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Abstract This article presents a novel approach to marker-
less real-time pose recognition in a multicamera setup. Body
pose is retrieved using example-based classification based
on Haar wavelet-like features to allow for real-time pose
recognition. Average Neighborhood Margin Maximization
(ANMM) is introduced as a powerful new technique to train
Haar-like features. The rotation invariant approach is imple-
mented for both 2D classification based on silhouettes, and
3D classification based on visual hulls.

Keywords Pose estimation · Pose recognition ·
Silhouettes · 3D hulls · LDA · ANMM · Haarlets

1 Introduction

Posture recognition has received a significant amount of
attention given its importance for human-computer inter-
faces, teleconferencing, surveillance, safety control, anima-
tion, and several other applications. The context of this work

M. Van den Bergh (�) · L. Van Gool
Computer Vision Laboratory, ETH Zurich, Zurich, Switzerland
e-mail: vamichae@vision.ee.ethz.ch

L. Van Gool
e-mail: vangool@vision.ee.ethz.ch

E. Koller-Meier · L. Van Gool
ESAT-PSI/VISICS, Katholieke Universiteit Leuven, Leuven,
Belgium

E. Koller-Meier
e-mail: ebmeier@vision.ee.ethz.ch

L. Van Gool
e-mail: Luc.VanGool@esat.kuleuven.be

is a virtual reality system where the user walks on an omni-
directional treadmill, and can interact with the virtual world
using body pose commands. For this application a marker-
less pose detection subsystem has to be fast and robust for
detecting a predefined selection of poses.

We present an example-based technique for real-time
markerless rotation-invariant pose recognition using Aver-
age Neighborhood Margin Maximization (ANMM) (Wang
and Zhang 2007) and Haar wavelet-like features (Viola and
Jones 2001). The latter will be called Haarlets from now on
for brevity.

The setup consists of a 4 m × 4 m working space on
which the user can walk, and several cameras placed around
this working space. We propose both a 2D system based on
silhouettes of the user, which can work with 1 or more cam-
eras, and a 3D system based on visual hulls, which works
with multiple cameras. Silhouettes are extracted based on
color (Griesser et al. 2005). The visual hulls are extracted
based on these silhouettes and using voxel carving and a
fixed lookup table (Kehl et al. 2005).

In example-based approaches, observations are com-
pared and matched against stored examples of human body
poses. This is done here in real-time using Haarlets. ANMM
is introduced as a powerful approach to train these Haarlets.
We will show that using ANMM yields higher performance
than Linear Discriminant Analysis (LDA) (Van den Bergh
et al. 2008), and better performance than AdaBoost (Viola
and Jones 2001), which can only train 2D Haarlets. Where
classic AdaBoost runs into memory issues when training
3D rather than 2D Haarlets (Ke et al. 2005), the weakened
memory requirements of ANMM allow for a straightfor-
ward implementation of a 3D pose detector based on 3D
Haarlets. The benefit of classifying 3D hulls rather than sil-
houettes, is that the orientation of the hulls can be normal-
ized in a straightforward manner. We evaluate the 2D and
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3D based systems for performance and complexity of the
system setup.

2 Background

Example-based The introduction above contains a number
of choices that have been made. The first is one in favour of
example-based rather than model-based techniques. Model-
based approaches typically rely on articulated 3D body
models (Bregler and Malik 1998; Delamarre and Faugeras
1999; Gavrila and Davis 1996; Kakadiaris and Metaxas
2000; Papageorgiou et al. 1998; Sminchisescu and Triggs
2003; Yamamoto et al. 1998). In order to be effective they
need to have a high number of degrees of freedom, in
combination with non-linear, anatomical constraints. Con-
sequently, they require time-consuming per-frame optimiza-
tion and the resulting trackers are too slow for real-time
approaches. They are also very sensitive to fast motions
and segmentation errors. To relieve the speed problem 2D
model-based approaches have been proposed. Baumberg
and Hogg (1994) use active shape models to track pedestri-
ans, however pose is not recovered. Ioffe and Forsyth (2001)
infer likely body configurations using a tree model based on
candidate body parts and feature points to perform coarse
2D tracking in a single camera. Still, these systems remain
only near real-time.

