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Abstract We propose a novel and efficient surface match-
ing approach for reassembling broken solids as well as
for matching assembly components using cluster trees of
oriented points. The method rapidly scans through the
space of all possible contact poses of the fragments to be
(re)assembled using a tree search strategy, which neither
relies on any surface features nor requires an initial solu-
tion. The new method first decomposes each point set into
a binary tree structure using a hierarchical clustering algo-
rithm. Subsequently the fragments are matched pairwise by
descending the cluster trees simultaneously in a depth-first
fashion. In contrast to the reassemblage of pottery and thin
walled artifacts, this paper addresses the problem of match-
ing broken 3D solids on the basis of their 2.5D fracture
surfaces, which are assumed to be reasonable large. Our
proposed contact area maximization is a powerful common
basis for most surface matching tasks, which can be adapted
to numerous special applications. The suggested approach
is very robust and offers an outstanding efficiency.

Keywords Fracture matching · Surface registration · 3D
puzzle · Fragment alignment · Cluster tree · Broken objects

1 Introduction

How can we reassemble fragments (e.g. broken objects) au-
tomatically even without any knowledge of their original
configuration and/or shape? An answer to this crucial ques-
tion is very important in many fields, like archaeology (e.g.
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reconstruction of broken artifacts), surgery (e.g. reduction
of bone fractures), bioinformatics (e.g. docking of proteins),
and assistance in assembly (e.g. assembly planning in robot-
ics). The problem of matching complementary fragments of
broken objects is closely related to the problem of partially
overlapping surface registration where the objects are e.g.
represented as range images. But in case of broken objects
additional challenges are faced, which are not met by most
registration methods: (i) In general, a good initial guess,
which can be used to iterate to the global optimum, is not
available. (ii) Very large surface areas have no correspon-
dence on the complementary part. (iii) Object intersections
must be avoided. (iv) Missing fragments and additional ma-
terial deterioration complicates the matching.

1.1 Related Work

An outline of the numerous publications dealing with reg-
istration techniques would go beyond the scope of this pa-
per. Therefore, we only give an overview of the most related
work. The literature in this area often distinguishes between
‘fine registration’ and ‘coarse registration’.

Fine Registration Fine registration approaches can be used
to optimize a given coarse solution. One of the most popular
fine registration approaches for surfaces is the iterative clos-
est point (ICP) algorithm by Besl and McKay (1992). The
algorithm iteratively improves an initial solution according
to some fitness criterion. Although many enhancements to
the original method have been suggested (e.g. Dalley and
Flynn 2002; Pottmann et al. 2006; Rusinkiewicz and Levoy
2001), it still requires a good initial guess to find the global
optimum.
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Coarse Registration A coarse registration is necessary, if
a coarse solution is not initially available. Most approaches
in this area use local surface features to find correspond-
ing point pairs. Features vary from simple properties, like
curvatures, to complex vectors, like point signatures (Chua
and Jarvis 1997), surface curves e.g. Papaioannou and Theo-
haris (1999), Sappa et al. (2001), Vanden Wyngaerd and Van
Gool (2002), Krsek et al. (2002), spin-images (Johnson and
Hebert 1997), or salient points (Schön and Häusler 2005).
See e.g. Seeger and Labourex (2000) for an overview of fur-
ther surface features. Using features can highly constrain the
search space. However, their use cannot guarantee unique
point correspondences if the features are not robust (e.g.
due to noise or missing surface structures) or indiscriminate
(correspondence problem). A well-known category dealing
with object recognition and localization are the pose clus-
tering approaches (also known as hypothesis accumulation
or generalized Hough transform, see for example Stockman
1987; Linnainmaa et al. 1988, or Barequet and Sharir 1996).
The basic idea is to accumulate low level pose hypotheses in
a voting table, followed by a maxima/cluster search, which
identifies the most frequent hypotheses. The drawback of
voting tables is their high time and space complexity, partic-
ularly in case of large data sets and high-dimensional search
spaces.

Reassembly of Broken Objects Many papers address match-
ing of two-dimensional fragments like jigsaw puzzles or
thin-walled fragments (e.g. sherds of pottery), see e.g.
Cooper et al. (2002), Kampel and Sablatnig (2003a, b),
da Gama Leitão and Stolfi (2002), Goldberg et al. (2004),
Willis and Cooper (2004). However, these methods can-
not be generalized to fragments of 3D solids. The problem
of matching complementary three-dimensional fragments is
rarely treated in the open literature up to now. One approach
is proposed by Papaioannou et al. (2002), Papaioannou and
Theoharis (1999); it is based on a pose error estimation using
z-buffers, which are generated online for every hypothesized
pose. The error minimization is performed by simulated an-
nealing in a 7D search space of all possible poses of two
fragments in relation to a separating projection plane. An
efficient and robust approach for matching fragments is the
random sample matching approach (Winkelbach et al. 2004,
2006), which is based on the RANSAC algorithm introduced
by Fischler and Bolles (1981). The repetitive procedure is
simple but powerful: First, a likely hypothesis is generated
randomly from the input data set. Subsequently, the qual-
ity of the hypothesis (number of contact points) is evalu-
ated. The main disadvantage of this randomized algorithm
is its infinite search loop, which makes it impossible to de-
cide, whether the best result was found or not. The most
recent approach for reassembling broken 3D solids is from
Huang et al. (2006). Their comprehensive reconstruction

