
1

Structure and Motion from Line Segments in
Multiple Images

Camillo J. Taylor, David J. Kriegman

Abstract|This paper presents a new method for recover-
ing the three dimensional structure of a scene composed of
straight line segments using the image data obtained from
a moving camera. The recovery algorithm is formulated

in terms of an objective function which measures the total
squared distance in the image plane between the observed
edge segments and the projections (perspective) of the re-
constructed lines. This objective function is minimized with
respect to the line parameters and the camera positions to

obtain an estimate for the structure of the scene. The ef-
fectiveness of this approach is demonstrated quantitatively
through extensive simulations and qualitatively with actual
image sequences. The implementation is being made pub-
licly available.

Keywords| Structure from motion, straight lines, three-

dimensional reconstruction, perspective projection, numer-
ical minimization.

I. Introduction

Many applications such as vehicle navigation, robot mo-

tion planning, object recognition and automatic acquisition

of CAD models and architectural drawings involve recov-

ering a representation for the geometric structure of the

world from sensor data. This paper presents a new method

for recovering the three dimensional structure of a scene

composed of straight line segments using the image data

obtained from a moving camera.

Since �rst being considered by Ullman [1], the structure

from motion (SFM) problem has received quite a bit of at-

tention, and a number of algorithms have emerged. These

algorithms di�er in the type of input (e.g. dense gray scale

images, feature points, lines, etc.), the number of required

images (e.g. two, three, unlimited), the camera model (e.g.

perspective or orthographic projection), and the assumed

knowledge of the camera motion (e.g. completely known,

constant velocity, unknown velocity, etc.).

Several researchers have looked at the problem of recov-

ering the structure of a scene composed of point features

from a set of images. Longuet-Higgins and others [2],

[3], [4], [5], [6] have shown that the structure of a set of

points can be recovered from two images even when the

relative position of the two cameras is unknown. Other

researchers have developed algorithms that use multiple
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images of a rigid scene to produce a more accurate recon-

struction, and these fall into two classes: batch algorithms,

which process all of the data simultaneously, and incremen-

tal algorithms, which maintain some notion of state that

is updated with each new sensor measurement. Several in-

cremental structure from motion algorithms based on the

Extended Kalman Filter (EKF) have been proposed in the

literature [7], [8], [9], [10].

Most batch algorithms formulate the SFM problem in

terms of a nonlinear objective function that is then min-

imized to obtain an estimate for the structure of the

environment. Since these algorithms avoid the lineariz-

ing assumptions inherent in the EKF they usually yield

more accurate reconstruction results [6], [4]. Tomasi and

Kanade [11] demonstrated a batch algorithm that can be

used to reconstruct a set of points viewed under ortho-

graphic projection from a sequence of camera positions. By

modelling orthographic projection as a linear map in bari-

centric coordinates, they showed how singular value decom-

position could be used to minimize an objective function

which measures the disparity between the projections of

the reconstructed points and the measured point features

in the images. Szeliski and Kang [12] and Hu and Ahuja

[4] have also obtained good results by applying nonlinear

minimization algorithms to point based SFM problems.

A few researchers have considered the problem of re-

constructing scenes composed of straight line segments.

Straight line features are prominent in most man-made en-

vironments, they can be detected and tracked relatively

easily in image data, and they provide a great deal of in-

formation about the structure of the scene. Additionally,

since edge features have more image support than point fea-

tures, they can be localized more accurately. These prop-

erties make them ideal candidates for use in structure from

motion algorithms.

Several approaches based on the Extended KalmanFilter

(EKF) have been proposed. Faugeras et. al. [8] presented

a method that solves for the motion of a camera and the

structure of the scene from three perspective images. They

applied an Extended Kalman Filter to minimize an objec-

tive function which represented a version of the epipolar

constraint. Crowley et. al. [7] describe a method for re-

constructing a rigid scene in which an EKF was employed

to update the estimate for the structural parameters using

the measurements obtained from a moving camera. In this

work, the absolute position of the moving camera is known

accurately. Both Jezouin and Ayache [9] and Vieville and

Faugeras [10] have developed EKF based techniques that

update the estimates for the scene structure and the camera

position using the measurements obtained from a tracking
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system which monitors the positions of point and line fea-

tures in the image stream.