In the example-based approaches, instead of tracking
articulated body models, observations are compared and
matched against stored examples of human body poses.
Mori and Malik (2002) propose a technique where exam-
ple 2D views of human body poses are stored together
with manually marked and labeled positions of body joints.
Poses can then be recovered using shape context match-
ing. Rosales and Sclaroff (2000) train a neural network to
map example 2D silhouettes to 2D positions of body joints.
Shakhnarovich et al. (2003) outline a framework for fast
pose recognition using parameter sensitive hashing. In their
framework image features such as edge maps, vector re-
sponses of filters and edge direction histograms can be used
to match silhouettes against examples in a database.

These example-based methods benefit from the fact that
the set of typical or interesting poses is far smaller than the
set of anatomically possible ones, which is good for robust-
ness. Also, not needing an explicit parametric body model
makes them more amenable to real-time implementation and
application to the pose analysis of other structures than hu-
man bodies, e.g. animals.

Silhouettes and Visual Hulls Silhouettes and their derived
visual hulls seem to capture the essence of human body
poses well. The model-based approach proposed by Dela-
marre and Faugeras (1999), as well as the example-based

method proposed by Rosales and Sclaroff (2000), are other
examples of silhouette-based approaches, however they are
not real-time. There are also some examples of methods
based on 3D hulls of the human body. Mikíc et al. (2001)
and Cheung et al. (2003) propose model-based tracking ap-
proaches using 3D voxel reconstructions, but they are not
real-time either. Cohen and Li (2003) propose a near-real-
time example-based approach where 3D hulls are matched
by a support vector machine (SVM).

LDA and Haarlets As the survey by Yang et al. (2002)
points out, LDA provides superior performance to SVMs
in many vision tasks. Belhumeur et al. (1997) have proven
LDA to be superior to principal component analysis (PCA)
for a similar task of face recognition, as can be expected
given that LDA is a kind of refined PCA. LDA is fre-
quently used in face recognition (Belhumeur et al. 1997;
Yang et al. 2002; Zhao et al. 1998), but to the best of our
knowledge it has not yet been applied to pose recognition.
Wang and Zhang (2007) present ANMM as a variation of
LDA which has higher performance and has fewer limita-
tions.

Moreover, ANMM, which is rather slow, lends itself
well to combine its strength with the speed of Haarlets.
Indeed, fast integral image based Haarlets can be used to
approximate the ANMM components. Haarlets were intro-
duced by Papageorgiou et al. (1998), and Ren et al. (2005)
trained Haarlets for pose recognition using AdaBoost. Our
approach, which approximates ANMM features with Haar-
lets, provides a multi-class alternative to AdaBoost. As it
can deal with a much larger number of candidate Haarlets in
the training set, our method can also be extended to 3D, vol-
umetric Haarlets for the classification of 3D voxel hulls. Of
those there are many more than of the 2D Haarlet type. The
main advantages of switching to 3D are rotation invariance
and increased robustness. In 3D, the speed advantage of the
Haarlet approximation becomes even more apparent and is
crucial to keep the system real-time.

3 Classification

In example-based approaches, observations are compared
and matched against stored examples of human body poses.
In the 2D approach we explain in this article, these obser-
vations consist of silhouettes of the user. These silhouettes
are extracted from videos of several fixed cameras around
the person. To extract the silhouettes from the camera views,
we use the background subtraction algorithm by Griesser et
al. (2005). Some examples of such silhouettes are shown in
Fig. 1. The extracted silhouettes are normalized to a fixed
resolution and position, by cutting a square bounding box
around the top and bottom pixels of the silhouette, and cen-
tered horizontally to the center of gravity of the silhouette.
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Therefore, it is possible for the user to change position in the
scene, without significantly affecting the resulting silhou-
ettes. The images containing the silhouettes from the dif-
ferent camera views are concatenated to one single image,
which the classifier can process, as illustrated in Fig. 2.