process consists of several steps: (i) a surface segmentation
into faces that are bounded by sharp curves, (ii) a classifi-
cation into original and fractured faces using a roughness
criterion, (iii) a multi scale feature extraction based on vol-
ume distance descriptors, (iv) a pairwise matching of the
faces based on feature correspondences, and (v) an itera-
tive greedy multi-piece matching. In this paper we suggest
an alternative technique for pairwise fragment matching,
which neither relies on sharp curves nor requires any fea-
tures.

Bounding Volume Hierarchies Another class of related
methods is concerned with collision detection and dis-
tance queries in computer graphics applications and sur-
face registration. The most popular and versatile approaches
in this field of research are bounding volume hierarchies
(BVH) and space-partitioning trees, like the binary space-
partitioning tree (BSP tree) or kd-tree (see e.g. Ericson
2005). By arranging the objects into tree hierarchies, the
collision and distance queries can be reduced to logarithmic
time complexity. But up to now, no work has been published
that simultaneously matches tree hierarchy representations
of two objects. In the following, we present such a novel and
highly efficient matching method of tree hierarchies, whose
principle goes far beyond using hierarchies for simple dis-
tance queries.

1.2 Method Overview

Our suggested cluster tree matching strategy rapidly finds
the global optimum in the space of all rigid transformations
between two fragments without any knowledge of an ini-
tial guess. Here ‘global optimum’ means the relative pose
with the largest surface contact. The tolerated distance ra-
dius between surface points that are considered to be in con-
tact must be predefined. The aim of our approach is to find
a good match without knowledge of an initial pose hypoth-
esis. As soon as such an pose hypothesis was found, sev-
eral known iterative fine registration approaches can be ap-
plied to optimize accuracy. The paper is organized as fol-
lows: Sect. 2 gives a theoretical concept for matching two
point-sampled surfaces, but at this stage without using a hi-
erarchical decomposition. Section 3 introduces the cluster
tree matching strategy for 3D-puzzle-problems. In a pre-
processing step, we store each fragment in a binary tree
structure (cluster tree) by a hierarchical subdivision of the
point sets into subsets using a divisive clustering method.
Subsequently, we propose an efficient matching method,
which descends the cluster trees simultaneously in a depth-
first fashion by propagating each pose hypothesis from one
tree level to the next. The descent along each branch is dis-
continued if the expected result is not better than the last best
match. Thus, transformations with weak surface contact can
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be discarded at a very early stage. The algorithm always ter-
minates and returns the global optimum of the search space.
In Sect. 4 we discuss strategies to accelerate execution and
indicate further matching constraints. Finally, in Sect. 5 we
evaluate the excellent performance of our new approach by
matching different types of objects.

2 Preliminaries

Before discussing an efficient method for solving a 3D-
puzzle-problem, we outline some mathematical basics. Let
us assume that there is a set PA of 3D point coordinates
p1, . . . ,pk of the surface of the first fragment A and a set
NA of corresponding 3D surface normals n1, . . . ,nk at these
points. Note that we consider outward-pointing surface nor-
mals, which are unit vectors perpendicular to the surface.
Many surface reconstruction approaches can compute nor-
mal vectors as part of the reconstruction process. If surface
normals are not given in advance, or if they are not robust
due to heavy noise, an additional computation of robust sur-
face normals is necessary. E.g. Mitra and Nguyen (2003)
suggests a robust method for estimating surface normals of
a point cloud in the presence of noise, which is based on
local least square fitting.

Let u := [pu,nu] be a 6D parameter vector, which com-
bines the coordinates and the normal of a surface point with
index u. Referring to Johnson and Hebert (1997) we call this
vector an oriented point. This gives us the oriented point set
A of fragment A and the oriented point set B of the counter
fragment B

A := {u = [pu,nu] | pu ∈ PA and nu ∈NA},
B := {v = [pv,nv] | pv ∈ PB and nv ∈NB}. (1)

The goal is to find the relative transformation that ‘correctly’
assembles the fragments. One of the most important crite-
ria is the amount of contact between the fragments. An ap-
proach that considers the whole contact area promises more
robust matching results than approaches that solely rely on
local surface features. Two fragments are in contact if there
exists at least one point, where both fragments touch each
other tangentially.

