
  

  
Abstract— This paper presents an overview of investigations 

into the role of computer vision technology in developing safer 
automobiles. We consider vision systems which can not only look 
out of the vehicle to detect and track roads, avoid hitting 
obstacles or pedestrian, but simultaneously look inside the 
vehicle to monitor the attentiveness of the driver and even 
predict her intentions. In this paper, a systems-oriented 
framework for developing computer vision technology for safer 
automobiles is presented. We will consider three main 
components of the system, driver, vehicle, and vehicle surround. 
We will discuss various issues and ideas for developing models 
for these main components as well as activities associated with 
the complex task of safe driving. The paper includes discussion of 
novel sensory systems and algorithms for capturing not only the 
dynamic surround information of the vehicle but also the state, 
intent and activity patterns of drivers. 
 

Index Terms— Intelligent vehicles, Driver support systems, 
Real-time machine vision systems, Active safety. 
 

I. INTRODUCTION: RESEARCH MOTIVATION AND SCOPE 
RAFFIC related accidents are recognized as a serious 
and growing problem with global dimensions. 

According to a recent study by World Health Organization 
(WHO) mentions that annually over 1.2 million fatalities and 
over 20 million serious injuries occur in the world [1]. 
Enhancement of traffic safety is pursued with as a high 
priority item not only by various government agencies such as 
National Transportation Safety Administration (NTHSA) [2], 
but also by most major automobile manufactures. University 
based researchers are also contributing to this important 
mission. In this paper, we present an overview of a selected 
research studies conducted in our research laboratory, where 
novel concepts and systems based upon computer vision 
technology are developed for enhancement of vehicle safety. 

Recognition of computer vision as a critical technology for 
intelligent vehicles, can be traced to the earlier efforts dealing 
with autonomous mobile robots and autonomous driving [3] 
[4][5] Such efforts helped to demonstrate the power of camera 
based systems to support real-time control of vehicles. These 
and other earlier studies were not focused on the enhancement 
of automobile safety as the primary objective. However, a new 
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trend started emerging in the late nineties, where research in 
computer vision got focused on enhancement of safety of 
automobiles [6][7][8][9][10][11]. Already, camera based 
modules with safety oriented features such as “back-up” (or 
reverse) viewing, lane departure warning, and blind spot 
detection are offered in commercial vehicles.  

The research pursued in our Laboratory for Intelligent and 
Safe Automobiles (LISA), considers development of vision 
based systems with a wide range of application possibilities, 
including those for occupant safety, pedestrian safety, driver 
assistance, driver workload and “attention” monitoring, lane 
keeping, and dynamic panoramic surround capture. Basically, 
these investigations have considered three types of viewing 
perspectives for the cameras.  
(1) Looking in the vehicle: to capture the important visual 

context associated with the driver, occupant, and their 
activities and physical and mental state monitoring. 

(2) Looking out of the vehicle: to capture the visual context of 
the vehicle, including that of the surrounding road 
conditions and traffic, and  

(3) Simultaneous Looking in and Looking out of the vehicle: 
to correlate the visual contextual information of vehicle 
interior and vehicle exterior, driver’s behavior and intent 
can be systematically investigated which can lead to 
derivation of useful feedback mechanisms for managing 
driver distraction. 

A sensor system that is capable of maintaining dynamic 
representations of the external world surrounding the vehicle, 
the state of the vehicle itself, and of the driver.  Dynamic 
context capture for the Human-Centered Intelligent Driving 
Support System (HC-IDSS) requires analysis of multimodal 
sensory information and their fusion at multiple levels of 
abstraction.  To develop a robust dynamic context capture 
system, computer vision and machine learning techniques play 
an important role. In our research we have pursed 
development and evaluation of an active, multi-modal sensory 
approach for “dynamic context capture and situational 
awareness” using cameras, radars, audio, etc for establishing 
representations of the state of the environment, the vehicle, 
and the driver with accurate dynamic uncertainty 
characterization.  
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Figure 1 Framework for Multifunctional, “active” computer vision based 

dynamic context capture system. 
 