The 3D approach aims to classify poses based on 3D
hulls of the user, rather than silhouettes. Several cameras are
placed around the person. Any number of cameras can be
chosen, but it is best to deploy sufficient cameras to make
a good 3D voxel reconstruction. Using background subtrac-
tion (Griesser et al. 2005) the silhouettes are extracted from
each camera view. These silhouettes are then used for the
3D voxel reconstruction based on the method proposed by
Kehl et al. (2005). A lookup table (LUT) is created to map
each pixel in each camera view to a projection into the voxel
space. A voxel carving technique then generates the recon-
structed hull. These resulting hulls are normalized to a fixed
resolution, rotation and position, which allows for the sub-
ject to not only change the position, but also the orientation.
An example of such a 3D hull is shown in Fig. 3.

In Fig. 4 the basic classifier structure is shown, where
T denotes a transformation which is found using Average
Neighborhood Margin Maximization (ANMM) (Wang and
Zhang 2007). This transformation projects the input samples
(silhouettes or hulls) onto a lower dimensional space where
the different pose classes are maximally separated and easier
to classify. Using a nearest neighbors (NN) approach these
projected samples are matched to stored poses in a database
and the closest match is the output of the system. In order to
improve the speed of the system, the transformation T can
be approximated using Haarlets, which will be explained in
Sect. 4.

In this classifier, each sample is classified independently
from the previous ones. The training samples are divided
into different pose classes. Depending on the 2D or 3D case,

Fig. 1 Examples of silhouettes which are used for classification. Note
the holes in the segmentation and the artifacts due to reflections on the
floor

the training examples consist of silhouettes or hulls. The
pixel, respectively voxel values of these silhouettes or hulls
are stored in an n-dimensional vector, where n is the total
number of pixels, respectively voxels in the input sample.
The goal of the training step is to find a linear transforma-
tion T which will project the input samples onto a lower
dimensional space where they are maximally separated.

3.1 Linear Discriminant Analysis (LDA)

The idea is to find a linear transformation such that the
classes are maximally separable after the transformation
(Fukunaga 1990). The class separability can be measured
by the ratio of the determinant of the between-class scatter
matrix SB and the within-class scatter matrix SW . The op-
timal projection Wopt is chosen as the transformation that
maximizes the ratio,

Wopt = arg max
W

|WSBWT |
|WSWWT | , (1)

and is determined by calculating the generalized eigenvec-
tors of SB and SW . Therefore,

WT
opt = [w1w2 . . .wm], (2)

where wi are the generalized eigenvectors of SB and SW cor-
responding to the m largest generalized eigenvalues λi . The
eigenvalues represent the weights of the different eigenvec-
tors, and are stored in a diagonal matrix D, while the eigen-
vectors wi represent characteristic features of the different
pose classes.

A solution for the optimization problem in (1) is to com-
pute the inverse of SW and solve an eigenproblem for the
matrix S−1

W SB (Fukunaga 1990). Unfortunately SW will be
singular in most cases, because the number of training exam-
ples is smaller than the number of dimensions in the sample
vector, and thus inverting SW will be problematic. There are
several solutions proposed to circumvent this small sample
size problem, such as direct LDA (Yang et al. 2000), but they
don’t yield a significant performance increase over LDA.

3.2 Average Neighborhood Margin Maximization
(ANMM)

LDA aims to pull apart the class means while compacting
the classes themselves. This introduces the small sample

Fig. 2 Example of 3 camera views, foreground-background segmentation, and their concatenation to a single normalized sample
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Fig. 3 Example of a reconstructed 3D hull of the user

Fig. 4 Basic classifier structure. The input samples (concatenated sil-
houettes or 3D hulls) are projected with transformation T onto a lower
dimensional space, and the resulting coefficients are matched to poses
in the database using nearest neighbors (NN)

Fig. 5 An illustration of how ANMM works. For each sample, within
a neighborhood (marked in gray), samples of the same class are pulled
towards it, while samples of a different class are pushed away, as shown
in the left. The figure on the right shows the data distribution in the
projected space

size problem which renders the within-class scatter matrix
singular. Furthermore LDA can only extract c − 1 features
(where c is the number of classes), which is suboptimal for
many applications.