Definition 1 (Tangential point-point contact) Given a rel-
ative transformation ATB ( 4 × 4 matrix in homogeneous
coordinate notation) between fragment A and fragment B;
two oriented points a ∈ A and b ∈ B are in tangential con-
tact if the point coordinates coincide pa = ATB pb and the
respective surface normals are directed against each other
na = −ATB nb.

Definition 2 (Tangential point-fragment contact) Given a
relative transformation, an oriented point a is in tangential

Fig. 1 The assumption of a tangential contact between two oriented
point pairs can be used to define a relative transformation ATB

contact with fragment B if there exists an oriented point
b ∈ B that is in tangential contact with a.

Now we can specify the subset C of points of frag-
ment A that are in tangential contact with fragment B given
a pose ATB

C :={a ∈A | ∃b ∈ B :
‖pa − ATB pb‖ < εp ∧ (na · ATB nb) + 1 < εn}, (2)

where operator · indicates the dot product (i.e. scalar prod-
uct) of two vectors. In contrast to Definition 1, this formula
assumes a tangential contact if the point-point distance is
smaller than εp and if the cosine of the angle between the
normals is less than εn − 1. These tolerance values are nec-
essary to handle numerical errors and noise, since point sets
of real datasets never match perfectly. The optimal values for
εp and εn depend on the application. In most cases εp and
εn should be adapted to the surface accuracy (e.g. the stan-
dard deviation of the 3D scanner or the CT slice distance).
The remaining problem is to find the relative pose ATB that
maximizes the amount of contact.

Obviously, it is not efficient to exhaustively search
through the 6D space of all relative poses. Therefore we only
consider pose hypotheses with a contact between the frag-
ments. We can construct such a pose hypothesis by assum-
ing a contact between some surface points on each fragment.
More precisely, four given oriented surface points a, c ∈ A
and b,d ∈ B are sufficient if we assume a tangential contact
between a and b as well as between c and d. This assump-
tion constrains all degrees of freedom of the relative trans-
formation. As illustrated in Fig. 1, we can determine this
homogeneous 4×4 transformation matrix ATB by means of
two predefined frames (one coordinate system for each frag-
ment):

ATB(a,b, c,d) = F(a, c)−1 F(b∗,d∗), (3)

where the superscripted star indicates the surface normal in-
version b∗ := [pb,−nb], d∗ := [pd ,−nd ], and the function
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F(u,v) is a homogeneous 4 × 4 transformation matrix, rep-
resenting a coordinate system located between the oriented
points u and v

F(u,v) :=
[ puv×nuv

‖puv×nuv‖ puv
puv×nuv×puv

‖puv×nuv×puv‖
pu+pv

2

0 0 0 1

]
(4)

with the difference vector puv and the combined normal vec-
tor nuv

puv := pv − pu

‖pv − pu‖; nuv := nu + nv. (5)

To avoid singular frames, we must ensure that the length
of puv and nuv is not zero. The calculated transformation
ATB aligns both point pairs. However, an exact tangential
contact at two points is only possible if the relative dis-
tance of the points and the surface orientations at the contact
points coincide. More precisely, we have to ensure that the
oriented point pair (a, c) is geometrically congruent to the
oriented point pair (b∗,d∗). The relative transformation of
one oriented point to another has four degrees of freedom
(two translational and two rotational degrees). Therefore we
have to compare at least four scalar quantities to check for
congruency. To verify this constraint, we define a 4D rela-
tion vector of an oriented point pair consisting of four values
(one distance and three angles) that define the relative pose
between two oriented points without ambiguity

rel(u,v)

:=

⎡
⎢⎢⎣

duv

cosαuv

cosβuv

δuv

⎤
⎥⎥⎦

:=

⎡
⎢⎢⎣

‖pv − pu‖
nu · puv

nv · puv

atan2(nu · (puv × nv), (nu × puv) · (puv × nv))

⎤
⎥⎥⎦ .

(6)

These four values are illustrated in Fig. 2. Angle δuv denotes
the dihedral angle between the plane with normal nu × puv

and the plane with normal nv × puv . Function atan2(x, y) is
similar to calculating the arctangent of y/x except that the
signs of both arguments are used to determine the quadrant
of the return value

atan2(y, x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan y
x

if x > 0,

arctan y
x

+ π if x < 0, y ≥ 0,

arctan y
x

− π if x < 0, y < 0,

+π/2 if x = 0, y > 0,

−π/2 if x = 0, y < 0,

0 if x = 0, y = 0.

(7)

Fig. 2 Geometric relationship between two oriented points u and v

Note that the relation vector of (6) is invariant w.r.t. rotation
and translation. In principle, every other relation vector that
defines a unique relative pose between two oriented points
works just as well. Incidentally, Wahl et al. (2003) showed
that similar relation vectors can be accumulated in feature
histograms for rapid 3D-shape classification.

