure/ground pixels weighted
by the effective field:

Wj
±(u) = F(u) · P

(
f (x) ∈

[
j − 1

ns

,
j

ns

)
, m(u) = ±1

)
,

j = 1, . . . , ns (8)

In practice, both h(d) and h(s) are implemented as look-up-
table (LUT), and nd and ns are the number of bins in the
tables. The difference is that each bin of h(d) is a real valued
scalar, while each bin of h(s) is a real valued matrix.

5.2 Boosting Ensemble Classifier for Segmentation
and Detection

Let H be the weak classifier pool that consists of the weak
classifier pairs built from all possible edgelets. Each element
in the pool is a pair of weak detection and segmentation
classifiers, i.e. (h(d), h(s)). We use a variation of boosting
algorithm to learn an ensemble classifier from H as strong
detector and segmentor.

5.2.1 Sample Weight Evolution

One important feature of boosting algorithms is the sample
weight evolution. For traditional detection problems, each
sample is assigned a real valued weight D(d) representing
its importance or difficulty. During the boosting procedure,
the weights of the misclassified samples are increased while
those of the correctly classified samples are decreased, so
that more and more attention is paid to the difficult part of
the sample space. For segmentation, not only do the diffi-
culties of different samples vary, but the difficulties of dif-
ferent positions of the same sample also vary. Intuitively,
for the less articulated parts of the human body, e.g. torso,
segmentation is relatively easy, not much more than a con-
stant mask; for the highly articulated part, e.g. legs, more
features need to be evaluated before making the final deci-
sion. Therefore, for segmentation, we assign a weight field
D(s) to each positive sample.

D(s)(u) represents the importance of the pixel at posi-
tion u. During the boosting procedure, the weight fields for
segmentation are evolved in the same way as the weights
for detection. Let the pair of weak detector and segmentor

selected at the t-th boosting round be (h
(d)
t , h

(s)
t ), and the

sample weights for detection and segmentation be D
(d)
t and

D(s)
t respectively. For all samples, the sample weights for

detection of the t + 1-th round are calculated by

D
(d)
t+1(x) = D

(d)
t (x) exp

[−yh
(d)
t (x)

]
, ∀x ∈ S (9)

For all positive samples, the sample weights for segmenta-
tion of the t + 1-th round are calculated by

D(s)
t+1(x;u) = D(s)

t (x;u) exp
[−m(u)h

(s)
t (x;u)

]
,

∀u ∈ U (10)

5.2.2 Optimization of Weak Classifier

At each boosting round, the best weak classifier pair is se-
lected from H, where two components need to be optimized:
the edgelet feature and the effective field. The edgelet fea-
tures are enumerated in the feature pool. An effective field is
defined by the shape of its edgelet and the parameter σ . As
we allow different σ ’s for different points in one edgelet, for
a k point edgelet there are 5k possible field shapes. When
the sample size is 24 × 58 pixels, there are overall 857,604
possible edgelets. It would be very time consuming to per-
form brute force search in the Cartesian space. Instead, we
separate the optimization into two steps: first search for the
best edgelet with a default σ value, and then search for the
best σ value.

With a fixed σ , the best edgelet is selected according to
the following criterion:

(
h

(d)
t , h

(s)
t

) = arg min
(h

(d)
t ,h

(s)
t )∈H

{
λ2

∑
j

√
W

j
+W

j
−

+ (1 − λ)
1

ν

∑
j

∑
u∈U

√
Wj

+(u)Wj
−(u)

}
(11)

where ν =
√∑

j

∑
u Wj

+(u)
∑

j

∑
u Wj

−(u) is a normaliz-
ing factor. This criterion encodes the discriminative power
of the feature for both detection and segmentation. The coef-
ficient λ represents the relative importance of the two tasks.
In our experiments, λ = 0.7.