For dynamic context capture, vehicle-based state-of-the-art 

integrated sensor suites are pursued. We propose a 
hierarchical structure, as shown in Figure 1, for context 
processing capable of dynamically allocating computational 
and sensor resources depending on the demands imposed by 
the complexity of environment and the vigilance level and 
cognitive load of the driver.  These can be captured with 
relatively few resources and used to modulate the level of 
detail and integration in processing the vast amount of data 
from the multi-modal sensor network.   

The overall objective of our studies is to seek answers to 
the following important questions. 
- What sets of sensors are robust enough under a wide 

variety of environmental conditions?   
- What contexts can support a sufficiently complete 

representation of the environment, the vehicle state, and the 
driver state?   

- What is the best computational framework to extract 
contexts from sensor networks that is compatible with 
human perception?   

- What are the best models of the environment, the vehicle 
state, the driver state, and the knowledge that drivers may 
have of the driving ecology?     

- How to classify and explain driver behavior according to 
the tasks that the driver is engaged in, the tasks that the 
driver is intending, and the safety margin of the driver to 
perform the task?   

II. LISA TESTBEDS 
To provide adaptable experimental testbeds for evaluating 

the performance of various sensing modalities and their 
combination, two test environments, based upon a 
Volkswagen Passat vehicle [Laboratory for Intelligent, Safe 
Automobiles-P (LISA-P)] vehicle, and a Nissan Infinity Q-45 
vehicle (LISA-Q) were outfitted with a computer and a 
multitude of cameras and acquisition systems.  Of principal 
importance in the hardware specification and software 
architecture was the ability to capture and process data from 
all the sensor subsystems simultaneously and to provide 
facilities for algorithm development and offline testing.  A 
short description of these testbeds is provided below with 
references to relevant papers for details. 

A. LISA-P: Occupant and Driver Posture Analysis and 
Pedestrian Detection 
The LISA-P test bed shown in Figure 2 (a) is designed for 

collecting and processing large amount of synchronized data 
from a number of different sensors, especially for monitoring 
driver’s state. Various sensory and computing modules used 
in this testbed include: 
(1) A trinocular stereo system from Pt-Grey Research, which 

provides 2-1/2-D stereo disparity maps is used for 
estimating the distance of the occupant.  

(2) A miniature 2-D thermal long-wavelength infrared sensor, 
Raytheon model 2000 AS is mounted on the dashboard to 
observe the face of the occupant. This device provides 
video response in the LWIR spectrum (7–14 m). 

(3) An array of four color CCD cameras providing images 
used for obtaining 3-D voxel reconstruction through 
shape-from-silhouette (SFS). 

(4) A pair of omnidirectional cameras in front of the vehicle 
giving panoramic images used for detection of 
pedestrians and nearby vehicles. 

(5) A pair of SICK LIDAR sensors on two sides of the car 
which can be used for detecting nearby objects and 
determining accurate distance to them. 
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The placement of the sensors is shown in Figs. 2 (a).  These 

sensors are supported by a synchronized video-stream-
capturing hardware, and high-volume storage. The computing 
platform consists of a commercial Xeon PC with a high-
throughput disk subsystem for streaming video data. The 
computing platform allows for a good deal of processing to be 
done in real time as well as store data for off-line processing. 
LISA-P is outfitted with a power inverter to supply 120 volts 
AC power. A detailed description of the testbed is provided in 
[8]. 
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Fig. 2  (a) LISA-P testbed used for occupant and driver posture analysis, and 
pedestrian detection (b) LISA-Q testbed used for vehicle surround, lane 
tracking, and driver support system. 

B. LISA-Q: Vehicle Surround, Lane Tracking and Driver 
Support System 
The LISA-Q intelligent test bed shown in Figure 2 (b) [12] 

is designed as a system capable of collecting large amounts of 
data from a variety of modular sensing systems and processing 
that data in order to be fed back to the human occupant.  
Sensor systems include rectilinear cameras, wide field-of-view 
camera systems, GPS and navigation systems, and the data 
from internal automobile vehicle state sensors. The system 
contains an array of computers that serve for data collection as 
well as real-time processing of information. The key 

capabilities of the LISA-Q intelligent vehicle include: 
 
(1)  Eight NTSC hardware video compressors for 

simultaneous capture. 
(2) Controller-Area-Network (CAN) interface for acquiring 

steering angle, pedals, yaw rate, and other vehicle 
information. 