Now consider the congruence relation (∼=) between ori-
ented point pairs

(u,v) ∼= (q, r) :⇐⇒ rel(u,v) ≈ rel(q, r), (8)

which verifies if the relation vectors are equal and which
is true if the given point pairs are geometrically congruent.
Similar to the definition of contact point set C (2) we have to
handle numerical errors and noise, since real datasets never
match perfectly. Therefore we only check for approximate
equality (≈), which can be done using the tolerance values
of (2)

rel(u,v) ≈ rel(q, r) ⇐⇒ |duv − dqr | < εp

∧ | cosαuv − cosαqr | < εn

∧ | cosβuv − cosβqr | < εn

∧ | cos δuv − cos δqr | < εn.

(9)

Using this relation, the set of valid pose hypotheses H can
be specified by

H := {(a,b, c,d) | (a, c) ∼= (b∗,d∗); a, c ∈ A; b,d ∈ B}.
(10)

After we have defined how to construct appropriate pose hy-
potheses and that we want to find the pose with maximal sur-
face contact, the question is how to find the best hypothesis
in an efficient way. If we have n surface points per fragment,
we already get n2 different point pairs per fragment and this



Int J Comput Vis (2008) 78: 1–13 5

Fig. 3 Idea of the coarse-to-fine approach

leads to a reasonable amount of n4 point pair combinations.
Obviously, a naive algorithm that checks all point-pair com-
binations for geometrical congruency is not practical. Fur-
thermore, we have to compare the number of contact points
of every valid pose hypothesis. The classical method for
finding the number of contact points is to calculate the rela-
tive transformation ATB of (3), then transform all points into
a common coordinate system, and subsequently find contact
point pairs. A straightforward implementation that checks
every point of fragment A whether it is in tangential contact
with one point of fragment B, will lead to an additional fac-
tor of n2. However, in the following sections we will suggest
an alternative approach that solves these problems in a very
efficient way.

3 Top-Down Cluster Tree Matching

‘Coarse-to-fine’ or ‘multi-resolution’ strategies are well-
known and common instruments in computer vision tasks.
The aim is to solve the problem at a low resolution with
a small amount of data and then to increase the resolu-
tion step-by-step and simultaneously refine the solution. Our
matching method for 3D-puzzle-problems is also a form
of coarse-to-fine approach. Figure 3 roughly illustrates the
procedure. In a preprocessing step, we build a hierarchical
shape decomposition called ‘cluster tree’. The decomposi-
tion is based on a top-down clustering algorithm. After that,
the recursive matching can be performed. The fragments at

a higher tree level (represented by only a few clusters) are
used to efficiently find contact hypotheses. At a high tree
level it is sufficient to consider a small number of pose hy-
potheses and the contact computation is much faster. Now
all valid high-level hypotheses can be recursively propa-
gated down by descending the cluster trees. To compare the
quality of the pose hypotheses the contact areas between
both fragments are estimated. These contact areas can also
be propagated from a higher to lower tree level. The hierar-
chical dependencies between different hierarchy levels can
be used to accelerate the computation of contact areas. Fur-
thermore, the pose hypotheses can be recursively refined.
This implies that a high-level hypothesis may initiate mul-
tiple finer low-level hypotheses that are located close to the
high-level one.

For efficiency reasons, not all hypotheses can be propa-
gated to the lowest tree level (i.e. finest resolution). So we
have to reject as many hypotheses as possible in order to
prune the tree search early. But the question is: how can we
prevent the algorithm from rejecting coarse high-level hy-
potheses that might potentially turn out to be good at a lower
tree level? The answer is obvious: the computed measure of
quality (e.g. the amount of contact) of a high-level hypothe-
sis must always be a conservative upper bound of all under-
lying low-level hypotheses. Thus, we can prune the depth
traversal whenever the upper bound of a coarse high-level
hypothesis is worse than the last best match so far. Here ‘last
best match’ denotes the hypothesis at the lowest tree level
(leaf nodes of the cluster tree, where a confident contact es-
timation is possible). Consequently, we need a depth-first
search. Furthermore, we have to consider that a high-level
pose hypothesis is a representative of multiple underlying
low-level hypotheses. Thus, we cannot assume that a high-
level hypothesis is a single fixed pose, but rather have to
allow pose tolerances. This is the reason why we cannot use
simple relative transformations (i.e. homogeneous transfor-
mation matrices) for high-level pose hypotheses. This leads
to an alternative ‘transformation-free’ contact computation.