The value of σ is optimized in a greedy way. At one time,
the σ of one edgelet point is optimized, while the others
remain fixed. Figure 8 shows the first several selected fea-
tures and their learned segmentors. It can be seen that they
are evenly distributed and correspond to natural body parts.
More experimental results of individual object segmentation
are given later in Sect. 7.2.

Figure 9 shows the full algorithm of simultaneous learn-
ing of detector and the segmentor. The output of this algo-
rithm is an ensemble classifier with a cascade decision strat-
egy for detection. As segmentation is a balanced classifica-
tion problem, we take the default threshold to be zero, i.e.
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the pixel u of x is classified as figure, if and only if

H
(s)
T (x;u) =

T∑
t=0

h
(s)
t (x;u) > 0 (12)

The segmentation result by the boosted classifier is re-
fined by applying twice erosion and twice dilation oper-

ations to remove some noises and fill some small holes.

For simplicity of presentation, we use the cascade classifier

structure to demonstrate the algorithm. However, in practice,

this approach is integrated with the CBT learning method

(Wu and Nevatia 2007a), where each branch of a tree classi-

fier is a cascade. In addition to the weak classifiers selected

Fig. 8 The first five features
selected and their segmentors
learned for pedestrians. (The
0-th segmentor is the prior
distribution. Each edgelet based
weak segmentor is implemented
as a histogram. Each bin of the
histogram is a real-valued
matrix defined by (7) with the
same dimension of the training
samples. In our experiments, a
segmentor histogram has
16 bins. In this figure, we
visualize the matrices of the
histogram bins by normalizing
them to [0, 255] gray scales.
White is for larger value and
black for lower value)

• Given the initial sample set S = S+ ∪ S−, where S+ = {(xi ,+1,mi )} and S− = {(xi ,−1)}, and a negative images set;
• Set the algorithm parameters: the maximum weak classifier number T , the positive passing rates {Pt }Tt=1, the target false

alarm rate F , the relative importance of detection to segmentation λ, and the threshold for bootstrapping θB ;
• Initialize the sample detection weights D

(d)
0 (x) = 1

‖S‖ for all samples, the sample segmentation weight fields D(s)
0 (x) =

1
‖S+‖‖x‖ for all positive samples, the current false alarm rate F0 = 1, and t = 0;

• Construct the weak classifier pool, H, from the edgelet features;
• While t < T and Ft < F do

1. Search for the best edgelet
(a) For each pair (h(d), h(s)) in H, generate the effective field for segmentation with a default value of σ(=4), calculate

h(d) and h(s) by (1) and (7) respectively. W± and W± are calculated under the weight distribution D
(d)
t and D(s)

t

respectively;
(b) Select the best weak classifier pair from the classifier pool H according to (11);

2. Search for the best shape of the effective field
(a) For each point of the edgelet, set σ = 2,4,6,8,10, find the best value according to (11).
(b) With the new effective field, recompute the classification function of h

(s)
t by (7).

3. Update sample weights by (9) and (10), and normalize D
(d)
t+1 and D(s)

t+1 to p.d.f.

4. Select the threshold bt for the partial sum H
(d)
t , so that a portion of Pt positive samples are accepted; and reject as

many negative samples as possible;
5. Remove the rejected samples from S. If the remaining negative samples are less than θB percent of the original, refill

S− by bootstrapping on the negative image set;

• Output {(h(d)
t , h

(s)
t ), bt } as the cascade classifier for detection and segmentation.