ANMM, as proposed by Wang and Zhang (2007), is a
similar approach which avoids these limitations. For each
data point, ANMM aims to pull the neighboring points with
the same class label towards it as near as possible, while si-
multaneously pushing the neighboring points with different
labels away from it as far as possible. This principle is illus-
trated in Fig. 5.

Instead of using the between-class scatter matrix SB and
the within-class scatter matrix SW , ANMM defines a scat-
terness matrix as,

S =
∑

i,k:xk∈N e
i

(xi − xk)(xi − xj )
T

|N e
i | , (3)

and a compactness matrix as,

C =
∑

j :xj ∈No
i

(xi − xk)(xi − xj )
T

|N o
i | , (4)

where N o
i is the set of the n most similar data which are in

the same class as xi (n nearest homogeneous neighborhood)
and where N e

i is the set of the n most similar data which are
in a different class than xi (n nearest heterogeneous neigh-
borhood). The ANMM eigenvectors Wopt can then be found
by the eigenvalue decomposition of S − C.

ANMM introduces 3 main benefits compared to tradi-
tional LDA: it avoids the small sample size problem since it
does not need to compute any matrix inverse; it can find the
discriminant directions without assuming a particular form
of class densities (LDA assumes a Gaussian form); and fi-
nally much more than c − 1 feature dimensions are avail-
able. Some examples of resulting ANMM eigenvectors are
shown in Fig. 6.

4 Haarlet Approximation

In order to improve the speed of the system, the ANMM
transformation can be approximated using Haarlets, as
shown in Fig. 7. In this case the transformation T is ap-
proximated by a linear combination C of Haarlets. An op-
timal set of Haarlets is selected during the training stage
and stored. Computing this stored set of features on the in-
put image results in a number of coefficients. Transforming
these coefficients with C results in new coefficients, which
approximate the coefficients which would result from the
transformation T on the same input data, and subsequently
can be used for classification in the same manner as in the
pure ANMM case.

Haarlets are very popular for real-time object detection
and real-time classification. The ANMM approximation ap-
proach provides a new and powerful method for selecting or
training Haarlets. Especially in the 3D case, where existing
methods fail because of the large amount of candidate Haar-
lets (Ke et al. 2005), our approach makes it possible to train
3D Haarlets selecting from the full set of candidates.

4.1 2D Haarlets

Papageorgiou et al. (1998) proposed a framework for ob-
ject detection based on Haarlets, which can be computed
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Fig. 6 The first 4 eigenvectors
for the frontal view only, after
training for a 12 pose set, using
the ANMM algorithm

Fig. 7 Classifier structure
illustrating the Haarlet
approximation. The pre-trained
set of Haarlets are computed on
the input sample (silhouette or
hull). The approximated
coefficients are computed as a
linear combination C of the
Haarlet coefficients. The
contents of the dotted line box
constitute an approximation of
T in Fig. 4

Fig. 8 The set of possible Haar-like feature types

with a minimum of memory accesses and CPU operations
using the integral image. Viola and Jones (2001) used Ad-
aBoost to select suitable Haarlets for object detection. The
same approach was used for pose recognition by Ren et al.
(2005). In our approach similar Haarlets are used, however
we introduce a new selection process based on ANMM. The
Haarlets are selected to approximate Wopt as a linear com-
bination thereof. The particular set of Haarlets used here,
was carefully selected by Lienhart and Maydt (2002) and is
shown in Fig. 8.

Besides the feature type, the other parameters are width,
height and position in the image. All combinations are con-
sidered. At a resolution of 24 × 24 pixels and using 3 cam-
eras views, there are over a million candidate Haarlets. The
best Haarlets are obtained from this set by convolving all
candidate Haarlets with the vectors in Wopt and select-
ing those with the highest coefficients, i.e. the highest re-
sponse magnitudes. This score is found for each candidate
Haarlet by calculating the dot product of that Haarlet with
each ANMM vector (each row in Wopt ), and calculating the
weighted sum using the weights of those ANMM vectors, as
stored in the diagonal matrix D (i.e. the eigenvalues serve
as weights). Thus, the entire ANMM eigenspace is approx-
imated as a whole, giving dimensions with a higher weight
higher priority when selecting Haarlets. This dot product can
be computed very efficiently using the integral image.