3.1 Transformation-Free Contact Computation

In this section we will show how we can estimate the amount
of contact of a pose hypothesis (at finest resolution) without
using an explicit relative transformation. First, we extend the
congruence relation of oriented point pairs (8) to oriented
point triples

(u,v,w) ∼= (q, r, s) :⇐⇒
|nuv pvw pwu| = |nqr prs psq | ∧ (u,v) ∼= (q, r)

∧(v,w) ∼= (r, s) ∧ (w,u) ∼= (s,q), (11)

where the first subcondition compares the relative sense of
orientation to avoid mirror symmetrical solutions, and all
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further subconditions verify whether the two oriented point
triangles are geometrically congruent. Given the pose hy-
pothesis (a,b, c,d) ∈ H, an oriented point e ∈ A is in tan-
gential contact with fragment B if there exists an oriented
point f ∈ B with (a, c, e) ∼= (b∗,d∗, f∗). (In this case, we can
omit the second subcondition of (11), since (a, c) ∼= (b∗,d∗)
is exactly the precondition of the pose hypothesis.) This
gives us an alternative way to compute the desired amount
of contact points |C| of (2).

Up to now, we did not care about fragment penetrations.
A classical method to ensure that the fragments do not pen-
etrate each other is to search for surface points of fragment
B that are inside fragment A or vice versa. Unfortunately,
this approach requires the calculation of ATB . Alternatively,
we suggest to search for points where the surfaces of A and
B are intersecting each other. These points are very simi-
lar to contact points, except that the surfaces do not touch
tangentially i.e. the surface normals are not opposed. Con-
sequently, we can find surface intersection candidates while
searching for contact points. A surface intersection occurs
whenever the contact point condition (a, c, e) ∼= (b∗,d∗, f ∗)
fails solely as a result of misaligned surface normals ne and
nf . Since this intersection detection might be unstable in the
presence of noise, we do not reject the hypothesis but sub-
tract some quality penalty for each intersecting point.

3.2 Cluster Tree Construction

Due to the combinatorial explosion of all possible contact
pairs and pose hypotheses, the theoretical concept of the last
section is far from being suitable for an efficient implemen-
tation. To overcome this problem, we decompose each point
set into a binary tree structure, which allows to apply an ef-
ficient tree matching strategy. The subdivision of the point
sets is based on a hierarchical divisive (top-down) cluster-
ing algorithm. A common practice is to cluster the set of 3D
point coordinates PA and PB . Instead of that, we suggest
the clustering of coordinates and surface normals simultane-
ously in the combined 6D-coordinate-normal space defined
in (1). The clustering algorithm works as follows:

1. Scaling of all surface normals, in such a way that their
variance roughly conforms to the coordinate variance.

2. Recursive splitting of each point set into two subsets.

The key point of our proposed matching algorithm is, that
it does not depend on a stable/unique clustering. The ap-
proach does not rely on a similar decomposition of both
fragments. Thus every fragment can be decomposed differ-
ently and independently from the others. Therefore, we ap-
ply a simple splitting rule that is based on the well-known
k-means clustering approach (Hartigan and Wong 1978) in
6D-space with k = 2. Thus, the points are divided into clus-
ters of similar location and surface orientation and rapidly

Fig. 4 Cluster tree example: first levels of the tree decomposition ap-
plied to a simple test fragment

decrease in size (both in coordinate and in orientation space)
when descending the tree. The 6D splitting scheme is partic-
ularly favorable because the coordinate variance, as well as
the normal orientation variance of each cluster are a cru-
cial factor for the pose tolerance of a high-level hypothesis
(will be discussed in Sect. 3) and consequently affect the
efficiency of the whole matching approach. An example is
given in Fig. 4, which shows the hierarchical clustering ap-
plied to a simple test fragment. As can be seen, our approach
divides the set of oriented points into subsets of similar ori-
entations and preferably splits along sharp edges. In the fol-
lowing the cluster tree nodes of fragment A are denoted as
A1, . . . ,Ak with root A1 := A and conforming to the rule
that each cluster node Ax is split into two children A2x and
A2x+1. The same applies to the cluster tree nodes B1, . . . ,Bl

of fragment B.

3.3 Matching of Cluster Trees

After generating the cluster trees up to a certain level,
the hierarchical matching can be performed. Our suggested
matching approach is similar to the theoretical concept dis-
cussed so far, but instead of using individual oriented points,
we now operate on oriented point clusters. Let us start with
some definitions on cluster pairs: a tangential contact be-
tween two clusters Aa and Bb implies that there exists at
least one tangential contact between two oriented points
a ∈ Aa and b ∈ Bb. We can construct a high-level pose
hypothesis by assuming a tangential contact between some
clusters of each fragment. More precisely, a high-level pose
hypothesis (Aa,Bb,Ac,Bd) is the assumption of a tangen-
tial contact between the clusters Aa and Bb as well as be-
tween the clusters Ac and Bd . A tangential contact between
two cluster pairs is only possible if their relative distances
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Fig. 5 A simplified illustration of two cluster pairs with overlapping
relation intervals. A high-level pose hypothesis implies the assumption
of a tangential contact between both pairs. Note that relmin and relmax
define 4D relation intervals, but for purposes of clarity only the mini-
mal and maximal cluster distance is visualized

and angles have overlapping intervals. To verify this con-
straint, we follow the idea of (8), where we compared 4D
relation vectors of oriented point pairs. But instead of ori-
ented point pairs, we now compare 4D relation intervals of
cluster pairs. A simplified illustration of two cluster pairs
with overlapping relation intervals if given in Fig. 5. Con-
sider min/max operators that are defined element-wise on
vector sets

min

⎧⎨
⎩

⎡
⎣x1

y1
...