Fig. 9 Algorithm of simultaneously learning detector and segmentor.
In our experiments, T = 1,000, F = 10−6, λ = 0.7, and θB = 75%.
The setting of {Pt } is similar to the original cascade’s layer acceptance
rates. The cascade is divided into 20 segments, the lengthes of which

grow gradually. The weak classifiers at the end of the segments have
positive passing rate of 99.8%, and the other weak classifiers have
passing rate of 100.0%
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by the boosting algorithm, we use the prior figure-ground
distribution as the first weak segmentation classifier h

(s)
0 (see

Fig. 8):

∀x, h
(s)
0 (x;u) = 1

2
ln

(
W+(u) + ε

W−(u) + ε

)
(13)

where W±(u) is the prior probabilities of figure/ground la-
bels of the pixel at the position u:

W±(u) = P(m(u) = ±1) (14)

6 Joint Analysis for Multiple Objects

For multiple overlapping objects, joint consideration is nec-
essary. Similar to the previous methods (Wu and Nevatia
2005; Shet et al. 2007; Lin et al. 2007), our joint analysis
algorithm takes the detection results as input, and searches
for the multiple object configuration with the best image

1. Propose initial object hypotheses sorted such that the
y-coordinates of their feet are in descending order.

2. Segment object hypotheses and extract their silhouettes.
3. Examine the hypotheses one by one, from front to back.

For each hypothesis H , compare two multi-object con-
figurations: with and without H

(a) For the two configurations, compute the joint occlu-
sion map for silhouettes of multiple objects;

(b) Match the detection responses and object edgelets
with visible silhouettes;

(c) Compute the image likelihood with H , Pw(H), and
the likelihood without H , Pw/o(H);

(d) If Pw(H) > Pw/o(H), accept the hypothesis; other-
wise reject it.

4. Output all remaining hypotheses.

Fig. 10 Searching for the best multiple object configuration

likelihood. The difference is that we enforce feature exclu-
siveness among multiple hypotheses, compute a 1-D silhou-
ette based visibility score for occlusion reasoning, and add
the object edge information into the likelihood definition.
Figure 10 lists the main steps of the joint analysis algo-
rithm.

6.1 Proposing Object Hypotheses

Initially, object hypotheses are proposed from the detection
responses of a subset of parts. For pedestrians, we use full-
body, head-shoulder, left/right shoulder, and head to pro-
pose the initial hypotheses. During detection, only the part
detectors used for hypothesis proposals are applied to the
whole image; the others are applied to the local neighbor-
hood around the initial hypotheses. The hypotheses with a
large overlap ratio, defined as the area of their intersection
over the area of their union, are merged. Different from the
traditional merging step (Rowley et al. 1998), we use a high
overlap threshold (0.7 in our experiments) to obtain a set of
“under-merged” responses, in which one object may have
multiple hypotheses but hypotheses of different objects are
unlikely to be merged. Although this under-merging reduces
the search space, it tends to retain the responses of close
objects separate for further joint analysis. We sort the ob-
ject hypotheses by their vertical coordinates such that their
y-coordinates are in a descending order. See Fig. 11(a) for
an example.

6.2 Joint Occlusion Map of Silhouettes

For each hypothesis, segmentation is computed by apply-
ing the boosted whole-object segmentor and its silhouette
is extracted. Same as in Wu and Nevatia (2005), Shet et al.
(2007), Lin et al. (2007), we assume that objects are on a
ground plane and that the camera looks down towards the
plane, so that the relative depths of the objects can be in-
ferred from their image coordinates. We render the segmen-
tation masks of the ordered hypotheses by a z-buffer-like

Fig. 11 (Color online) Computing joint image likelihood for multi-
ple objects. (a) The examined multiple object configuration. (b) The
visible silhouettes obtained by occlusion reasoning. (c) The parts of
the silhouettes that have matched edgelets (red points). (d) Result of

matching full-body detection responses in Fig. 2(a) with the current
hypotheses (yellow: matched responses; orange: response not matched
with any hypothesis; red: hypothesis without matched response)
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method, and remove the invisible parts of the silhouettes that
are out of image frame or occluded by other objects (see
Fig. 11(b)).