However, most selected Haarlets will be redundant un-
less Wopt is adapted after each new Haarlet is selected be-
fore choosing the next. Let F be a matrix containing the
already selected Haarlets in vector form, where each row of
F is a Haarlet. F can be regarded as a basis that spans the
feature space that can be represented by the Haarlet vectors
selected so far. Basically, in our iterative solution toward the
final Wopt , we don’t want the next W ′

opt to span space that is
already represented by F . Let N be a basis of the null space
of F ,

N = null(F ). (5)

N forms a basis that spans everything that is not yet de-
scribed by F . To obtain the new optimal transformation we
project D · Wopt onto N , where D is the diagonal matrix
containing the weights of the eigenvectors wi in Wopt .

D′ · W ′
opt = D · Wopt · N · NT , (6)

or,

W ′
opt = D · D′−1 · Wopt · N · NT , (7)

where D′ is a diagonal matrix containing the new weights
λ′

i of the new eigenvectors wi in W ′
opt ,

λ′
i =

∥∥∥λi · wi · N · NT
∥∥∥ . (8)

Every time a new Haarlet is selected based on W ′
opt ,F is up-

dated accordingly and the whole process is iterated until the
desired number of Haarlets is selected. Examples of selected
Haarlets are shown in Fig. 9.
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Fig. 9 The top figure shows one ANMM vector, featuring the over-
head, profile and frontal views side by side. The bottom figure shows
the Haarlet approximation of this ANMM vector, using the 10 best
Haarlets selected to approximate Wopt . It can be seen how the Haarlets
look for arms and legs in certain areas of the image

After the ANMM vectors have been computed and the
Haarlets have been selected to approximate them, the next
step is to actually classify new silhouettes. This process uses
the Haarlets to extract coefficients from the normalized sil-
houette image, and then computes a linear combination of
these coefficients to approximate the coefficients that would
result from the ANMM transformation. An example of such
an approximated ANMM feature vector is shown in Fig. 9.
The resulting coefficients can be used to classify the pose
of the silhouette. Given the coefficients h extracted with
the Haarlets, the approximated ANMM coefficients l can be
computed as

l = C · h, (9)

where C is an m × l matrix where m is the number of
ANMM eigenvectors and l is the number of Haarlets used
for the approximation. C can be obtained as the least squares
solution to the system

Wopt = C · FT . (10)

The least squares solution to this problem yields

C = Wopt ·
((

FT F
)−1

FT

)T

. (11)

C provides a linear transformation of the feature coefficients
h to a typically smaller number of ANMM coefficients l.
This allows for the samples to be classified directly based

on these ANMM coefficients, whereas an AdaBoost-based
method needs to be complemented with a detector cascade
(Viola and Jones 2001), or with a hashing function (Ren et
al. 2005). Finally, using nearest neighbors search, the new
silhouettes can be matched to the stored examples, i.e., the
mean coefficients of each class.

4.2 Introduction of 3D Haarlets

The concepts of an integral image and Haarlets can be ex-
tended to three dimensions. The 3D integral image, or inte-
gral volume, is defined as,

ii(x, y, z) =
∑

x′≤x,y′≤y,z′≤z

i(x′, y′, z′). (12)

Using the integral volume, any rectangular box sum can be
computed in 8 array references as shown in Fig. 10. Ac-
cordingly, the integral volume makes it possible to construct

Fig. 10 The sum of the voxels within the gray cuboid can be computed
with 8 array references. If A, B, C, D, E, F, G and H are the integral
volumes at shown locations, the sum can be computed as (B + C + E
+ H) − (A + D + F + G)

Fig. 11 The proposed 3D Haarlets. The first 15 features are extruded
versions of the original 2D Haarlets in all 3 directions, and the other 2
are true 3D center-surround features
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Table 1 Outline of the training algorithm for the 3D approach

Input: training set of 3D hulls separated into pose classes.