⎤
⎦ , . . . ,

⎡
⎣xn

yn
...

⎤
⎦

⎫⎬
⎭ :=

⎡
⎣min{x1, . . . , xn}

min{y1, . . . , yn}
...

⎤
⎦ (12)

and max{. . .} analogous. Then, we can define the rela-
tion interval [relmin(Aa,Ac), relmax(Aa,Ac)] of a cluster
pair (Aa,Ac) by

relmin(Aa,Ac) := min{rel(u,v) | u ∈Aa,v ∈ Ac},
relmax(Aa,Ac) := max{rel(u,v) | u ∈ Aa,v ∈Ac}.

(13)

However, the recursive definition of all relation intervals
(between clusters at the same tree level)

relmin(Aa,Ac)

:=
{

rel(u,v) if Aa = {u} and Ac = {v} are singletons,

min{relmin(Ax,Ay) | �x/2
 = a, �y/2
 = c} else,

(14)

is computationally more efficient. The condition �x/2
 = a

just follows the indexing scheme of Sect. 3.2 and stands for
“cluster Ax is a child node of cluster Aa”. Now consider
comparison operators on relation vectors that again are ap-
plied element-wise⎡
⎣x1

...
xn

⎤
⎦ �

⎡
⎣y1

...
yn

⎤
⎦ :⇔ xi � yi for all i = 1, . . . , n. (15)

This enables us to compare the relation intervals and to set
up a congruence relation between cluster pairs

(Au,Av) ∼= (B∗
q,B∗

r ) :⇔
relmin(Au,Av) ≤ relmax(B∗

q,B∗
r ) ∧ relmax(Au,Av)

≥ relmin(B∗
q,B∗

r ),

which holds if the intervals overlap and if a tangential con-
tact is possible. An essential observation is, that this congru-
ence relation on cluster pairs becomes equivalent to the con-
gruence relation (8) on oriented point pairs when the cluster
size converges to zero. It follows that the set of valid high-
level pose hypotheses Ĥ can be specified similarly to the set
of (low-level) pose hypotheses (10) by

Ĥ := {(Aa,Bb,Ac,Bd) | (Aa,Ac) ∼= (B∗
b,B∗

d)}. (16)

Now, all valid high-level hypotheses can be propagated
down by descending the cluster trees. It is straightforward
to show that an invalid hypothesis at level i implies that all
hypotheses of their child clusters at level i + 1 are invalid
too (or in other words, if two cluster pairs can’t be put into
contact, then their children can’t be put into contact either).
This fact provides the opportunity to reject many hypotheses
long before the depth-first search reaches a leaf.

To estimate the quality of a high-level pose hypothesis,
we can use the approach suggested for low-level hypothe-
ses (11) and extend the congruence relation of cluster pairs
to cluster triples

(Au,Av,Aw) ∼= (B∗
q,B∗

r ,B∗
s ) :⇔

(Au,Av) ∼= (B∗
q,B∗

r ) ∧ (Av,Aw)

∼= (B∗
r ,B∗

s ) ∧ (Aw,Au) ∼= (B∗
s ,B∗

q).

Note that this definition does not care about the relative
sense of orientation and consequently accepts some mirror
symmetrical solutions. But this property is not a drawback
since mirror symmetrical solutions are sparse. In addition,
they can be rejected by means of (11) as soon as the traversal
reaches the leaf nodes. Given the high-level pose hypothesis
(Aa,Bb,Ac,Bd), a cluster Ae is potentially in contact with
fragment B if there exists a cluster Bf at the same tree level
with (Aa,Ac,Ae) ∼= (B∗

b,B∗
d ,B∗

f ). Once again, we can uti-
lize the fact that a cluster pair can only be in contact if their
parent clusters are in contact. The ratio of contact area to
the total surface area serves as quality criterion. If the upper
bound of the quality of a high-level hypothesis is worse than
the last best match, we truncate the tree descent and continue
to traverse the next higher branch.

Let us recapitulate and concretize the entire algorithm: In
a preprocessing step (see Algorithm 1 lines 1–7) we build up
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Algorithm 1 Preprocessing and Recursive Matching

a cluster tree for each fragment and use the recursive inter-
val definition (14) to store the relation intervals of each clus-
ter pair in a matrix. We initialize a list of contact pairs C(0)

with the root node pair and start the matching algorithm with
(A1,B1,A1,B1) as start hypothesis. The recursive match-
ing procedure (lines 8–20) verifies whether the contact hy-
pothesis is valid, estimates its contact quality, and descends
the trees alternately if the actual quality is potentially bet-
ter than the last best match. The contact quality (percentage
of surface area in contact) is estimated by iterating the list
of contact pairs C from one tree level to the next (lines 21–
30). The total contact area correspond to the sum of surface
area of clusters in the contact list C(i) at tree level i. The
surface area of each cluster can be precalculated and stored
simultaneous with the cluster tree construction.