Vieville [13] and Giai-Checa and Vieville [14] have inves-

tigated the feasibility of using image ow information to

recover the geometry of a scene composed of straight line

features. They relate the velocity of the edge features in the

image to the line parameters and the camera motion; algo-

rithms are presented for reconstructing a rigid scene using

the information obtained from a tracking system. Since

this problem is underconstrained additional assumptions

are required in order to obtain a solution. Vieville as-

sumes that the camera is moving with constant rotational

and translational velocity while Giai-Checa et. al. explicitly

search for junctions in the image and then use these inter-

sections to induce extra constraints on the solution. Navab

and Deriche [15] have developed a novel method for recov-

ering the 3D position and velocity of the linear features

from the image velocities and edge measurements obtained

from a calibrated stereo pair.

Another approach to this structure frommotion problem

was inspired by the linear algorithm developed by Longuet-

Higgins for point features [2]. Given a set of at least 13

linear features viewed in three frames, it is possible to de-

rive a set of equations which represent an analog to the

epipolar constraint that Longuet-Higgins exploited in his

work. Liu and Huang [16], Spetsakis and Aloimonos [17],

[18] and Faugeras [19] have all developed algorithms that

recover the structure of the scene and the positions of the

cameras based on these equations. One obvious advantage

of these linear algorithms is that they provide a closed

form solution. In practice, however, these methods tend

to be very sensitive to errors in the image measurements.

Section V presents a series of simulation experiments that

compare the algorithm presented in this paper to the three

frame linear algorithmproposed in [16]. These experiments

demonstrate that our algorithm is much more robust to im-

age noise than the linear methods and can be expected to

provide much more accurate results.

In this paper, the reconstruction problem is formulated

in terms of an objective function which measures the to-

tal squared distance in the image plane between the ob-

served edge segments and the projections (perspective) of

the reconstructed lines. This objective function is mini-

mized with respect to the line parameters and camera po-

sitions in order to obtain an estimate for the structure of

the scene. A minimumof six edge correspondences in three

images is required to solve this structure frommotion prob-

lem [8], but the algorithm can take advantage of any num-

ber of additional images or straight line features that may

be available. To the best of our knowledge, this algorithm

produces the most accurate results ever achieved on this

type of structure from motion problem. In the special case

where the line segments are vertical and the camera motion

is con�ned to the horizontal plane, the presented algorithm

degenerates to the least squares approach to recovering pla-

nar point locations and motion presented in [20].

Weng Huang and Ahuja [6] also describe an approach

to this problem based on minimizing a non-linear objec-

tive function. The objective function that they propose,

however, measures the Mahalanobis distance between the

parameterization of the observed line and that of the pre-

dicted line. This objective function di�ers from the one

advocated in this paper since it does not directly measure

the retinal disparity in the image.

It has often been argued that a point based SFM algo-

rithm could be used to directly recover the 3D coordinates

of the endpoints of the line segments. Unfortunately, in

practice it is very di�cult to precisely locate the endpoints

of an image edge for a number of reasons. Edge detection

algorithms such as Canny's [21] are not designed to �nd

junctions, and they often fail to accurately locate an iso-

lated endpoint of a line. Various parts of the edge including

the endpoints may be occluded in the images. The algo-

rithm proposed in this paper avoids all of these problems

by reconstructing the in�nite straight line that supports

the observed edge segments rather than the endpoints of

the line. Consequently, the algorithm can be used even

when multiple edges in a single image correspond to di�er-

ent portions of the same 3D line.

II. Problem Formulation

In this paper, the structure from motion problem is for-

mulated in terms of an objective function O that measures

the disparity between the actual image measurements and

the image measurements that would be predicted from the

recovered 3D structure and camera locations. This section

describes how the objective function is constructed.