Output: set of n3D Haarlets, C.

1. Read and normalize the hulls.

2. Apply ANMM on training data to obtain Wopt and D. Set

initial W ′
opt and D′ to Wopt and D respectively.

3. Repeat until n Haarlets are selected:

• Calculate all candidate features on the vectors in W ′
opt ,

weighted with D′.
• Select the Haarlet with the highest response

magnitude, add it to F .

• Calculate N , null space of F.

• Update W ′
opt and D′,

D′ · W ′
opt = D · Wopt · N · NT .

4. Compute approximation C using

C = Wopt · ((F T F )−1FT )T .

Table 2 Outline of the classification algorithm

Input: 3D hull.

Output: pose.

1. Calculate n feature coefficients and put them in vector h.

2. Calculate approximated ANMM feature coefficients

l = C · h

3. Find nearest neighbor match between l and stored examples.

volumetric box features similar to the Haarlets in Viola and
Jones (2001). We introduce the 3D Haarlet set as illustrated
in Fig. 11. Besides in feature type, the Haarlets can vary in
width, height, depth and position inside the voxel space. At
24 × 24 × 24 resolution, this results in hundreds of millions
of candidate features. The Haarlet selection process and ap-
proximation are similar to what is explained in the 2D case
in Sect. 4.1. For clarity, the process is summarized in Ta-
ble 1.

The 3D Haarlets require twice as much memory accesses
and computations as their 2D counterparts. However, they
often contain more information and are more efficient in rep-
resenting body parts. Whereas the 2D approach would need
a Haarlet in each camera view, one 3D Haarlet might be suf-
ficient. Some examples of the approximated ANMM feature
vectors using the selected 3D Haarlets are shown in Fig. 12.

After the ANMM transformation is computed and 3D
Haarlets are selected to approximate that transformation, the
next step is to classify new hull samples. The classification
is analogous to the 2D approach. Coefficients are extracted
for each 3D feature, and then a linear combination of those
coefficients is made to approximate the original ANMM
transformation. The outline of the classification algorithm
is shown in Table 2.

5 Rotation Invariance

The pose classification problem becomes quite a bit more
difficult when the subject can not only change position
freely, but also orientation. While a change of position can
be normalized easily, in the 2D case it is impossible to nor-
malize the rotation of the subject. In the 3D approach how-
ever, it is possible to normalize the rotation of the 3D hulls
before classifying them.

The orientation of the user is estimated using a simple
overhead tracker. Our visual tracker is based on a color-
based particle filter (Nummiaro et al. 2003). The tracker
uses a set of particles to model the posterior distribution
of the likely state of the subject. During each iteration of
the tracker, a set of new hypotheses is generated for the
state by propagating the particles using a dynamic model.
This generates a prior distribution of the state, which is then
tested using the observation of the image. A person is mod-
eled by a circle and an ellipse, representing the head and
shoulders respectively. The head is modeled separately to
deal with changes in perspective. As the head is closer to
the overhead camera than the shoulders, its relative position
will change depending on the position of the person, and
thus change the appearance of the shoulder/head region in
the overhead camera. The color distributions of these two
regions are compared to a stored model histogram to yield
the likelihood for the state of each particle. An example of
the overhead tracker tracking the orientation of a person is
shown in Fig. 13.

The tracker is initialized automatically by fitting an el-
lipse to a silhouette of the user at the beginning of the al-
gorithm. The estimation of the orientation of the person is
defined as the angle of the minor axis of this ellipse. Dur-
ing the initialization, the user is assumed to be in the middle
of the working volume and facing a certain direction, so that
the polarity of the orientation can be determined. The tracker
runs at real-time and continuously provides the orientation
of the person.

5.1 3D Approach

Normalizing the rotation of the hull consists of measuring
the angle of its orientation, and then rotating it to a standard
orientation. The goal is that regardless of the orientation of
the subject, the resulting normalized hull will look the same,
as shown in Fig. 14.