4 Further Constraints and Improvements

Suppose we have n interface points between fragments A
and B. Since almost every pair of these points of frag-

ment A can be brought into contact with one correspond-
ing pair at fragment B, we obtain up to n2 valid hypothe-
ses that all result in nearly the same pose. To reduce this
huge amount of redundant hypotheses, we can constrain the
contact pair search to a small subset of uniformly distrib-
uted surface points on fragment A. This reduction can be
easily integrated by choosing a tree level at which the hy-
pothesis iteration is constricted to the left tree branch of
fragment A. Note that this hypothesis reduction does not in-
fluence the quality estimation, as we keep using all points
for contact pair computation. Furthermore, we can shrink
the cluster sizes slightly (particularly within the surface nor-
mal space) to eliminate outliers and to achieve an implicit
smoothing, which will speedup the algorithm and addition-
ally increases the accuracy in the presence of noise. On the
one hand these extensions can significantly increase the per-
formance, but on the other hand the global optimum is not
guaranteed to be found any longer. Up to this point, we did
not use any shape knowledge about the object. However, in
many applications, additional information about the parts
to be combined is available. This includes the knowledge
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Fig. 6 The knowledge of symmetry as prior to match a broken pelvis

of axes (e.g. Winkelbach et al. 2003), symmetries, geomet-
ric features like sharp curvature transitions from intact sur-
faces to broken ones (e.g. Papaioannou and Theoharis 1999),
or knowledge about the roughness of the fracture surface
(e.g. Huang et al. 2006). An integration of these constraints
into our approach is straightforward and can drastically limit
the search space and thus reduce execution time. Figure 6
illustrates the use of knowledge about mirror symmetry to
assemble mirror-symmetrical objects like a broken pelvis.
First, we make a mirror symmetrical copy A of the larger
fragment A. Then we invert the normals of fragment A and
match it with fragment A using our matching approach. Af-
ter that both fragments complement one another to a com-
plete pelvis. Thus, we can compute the plane of symme-
try and we get a ‘virtual container’, where the remaining
fragment B must be fitted in (which can be done using the
same matching approach). The result is a roughly assembled
pelvis. Since human pelvises are not perfectly symmetri-
cal, the symmetry-based rough alignment of the pelvic frac-
ture is not accurate enough. This is particularly relevant if
the fracture involve the sacral foramina (opening for sacral
nerves and arteries). However, the problem can be tackled
by a subsequent fine registration, where the rough align-
ment serves as basis for identifying the fracture surface. A
detailed discussion about matching of pelvic and femoral
fractures will be a subject of further publications.

5 Experimental Results and Conclusion

We have evaluated our new matching approach by means of
point sampled surfaces of many objects with artificial and
real fractures. Figure 7 shows ten representative test exam-
ples. The first two examples (a–b) are femoral (thigh bone)
fractures, which have been extracted from computer tomo-
graphic scans. The matching of bone fragments is a very
important field of application in computer aided fracture
reduction in surgery. A robust and fast matching method
promises better reposition results, a reduction of radiation

Table 1 Performance evaluation: execution time (time) in seconds at
tree level 12, angular inaccuracy (rot.), and translational inaccuracy
(trans.) in percent w.r.t. the objects diameter

time rot. trans.