For each part of an object hypothesis, a visibility score
is defined as the ratio between the length of the visible sil-
houette and the length of the whole silhouette. In the previ-
ous methods, Wu and Nevatia (2005) uses a constant elliptic
mask to approximate the pedestrian shape, and define a 2-D
region based visibility score by the ratio between the area of
the visible regions to the area of the whole region; Lin et al.
(2007) uses an edge template model to obtain a more accu-
rate segmentation, from which a 2-D region based visibil-
ity score is computed. Compared to these 2-D region based
visibility scores, the 1-D silhouette based visibility score is
more accurate and meaningful for the shape based detectors.
Figure 12 shows a comparison of different visibility scores
on a toy example. Two humans are present in one image.
A shorter one is in front; a taller one is in back. The size of
the shorter one is 75% of the taller one. The y-coordinate
of the shorter human’s feet is one pixel larger than that of
the taller human; the difference between their horizontal po-
sitions is measured by the pixel difference between their
x-coordinates normalized by the pixel width of the taller
human (the x-axis of Fig. 12(a)). It can be seen that while
the 2-D region based visibility scores changes monotoni-
cally when the location difference decreases, the 1-D sil-
houette based visibility score fluctuates. However, when the
occlusion is significant (see Fig. 12(b) for examples), the

Fig. 12 Comparison of 2-D region based and 1-D silhouette based
visibility scores

silhouette based score is usually larger than the region based
scores. This retains the hypothesis of the taller human for
further analysis.

6.3 Matching Object Edges with Visible Silhouettes

After obtaining the visible silhouettes, we assign the object
edgelets extracted during part detection to the hypotheses by
matching them with the visible silhouettes. For each edgelet,
we find the closest silhouette to it and align the edgelet with
the silhouette. Figure 13 gives the algorithm.

To assign edgelets to silhouettes, we first compute the
distance transformation for each visible silhouette, and then
compute the Chamfer matching scores between all the
edgelets and all the silhouettes through distance transfor-
mation. One edgelet is assigned to the silhouette that has the
highest matching score with it. If one edgelet has low scores
with all the silhouettes, then it is not assigned to any. This
procedure is similar to the traditional edge template match-
ing. The difference is that we take silhouette points as edge
points and edgelet features as edge template.

To align one edgelet with its corresponding silhouette, we
first find the silhouette point c closest to the edgelet through
distance transformation, and then search a small neighbor-
hood of c along the silhouette, ±5 pixels. For each position,
we cut a segment from the silhouette with the same length
as the edgelet and compute its shape affinity to the edgelet
by (4). The position with the highest affinity is taken as the
aligned position, and the corresponding segment of the sil-
houette is marked as “supported” (see Fig. 11(c)). The ratio
between the length of the supported segments and the over-
all length of the silhouette is called the edge coverage of the
silhouette.

The above algorithm guarantees that one edgelet con-
tributes to at most one hypothesis. If one silhouette can not
get enough supporting edgelets (the edge coverage score
is smaller than 0.25), the corresponding hypothesis will
be removed. This solves the one-object-multiple-hypotheses
problem in a natural way and prunes some false alarms. For
example, the hypothesis 8 in Fig. 11(a) is removed in this
way.

1. Compute distance transformation for all silhouettes;
2. For each object edgelet

(a) Compute Chamfer matching scores to all the silhou-
ettes, and assign the edgelet to the silhouette with the
largest score;

(b) Find the silhouette point c nearest to the edgelet and
locally align the edgelet with the silhouette around c;

(c) Mark the part of the silhouette that is covered by the
edgelet as “supported”;

Fig. 13 Matching and aligning edgelets with silhouettes
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6.4 Matching Detection Responses with Visible Parts

For each hypothesis, we remove the body parts whose visi-
bility scores are smaller than a threshold (0.7 in our exper-
iments). The remaining parts are considered observable to
the detectors. Matching part detection responses with the
visible part hypotheses is a standard assignment problem,
which we solve by the Hungarian algorithm (Kuhn 1955).
For each response-hypothesis pair we compute their over-
lap ratio. If a pair’s overlap ratio is larger than a threshold
(0.5 in our experiments), it is considered a potential match.
After matching, we apply under-merging to the remaining
part responses to group the false alarms. Then we count the
successful detections, false alarms, and missed detections,
see Fig. 11(d) for an example.