5.2 2D Approach

As the 2D classifier cannot classify the pose of a person with
changing orientation as is, it is impossible to compare the
3D directly to the 2D approach. It is however possible to re-
design the 2D system to classify different orientations. The
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Fig. 12 The first row shows 3
example vectors from an
ANMM eigenspace. The second
row shows the approximation
using not more than 10 Haarlets.
The first example shows how a
feature is selected to inspect the
legs, while the last example
shows a feature that
distinguishes between left and
right arm stretched out forward

Fig. 13 Example of the tracker tracking the orientation of a person

angle of orientation of the subject can be measured from the
top view camera as in Sect. 5.1. Then, the training samples
are divided into 36 individual bins, depending on the an-
gle of orientation. For each bin a separate 2D classifier is
trained. In the classification stage, depending on the mea-
sured angle of orientation, the appropriate 2D classifier is
used. This results in a pseudo-rotation invariant implemen-
tation.

6 Experiments

Our test setup consists of 6 cameras connected to 6 stan-
dard 3 GHz PCs which are placed in a network. One cam-
era is placed overhead, while the other cameras are placed
sideways around the working volume. The working area

has a cluttered background, and the floor has some reflec-
tions, so the resulting hulls contain some noise and holes.
Using this setup 6000 samples were recorded of a user in
50 unique poses and in varying orientations. We defined 50
pose classes as shown in Fig. 15. The silhouettes are ex-
tracted from the camera views and then the position and size
are normalized resulting in silhouettes of 24×24 pixels. The
hulls are reconstructed and then the position, size and orien-
tation are normalized resulting in 24 × 24 × 24 voxel hulls.
Of these 6000 samples, one third are used for training, and
the remaining two thirds are used for validation. Classifica-
tion is run on a single 3 GHz PC.

In the first experiment we show that ANMM is indeed
better than LDA at classifying 3D hulls over a large number
of poses. Using up to 50 pose classes, the test hulls are clas-
sified using both the LDA and the ANMM approach. When
using less than 50 pose classes, a random selection of pose
classes is made, and the results are averaged over 5 random
samplings of pose classes. The results are shown in Fig. 16.
ANMM is more consistent and maintains high correct clas-
sification rates of around 97% even when all 50 pose classes
are used. The LDA-based approach drops down to 80% cor-
rect classification.

In a second experiment we compare classifying 3D hulls
to classifying 2D silhouettes, as shown in Fig. 17. The 3D
classification is based on 3D hulls which are reconstructed
from 6 cameras and results in around 97% correct classifica-
tion over 50 pose classes. The 2D classification is based on
2D silhouettes which are taken from 6 camera views, and
using 36 orientational bins results in around 95% correct
classification. Using only 3 camera views, the 2D system
achieves around 91% correct classification. The 3D hull-
based system indeed has better classification rates than the
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Fig. 14 (Top) Examples of
different orientations of the user,
resulting in (bottom) similar
rotation-normalized voxel hulls

2D silhouette-based system. However, using less hardware
(3 cameras and 1 PC) it is still possible to get high correct
classification rates using the 2D silhouette-based approach.

In a third experiment we evaluate how many Haarlets are
needed to approximate the ANMM transformation. The re-
sults of this experiment are shown in Fig. 18. It shows that
the 3D case converges faster than the 2D case, which makes
sense as 3D Haarlets contain more information than their 2D
counterparts. Both the 2D and 3D cases converge to their op-
timum with about 100 Haarlets. The 3D approach is able to
produce reasonable results with only 15 Haarlets.

In this experiment we also attempted to train a 2D clas-
sifier using AdaBoost, using the same training and test data
as in the previous experiment. As AdaBoost is a 2-class ap-
proach and we are using 50 classes, a trick is applied similar
to Ren et al. (2005) to turn the problem into a 2-class prob-
lem. The data is rearranged in two classes as pairs of nor-
malized silhouette images: matching pose (positive training
examples) and non-matching pose (negative training exam-
ples). This results in hundreds of thousands of training ex-
amples, so a resampling step is made as in Ren et al. (2005)
to reduce the number of training samples in order for all the
data for the AdaBoost algorithm to be able to fit in the mem-
ory of the computer.