Simple Fracture 3.26 2.48◦ 0.92%

Spiral Fracture 1.32 4.87◦ 2.35%

Plaster Cake 2.92 1.12◦ 2.07%

Venus A + B 2.62 1.55◦ 0.85%

Venus B + C 4.48 2.04◦ 0.74%

Bunny A + B 7.29 3.63◦ 0.71%

Bunny A + C 4.70 2.92◦ 0.95%

Connector Pair 5.45 1.87◦ 1.30%

Car Light 3.22 2.83◦ 1.52%

Pelvis 8.82 3.34◦ 3.61%

Beethoven 0.19 3.49◦ 1.90%

exposure of surgeons, and a reduction of surgery time and
cost (Winkelbach et al. 2003). The third example (c) are
two fragments of a broken plaster cake, which are cour-
tesy by Vienna University of Technology. Figure 8 shows
a detail view of the matched plaster cake fragments com-
pared to the rough alignment of the original data set. Two
further data sets (d–e) are artificially broken 3D models.
To provide realistic test conditions, we distorted the surface
point coordinates of these fragments with additive white
Gaussian noise (with an amplitude of 0.1% relative to the
maximal object diameter). The examples (f–g) show com-
binable assembly components, which suggest the applica-
tion of our approach in the field of assembly assistance
and computer aided design. Example (h) is a pelvic frac-
ture, which is also extracted from a computer tomographic
scan. In the unconstraint case the algorithm finds the solu-
tion with the largest contact area, which is not the desired
one. This occurs if the portion of the fracture interface is
small in comparison to the total surface area, and if the in-
tact object surface includes large smooth areas with com-
plementary regions on the counterpart. Therefore, we ap-
ply the symmetry constraints of Sect. 4 to match the broken
pelvis. Data set (i) illustrates the ability of the algorithm to
match partially overlapping surfaces (in this case to surfaces
of a Beethoven bust, which have been digitized from two
different viewing directions using a simple low-cost laser
scanner Winkelbach et al. 2006). And the last example (j)
shows a 3D scan of overlapping assembly components. By
using our approach to fit CAD-models into the scan, we can
simply estimate the 3D pose of the objects. This example
demonstrates the capability of our algorithm to solve the
well-known bin-picking-problem (a robot that should grasp
3D objects in a bin).

An evaluation of run-times and matching accuracies is
given in Table 1. Table 2 shows the preprocessing time
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Fig. 7 Some test fragments in initial pose and their pose after matching: (a) simple thigh bone fracture; (b) spiral fracture; (c) fragments of a
broken plaster cake; (d) broken Venus; (e) broken bunny; (f) IEC-320 power connector; (g) car light components; (h) pelvic fracture; (i) 3D scans
of a Beethoven bust; (j) 3D scan of overlapping assembly components and matched CAD-polyhedrons

Fig. 8 Detail view of the matched plaster cake fragments: (a) rough
alignment of the original data set provided by Vienna University of
Technology; (b) matching result of our approach

for generating a cluster tree and its corresponding rela-
tion interval matrix. All tests were performed on an AMD
Athlon 64/2.2 GHz based PC. For all test cases, adequate
matching results can be achieved in less than nine seconds.
The results of four case studies are plotted in Fig. 9. As
can be seen, the execution time increases nearly linearly
with the number of points. The accuracy is high, as long
as the sampling rate lies above a certain threshold (below
this threshold the matching fails due to an insufficient sur-
face approximation). The approach performs very well with
a variety of objects (3D fragments as well as industrial
components).
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Fig. 9 Matching results of four
examples in relation to the
number of surface points
(i.e. cluster tree depth)

Table 2 Preprocessing time (generation of one cluster tree and corre-
sponding relation interval matrix)

Tree depth 10 11 12 13 14 15

Time in seconds 0.86 0.96 1.10 1.39 2.23 5.06

To analyze the effect of noise we applied the matching
algorithm on an artificial broken bolder with different noise
level. Figure 10 shows the broken boulder with no noise (a),
and with 100% noise level (b). Here 100% noise level stands
for an additive Gaussian noise with a standard deviation that
equals the average distance of adjacent surface points. Ta-
ble 3 shows an evaluation of run-times and matching accu-
racies. As expected, the matching accuracy decreases with
the magnitude of noise. But the algorithm always finds a so-
lution that is close to the desired one, which confirms the
robustness against noise. Furthermore it can be seen that the

Table 3 Effect of a varying noise level (a noise level of 100% cor-
responds to an additive Gaussian noise with a standard deviation that
equals the average distance of adjacent surface points): execution time
(time) in seconds at tree level 13, angular inaccuracy (rot.), and trans-
lational inaccuracy (trans.) in percent w.r.t. the objects diameter

Noise level time rot. trans.

0% 2.83 2.70◦ 1.15%

10% 3.53 2.89◦ 0.68%

20% 4.11 3.74◦ 2.32%

30% 6.44 3.83◦ 2.08%

40% 7.85 4.83◦ 3.27%

50% 14.20 5.27◦ 0.61%

100% 95.78 8.20◦ 2.17%

execution time increases with the magnitude of noise. This
can be explained by the fact that the coordinate and normal
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Fig. 10 Broken boulder in initial pose and pose after matching: (a) no
noise; (b) 100% noise level (additive Gaussian noise with a standard
deviation that equals the average distance of adjacent surface points)

variances of each ‘noisy cluster’ is higher, hence rejection of
worse or invalid pose hypothesis must take place at a lower
tree level.

Still open is the problem how to extend our approach with
regard to matching of multiple fragments. It is obvious, that
we can match multiple fragments by a pair-wise combina-
tion of two fragments (as shown), but the result may not be
optimal in a global sense. One possible solution is a sub-
sequent global pose optimization. Papaioannou et al. have
presented a solution to this problem using global optimiza-
tion of pairwise matching (Papaioannou et al. 2000). How-
ever, the outstanding efficiency of our matching approach
can be regarded as an essential step towards an efficient
multi-fragment matching.
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