(3) Built-in 5-beam forward looking LASER RADAR range 
finder. 

(4) WAAS enabled GPS. 
(5) Integration into car audio and after-market video displays 

for feedback and alerts. 
Detailed information about this test bed is described in [12]. 

 

III. VISION SYSTEMS FOR ENHANCED SAFETY: 
ILLUSTRATIONS 

A. Looking-In the Vehicle: Occupant Position and Posture 
The objective of this research is the development of a 

highly reliable and real-time vision system for sensing 
passenger occupancy and body posture in vehicles, ensuring 
safe airbag deployment and helping to prevent injuries. The 
design of the “smart airbag” system can be divided into three 
parts: 1) real-time scene sensing; 2) feature selection; and 3) 
body size, posture, and movement analysis, followed by 
decision logic for various levels of airbag deployment as 
shown in Figure 3 (a). We propose using video cameras for 
their unobtrusiveness and potential for other purposes beyond 
“smart airbags.” 

For scene sensing, we consider emitted LWIR imaging and 
stereo depth imaging. For feature selection and analysis, we 
consider both simple region occupancy features to detailed 
human body model pose estimation. Using stereo or multi-
camera systems with high-level human body modeling would 
also provide information useful for other applications with 
minimal extra effort. High-quality input data and detailed 
analysis of body pose can also be used to enhance safety by 
analyzing driver alertness and could also be used to build 
intelligent interfaces to different in-car devices, such as the 
mobile phone or radio. 

To determine whether a person is in the right position for 
airbag deployment, the area between the back of the seat and 
the dashboard can be divided into sections. A diagram of the 
in-position (IP), out-of-position (OOP), and critically out-of-
position (COOP) areas in the passenger seat is shown in 
Figure 3 (b). By analyzing these regions, we can categorically 
examine the human body under various positions that an 
occupant can take in the passenger seat, including sitting in a 
normal position, leaning forward, reaching down, seated with 
the seat advanced, reclined, slouched, and knees on the 
dashboard or the edge of the seat. 
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Figure 3 Smart airbag system that makes airbag deployment decision based on 
position of the occupant.  (a) Block diagram (b) Areas for In-position (IP), 
Out-of-position (OOP) and Critically out-of-position (COOP) regions (c) 
Head detection using stereo cameras (d) Head detection using thermal cameras 
(e) 3-D voxel reconstruction of upper part of body using multiple cameras. 

B. Looking-out of the vehicle: Dynamic Panoramic 
Surround 
Awareness of what surrounds a vehicle directly affects the 

safe driving and maneuvering of an automobile. Surround 
information or maps can help in studies of driver behavior as 
well as provide critical input in the development of effective 
driver assistance systems. Omnidirectional cameras which 
give a panoramic view of the surroundings such as Figure 4 

(a) can be useful for visualizing and analyzing the nearby 
surroundings of the vehicle. In [13], we have introduced the 
concept of Dynamic Panoramic Surround (DPS) map that 
shows the nearby surroundings of the vehicle, and detects the 
objects of importance on the road.  We have demonstrated 
successful generation of DPS in experimental runs on an 
instrumented vehicle testbed using monocular as well as 
binocular omni camera systems. These experiments prove the 
basic feasibility and show promise of omni video based DPS 
capture algorithm to provide useful semantic descriptors of the 
state of moving vehicles and obstacles in the vicinity of a 
vehicle. 

Figure 4 (b) shows the generation of 360 degree surround 
map using a monocular omni camera mounted on top of the 
vehicle.  The motion of the road is modeled using a parametric 
planar motion model whose parameters are estimated by 
optimally combining camera calibration, vehicle speed 
information from CAN bus, and the motion of features on the 
ground.  The features that do not satisfy the model are 
separated as outliers.  Using the model, the road motion 
between two frames is compensated, and normalized image 
difference is used to detect objects that are above the road or 
have independent motion.  The omnidirectional image with 
object positions is unwarped to give the surround map.  
Details of the approach are described in [14]. 