6.5 Computing Joint Image Likelihood

Denote one visible part of an object hypothesis and one part
detection response by z and r respectively; denote the set of
matched response-hypothesis pairs by SD (successful de-
tection). The sets of false alarms and missed detections are
defined by FA = {r|r /∈ SD} and FN = {z|z /∈ SD} (false
negative) respectively. Denote the object edgelets from the
response r by E(r). The joint image likelihood of multiple
objects is defined by

P(O|Z) =
∏

{z,r}∈SD

PSD(r,E(r)|z)

×
∏

r∈FA

PFA(r)
∏

z∈FN

PFN(z) (15)

where O packs all observations, and Z for all hypotheses.
The first term on the right side of (15) is the reward for suc-
cessful detections. It is decomposed as

PSD(r,E(r)|z) = P(r|E(r), z)P (E(r)|z) (16)

To model P(r|E(r), z), we evaluate the distribution of the
part detector’s true positive rate under different edge cover-
age scores of the silhouette. The distribution is represented
as a histogram. Spatial error between the response and the
hypothesis or poor contract reduces the edge coverage score.
Lower edge coverage usually corresponds to lower true pos-
itive rate. We assumes that P(E(r)|z) is an uniform distrib-
ution, hence it is ignored in practice. The second term of the
right side of (15) is the penalty for false alarms. It is com-
puted by one minus the detector’s precision. The third is the
penalty for missed detection. It is computed by one minus
the detection rate. These properties are evaluated for differ-
ent part detectors independently during the off-line learning
stage.

6.6 Searching for the Best Configuration

To search for the best interpretation of the image, we exam-
ine the initial object hypotheses one by one, in the descend-
ing order of their y-coordinates. See Fig. 14 for an example.
If there are several hypotheses for one object, the algorithm
will find the one that best aligns with the object edges and
part responses. For example, the hypotheses h1, h3, h4, h5 in
Fig. 14 correspond to one human. Our algorithm chooses the
best one (h1) and removes the others. If there are inter-object
occlusions, the algorithm will ignore the occluded parts. For
example, the legs of hypothesis h12 are not detected, but this
can be explained by occlusion from h7. Therefore, h12 is re-
tained.

7 Experimental Results

We demonstrate our approach with the class of pedestrians.
We first evaluate the performance of our boosted segmentor
on un-occluded human samples, and then evaluate our joint
analysis algorithm for multiple, partially occluded objects
on two public image sets.

7.1 Training Part Detector Hierarchy

To train the part detectors, we collected about 5,000 pedes-
trian samples covering different viewpoints, and 7,000 back-
ground images without humans from the Internet. The full-
body samples were resized to 24 × 58 pixels, and aligned
according to the head and feet positions. Figure 15 shows
some full-body training samples. The sizes of the other body
parts were derived based on their definitions in Fig. 4.

For detection, the overall target false alarm rates of the
classifiers for the nodes in the first two levels of the part hi-
erarchy were set to 10−6; the overall target false alarm rates
for the bottom level nodes were set to 10−5. With only in-
herited features, a detector can usually achieve a false alarm
rate between 10−3 to 10−4; by adding additional features, it
achieves the target false alarm rate. Although feature sharing
cuts training time by about a half, it requires about a week
to train all the part detectors.