The classification results using the features trained with
AdaBoost are not as good as the ANMM-based approach.
There are several reasons for this. Firstly, the reductions in
the resampling step which are needed to fit the data in mem-
ory are rather drastic, discarding a lot of training informa-
tion. Another issue is that there seems to be overfitting as
we increase the number of Haarlets, as the nearest neighbor
search becomes too high in dimensionality. In the ANMM
case this problem is solved by reducing the number of di-
mensions by approximating the original ANMM transfor-
mation. In Ren et al. (2005) this problem is solved by in-
troducting a hashing function to reduce the number of di-
mensions in the search space. An alternative might be to use
an algorithm that extends the boosting approach to a multi-

class setting, which to our knowledge have not been applied
to pose classification.

As pointed out by Ke et al. (2005), the above mentioned
memory constraint problems render it out of the question to
train 3D Haarlets using a method based on AdaBoost.

In the last experiment we demonstrate the speed im-
provement in using 3D Haarlets to approximate the ANMM
transformation. The results of this experiment are shown in
Fig. 19. We show how the computation time increases al-
most linearly for the ANMM transformation as the num-
ber of pose classes are increased. This is because increasing
the number of pose classes increases the number of ANMM
feature vectors almost linearly. Using the ANMM approxi-
mation, the integral volume of the hull has to be computed
once, after which computing additional Haarlets coefficients
requires virtually no computation time (relative to the time
of computing the integral volume).

As the classifier is part of a bigger online system, we have
to add computation time for segmentation, reconstruction
and sending the data over the network. in this case 50 ms
for classification in the pure ANMM case is too slow, while
the 3 ms Haarlet approximation allows for a real-time im-
plementation of the pipeline.

7 Summary and Conclusion

This work introduced ANMM as a new and powerful ap-
proach to training Haarlets for human pose classification.
This approach was implemented and tested for pose recog-
nition on 2D silhouettes, and compared to classic AdaBoost.
The approach was extended to classifying 3D voxel hulls,
and consequently 3D Haarlets were introduced.

First, this article provides a proof-of-concept that Haar-
lets can be trained using ANMM, introducing interesting ad-
vantages as it is a true multi-class approach, and it has vir-
tually no memory restrictions on the resolution or number
of candidate Haarlets to train from. It also offers a complete
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Fig. 15 The 50 pose classes
used in this article, differing by
arm directions
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Fig. 16 Correct classification
rates comparing LDA and
ANMM for the classification of
3D hulls

Fig. 17 Correct classification
rates comparing classification
based on 2D silhouettes and 3D
hulls using ANMM

solution: after the Haarlets are selected they are used to ap-
proximate the ANMM transformation, which allows for the
samples to be classified directly, whereas AdaBoost needs to
be complemented with a detector cascade (Viola and Jones
2001), or with a hashing function (Ren et al. 2005). The
second contribution of this article is the extension of the

ANMM-based algorithm to three dimensions and the in-
troduction of 3D Haarlets for pose recognition. Unlike Ad-
aBoost, training can be based on the full set of candidate 3D
Haarlets. The 3D approach has new, interesting properties
such as rotation invariance and increased performance. The
result is pose classification with at least comparable perfor-
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Fig. 18 Correct classification rates using up to 100 Haarlets for clas-
sification. Solid line: shows correct classification rates using ANMM
approximation with 3D Haarlets. Dashed line: correct classification

rates using ANMM approximation with 2D Haarlets. Dashed-dotted
line: correct classification rates using 2D Haarlets trained with Ad-
aBoost

Fig. 19 (Color online)
Classification times in
milliseconds for the pure
ANMM classifier (blue) and the
classifier using 100 3D Haarlets
to approximate the ANMM
transformation (red)
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mance when compared to the state-of-the-art, but at interac-
tive speeds.

The methods described in this article can be ported to
other classification problems as well, such as hand gesture
recognition, object detection and recognition, face detection
and recognition, and even event detection where the 3rd di-
mension of the 3D Haarlets is a time dimension.
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