Figure 4 (c) shows the detection of pedestrians in front of 
the vehicle using a stereo pair of omni-directional cameras.  
Video sequences are obtained from a pair of omni cameras 
mounted on two sides of the vehicle. Camera calibration is 
performed off-line to determine the relationship between the 
vehicle and pixel coordinates. Using the calibration 
information, the images are transformed to obtain virtual 
perspective views looking forward towards the road. This 
transformation, called rectification simplifies the stereo 
geometry making it easier to match corresponding features 
between the two images. Area-based correlation is then used 
to perform stereo matching between features. The result is a 
disparity map showing the displacement of features from one 
image to another. Based on the disparity map, the features are 
grouped into objects, and distance to the objects is computed.  
Details of this algorithm are described in [15]. 
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Figure 4 (a) Illustration of a dynamic surround map. (x; y): Coordinates of 
other objects w.r.t. own vehicle. V : Velocity w.r.t. road. LP: Lateral position 
of own vehicle w.r.t center of the lane (b) Generation of surround map using 
motion-based detection using a single omni camera on top of the vehicle (c) 
Pedestrian detection using stereo pair of omni cameras. 
 

C. Looking-in and Looking-out of the vehicle: Lane change 
intent analysis 
This section gives an application that combines the use of 

sensors that are looking-in as well as looking-out in order to 
predict driver’s intended actions. Driver intent inference 
presents a challenging classification problem; namely, given a 
diverse array of multi-modal features, how to infer or classify 
driver intentions. 

This vision system estimates driver intentions in the 
specific area of lane changes, arguably one of the most 
important actions relevant to intelligent support systems.  For 
this purpose, it uses the information not only from the camera 

looking outside to detect and track lanes, but also from camera 
inside the vehicle that monitors driver’s facial motion.  Since 
lane change is usually preceded by turning of head, the head 
motion gives an advance indication of the lane change intent.  
The system composed of a the following key components as 
shown in Figure 5 (a):  
(1) Lane position tracking system that determines the lateral 

position of the vehicle in the lane at any given time, 
(2) Driver head motion estimation module that uses facial 

features detected from a camera in order to estimate the 
approximate motion of driver’s head,  

(3) Vehicle parameter collection system that gives parameters 
such as vehicle speed, yaw rate, and acceleration, 

(4) Lane change intent classifier based on sparse Bayesian 
learning that combines the features from the above 
components in order to determine the probability of lane 
change at any given time. 

  
System details are described in [16].  Figure 5 (b) shows an 

example of lane change intent detection.  The top bar shows 
the estimated probability of lane change using lane tracking, 
vehicle dynamics from CAN bus, as well as head motion.  The 
bottom bar is derived without using the head motion.  It is 
observed that the use of head motion gives an advantage of 
0.5 seconds in detecting the lane change intent, which is 
critical for preventing accidents. 
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Figure 5 (a) Block diagram for inference of lane change intent using 
information from lane tracking, head motion, and the CAN bus data (b) 
Example of detection of lane change intent.  The top bar shows the estimated 
probability of lane change using all the three sources whereas the bottom bar 
shows the probability using only lane tracking and CAN bus data.  The lane 
change is detected earlier when the head movement is used. 



  

 

IV. CONCLUDING REMARKS 
Development of a real-time, a robust dynamic context 

capture system for an automobile, computer vision and 
machine learning techniques play important roles. In this 
paper, we presented a motivation and experimental support for 
developing vision systems for “Looking-In and Looking-Out” 
(LILO) of a vehicle. Such an “active”, multi-modal sensory 
approach for “dynamic context capture and situational 
awareness” using cameras, radars, audio, etc. allows for 
 establishing representations of the state of the environment, 
the vehicle, and the driver with accurate dynamic uncertainty 
characterization. It is believed that successful integration of 
such powerful sensory suits in human-centric decision logic 
framework will have a significant impact on the safety of new 
generations of automobiles and telematics devices used for in-
car communication, information access, business transactions, 
and entertainment.  
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