For the pedestrian class, we manually labeled the seg-
mentation ground-truth for 1,800 samples. (Note that the al-
gorithm in Fig. 9 does not require that all the positive sam-
ples have segmentation ground-truth.) We use a polygon to
delineate the object, however, the boundary pixels are some-
times ambiguous and can not be classified clearly. Hence
we mark a two pixel width do-not-care (DNC) boundary
(see Fig. 15). The DNC pixels are ignored in both training
and testing. This strategy is similar to that in Shotton et al.
(2006). To evaluate segmentation, four fifths of the 1,800
segmented samples are used as training data, the rest one
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Fig. 14 (Color online) An example of searching for the best multi-
object configuration. (The blue rectangles indicate the hypotheses
being examined. The red boxes indicate the states kept after comparing
the image likelihoods with/without one hypothesis. When examin-

ing a hypothesis, one of the “with” and “without” likelihoods can be
inherited from the previous round to reduce computational cost. For ex-
ample “without h0” and “with h1” are the same state, as h0 is removed)

Fig. 15 Examples of pedestrian samples and their segmentation
ground-truth. White pixels are for figure, black for background, and
gray for do-not-care

fifth are used as testing data. Our pedestrian data set con-
tains 4,640 training samples, 1,440 of which have segmen-
tation ground-truth, and 360 test samples with segmentation
ground-truth. For evaluation on case of multiple, occluded
objects, we have additional test data that are fully indepen-
dent from the training data.

7.2 Evaluation on Separate Objects

For the full-body node, we learn a segmentor in addition to
the detector. Overall 800 edgelet features, one for each weak
classifier, are selected by the boosting algorithm. We evalu-
ate the segmentation performance with different numbers of
weak classifiers. Figure 16(a) shows the segmentation ac-
curacy on both the training data and the testing data. The
segmentation accuracy is defined as the ratio of the number
of pixels classified correctly to the number of all pixels. It
can be seen that after about 500 weak classifiers, though the
accuracy on the training data continues to increase, the ac-
curacy on the testing data does not change much. However,
no over-fitting is observed.

In addition to accuracy, we evaluate the segmentation
precision and recall rate of the final segmentor. For seg-
mentation, precision is defined as the ratio of the number
of true object pixels that are classified as figure to the num-
ber of all pixels that are classed as figure; recall rate is de-
fined as the ratio of the number of true object pixels that are
classified as figure to the number of all true object pixels.
Figure 16(b) shows the precision-recall (PR) curves on the
testing data. For a comparison, we evaluate the segmentation
performance of the constant shape prior, i.e. h

(s)
0 in Fig. 8.

The equal-precision-recall rate of the boosted segmentor is
about 94.6% on the testing data; while the equal-precision-
recall rate of the shape prior is about 86.8%.
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Fig. 16 Segmentation performance on separate humans: (a) segmentation accuracy with different numbers of weak classifiers; (b) segmentation
precision and recall rate; (c) spatial distribution of segmentation errors. (White pixels are for higher error rate, and black for lower error rate)

Fig. 17 Example detection and segmentation results on separate humans

Figure 16(c) shows the spatial distribution of the segmen-
tation errors. For one pixel, the segmentation error rate is de-
fined as the probability of its figure/ground label being clas-
sified incorrectly. It can be seen that most errors are around
the object boundaries and the articulated parts, e.g. legs of
humans. Figure 17 shows some example results on real im-
ages collected from the Internet. Because the humans are
well separate in these examples, we only apply the full-body
detector. It can be seen that our method can work reasonably
well with different viewpoints and articulations.

7.3 Evaluation on Partially Occluded Objects

We evaluated the whole multiple object detection and seg-
mentation system on the “USC pedestrian set B” (Wu and
Nevatia 2005)1 and the “Zurich Mobile Pedestrian Se-
quences” (Ess et al. 2007).2 Unlike the other popular test

1See http://iris.usc.edu/~bowu/DatasetWebpage/dataset.html.
2See http://www.vision.ee.ethz.ch/~aess/iccv2007/.

Table 1 Performance of part detectors on the USC pedestrian set B.
(The performance of right shoulder/arm/leg is similar to their left coun-
terparts)

Part Recall Precision

Full-body 0.7638 0.9367

Head-shoulder 0.7269 0.9471

Torso 0.7934 0.9110

Legs 0.5720 0.8470

Head 0.6679 0.7702

Left shoulder 0.6863 0.8857

Left arm 0.7860 0.8694

Left leg 0.5240 0.8208

Feet 0.5092 0.7624

sets for pedestrian detection, e.g. the INRIA set (Dalal and
Triggs 2005), the Daimler Chrysler set (Munder and Gavrila
2006), and the MIT set (Papageorgiou et al. 1998) which use
normalized, separate human samples, these two sets con-

http://iris.usc.edu/~bowu/DatasetWebpage/dataset.html
http://www.vision.ee.ethz.ch/~aess/iccv2007/
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Fig. 18 Evaluation of detection performance on the USC pedestrian
test set B

tain images with multiple interacting humans. They are very
challenging because of the frequent occlusions. The detec-
tors and segmentor used here are learned from the same
training data described in Sect. 7.1, which is totally inde-
pendent of the test sets.

7.3.1 Results on the USC Test Set

The USC pedestrian set B contains 54 images with 271 hu-
mans from the CAVIAR corpus.3 In this set, 75 humans are
partially occluded by others, and 18 humans are partially out
of the scene. Table 1 lists the performance of our individual
part detectors on this set. It can be seen that with occlusions,

3See http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.

Fig. 19 Example detection and segmentation results on the USC pedestrian set B

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/


Int J Comput Vis (2009) 82: 185–204 201

the performance of the part detectors drop greatly. The feet
and legs detectors have the poorest performance, as the oc-
clusions usually happen to the lower body.

We compare the end-to-end performance of our system
with some previous multiple human detection methods, in-
cluding our previous system (Wu and Nevatia 2005, 2007c).
Figure 18 shows the detection precision-recall curves. It
can be seen that our method is significantly better than the
other state-of-the-art methods, and all the combined detec-
tion methods are much better than any individual part detec-
tor on occluded examples.

Table 2 shows the detection rates on different degrees of
occlusion. It can be seen that the detection rate on partially
occluded humans is only slightly lower than the overall de-
tection rate and declines slowly when the degree of occlu-
sion increases.

To evaluate the pixel level segmentation performance,
we manually label the segmentation ground-truth for this
set. We first compute the segmentation precision and recall
rate of every successfully detected human, and then com-
pute the average scores. With a detection rate of 97.8%,
the segmentation precision and recall rate are 83.18% and
84.78% respectively; with a detection rate of 96.0%, the seg-
mentation precision and recall rate are 83.25% and 85.61%
respectively. Note that we ignore the missed humans and
false alarms when computing the scores for segmentation,
because otherwise the segmentation scores would be domi-
nated by the detection errors. The segmentation performance
on the real images is not as good as that on the normalized
samples, because the detection bounding boxes are usually
not perfectly aligned with the objects.

In this experiment, we do not use any scene structure or
background subtraction to facilitate detection. The test im-
age size is 384 × 288 pixels. We search humans from 24
to 80 pixels wide. We use four threads to run detection of
different parts simultaneously. Our experimental machine is
a dual-core dual-processor Intel Xeon 3.0 GHz CPU. The
average speed on this set is about 3.6 second per image. Fig-
ure 19 shows some example results on this set.

Table 2 Detection rates (%) on different degrees of occlusions. The
detection rates of Shet et al. (2007), Wu and Nevatia (2005) are ob-
tained with 19 false alarms; the detection rate of this method is obtained
with 12 false alarms

Occlusion degree (%) 25 ∼ 50 50 ∼ 75 >75

Human number 34 31 10

Shet et al. (2007) 87 91.4 92.6

Our previous method 91.2 90.3 80

(Wu and Nevatia 2005)

This method 94.12 93.55 90

7.3.2 Results on the Zurich Test Set

The Zurich set contains three test sequences captured by
a stereo pair of cameras mounted on a children’s stroller.
Same as Ess et al. (2007), we only use the frames from
the left camera for testing. The first test sequence contains
999 frames with 5,193 annotated humans; the second con-
tains 450 frames with 2,359 humans; the third contains 354
frames with 1,828 humans. The frame size is 640×480 pix-
els. To compare with the results in Ess et al. (2007), which
combines scene analysis with the object detection method in
Leibe et al. (2005), we develop a simple method to estimate
the ground plane, which is used to facilitate detection. We
first use the full-body detector to search for humans from
58 to 483 pixel high. Then from the full-body responses,
we do a RANSAC style algorithm to estimate a linear map-
ping from the 2-D image position to the 2-D human height:
ax + by + c = h, where x, y are the image position, h is the
human height, and a, b, c are the unknowns. With ground
plane, the other part detectors only search the valid regions
in the position-scale space. This saves some computational
cost and reduces the false alarm rate.

Figure 20 shows the detection precision-recall curves of
our methods and those in Ess et al. (2007). It can be seen that
on all the three sequences our method dominates. Figure 20
also contains a curve of our method with only the full-body
detector, which has similar performance compared to the
method of Ess et al. (2007). This shows the necessity of part
based system for such a complex scene. However, the efforts
of this work and that in Ess et al. (2007) focus on different
aspects. Ess et al. (2007) attempt to integrate scene struc-

Fig. 20 Detection precision-recall curves on the Zurich mobile pedes-
trian sequences. (Following Ess et al. 2007’s evaluation, only humans
higher than 60 pixels are counted. The curves of Ess et al. 2007 are for
their full-system, i.e. with ground plane and stereo depth)
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Fig. 21 Example detection and segmentation results on the Zurich mobile pedestrian sequences

Fig. 22 (Color online )Examples of detection false alarm (red contours)
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ture analysis and object detection, while our approach at-
tempts to segment multiple, occluded objects jointly. These
two complementary methods can be combined for further
improvement. The average speed of our system on this set is
about 2.5 second per image. Figure 21 shows some example
results.

The performance on the USC set is much better than that
on the Zurich set. This is mainly because the background
of the Zurich set (outdoor) is much more cluttered than that
of the USC set (indoor). At a similar detection rate, the false
alarm rate is much higher on the Zurich set. Figure 22 shows
some examples of false alarms. During testing, the only dif-
ferent parameter for the two sets is the search range of hu-
man sizes.

8 Conclusion and Discussion

We described a method to detect and segment multiple, pos-
sibly inter-occluded objects. Boosted classifiers are learned
for the nodes in a part hierarchy. For the whole-object node,
a segmentor is learned by boosting local shape feature based
weak classifiers. For multiple object cases, occlusion rea-
soning is performed based on the object silhouette extracted
from segmentation. A joint likelihood of multiple objects is
maximized to find the best interpretation of the input image.
We demonstrated our approach on the class of pedestrians.
The experimental results show that our method outperforms
the previous ones.

In this method, shape is used as the image cue for seg-
mentation. In addition to shape, color and texture are also
important cues for both segmentation and detection tasks.
However, a holistic representation of color or texture model
is sometimes uninformative and can not capture the details
of the objects. Some part based representation could be help-
ful.

In our current method, although the detection and seg-
mentation share the same set of image features, there is little
interaction between these two modules. Intuitively, segmen-
tation results could be used to verify the detection hypothe-
ses. If the segmentor produces an unusual shape, it may sug-
gest an error of the detector. There are existing methods ex-
ploring this direction (e.g. Zhao and Davis 2005).

To apply our approach to other object classes, some com-
ponents need to be modified according to the class of inter-
est. First, the design of the part hierarchy is class dependent.
Different object classes require different partitions. Second,
the ground plane assumption is valid for some objects in
some applications, such as cars and pedestrians in surveil-
lance videos, but not for all objects in all situations. When
this assumption is not true, we need to infer the objects’ rel-
ative depths by other techniques. Third, though the feature
exclusiveness idea should be helpful for any feature based
detection, it may require different implementations for dif-
ferent features.
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