The image formation process can be modeled as a func-

tion F which takes the position and orientation of a camera

q and the position of the three-dimensional line p and re-

turns a representation for the corresponding edge in the

image. Consider the case where there are m images of a

static scene containing n straight line features, let uij be

the measurement of the projection of feature i in image j.

Let Error() be a positive real valued function that mea-

sures the disparity between the observed image feature uij
and the expected image feature F(pi;qj). The objective

function O can now be de�ned as follows:

O =

mX
j=1

nX
i=1

Error(F(pi;qj);uij) (1)

The aim of the structure from motion algorithm is to �nd

a choice of parameters, pi and qj , that is most consistent

with the image measurements by minimizing the objective

function O with respect to these parameters using the tech-

niques described in section III. In the remainder of this

section, the elements of (1) are discussed in more detail.

The camera positions qj are represented in the usual

manner; by a translation vector, tj 2 IR3, and a rotation

matrix, Rj 2 SO(3). These parameters represent the po-

sition and orientation of the camera with respect to some

base frame of reference. In the sequel we will arbitrarily

de�ne the base frame of reference to be the �rst camera

position in the sequence.
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Fig. 1. A 3D line can be represented with respect to a coordinate
system by two vectors v̂ and d.

A. The Geometry of Straight Lines

Fig. 1 shows how a straight line can be represented in

terms of a unit vector v̂ which indicates the direction of

the line, and a vector d which designates the point on the

line that is closest to the origin. In other words, we can

represent a straight line by a tuple hv̂;di where v̂T v̂ = 1

and v̂
T
d = 0.1 This set of tuples de�nes an algebraic set

which is a 4 dimensional manifold embedded in IR6. A

particular straight line can be thought of as a point on this

manifold.2

As shown in Fig. 1, the line and the camera center de-

�ne a plane whose normal is denoted by the vector m.

Notice that under perspective projection the image of the

line corresponds to the intersection of this plane and the

image plane. Assuming unit focal length, the edge in the

image will be de�ned by the equation:

mxx+myy +mz = 0 (2)

where m = (mx;my;mz)
T .

A measured edge segment in an image uij is represented

by its endpoints, (x1; y1) and (x2; y2). As we noted in the

introduction, the endpoints of these edges do not necessar-

ily correspond to the endpoints of the three-dimensional

line segments.

B. The Projection Function, F

base frame

camera frame
v

wtc

cd

wd

cm

wm

Fig. 2. The frames and vectors associated with two views of a line.

Fig. 2 shows a single in�nite straight line viewed from

two di�erent positions. The rigid transformation between

1We could also have chosen to denote the lines by their Pl�ucker
coordinates hv̂;Mi where M = v̂ � d.
2A careful reader will notice that there is actually a two to one

correspondence between points on this manifold and the set of in�nite
straight lines since hv̂;di and h�v̂;di denote the same line.

the base reference frame and the camera frame is de�ned by

a translation vector w
tc and a rotation matrix c

wR.3 Given

these de�nitions, we can write the following equations that

relate the vectors representing the line in the camera frame

( c v̂ ;
c
m̂ ;

c
d ) to the vectors representing the same line

in the base frame ( w v̂ ;
w
m̂ ;

w
d ).

c
v̂ = c

wR
w
v̂

c
d = c

wR ( w d � w
tc + ( w tc � w

v̂ ) w v̂ )
c
m = c

v̂ � c
d

= c
wR f w

v̂ � ( w d � w
tc )g

c
m̂ = c

m =k c
m k

(3)

Equation 3 is particularly interesting since it determines

how the normal vectorm varies as a function of the camera

position for a particular line. As shown in (2), the normal

vector m determines where the line will appear in the im-

age, so (3) actually represents the projection function, F .
C. The Error Function, Error

Fig. 3 shows a typical situation in the image plane. The

heavy line in this �gure represents the observed edge seg-

ment uij while the lighter line represents the edge predicted

from F(pi;qj).
!!
!!

!!
!!

predicted line:
mx*x + my*y + mz = 0

(x1, y1)

(x2, y2)

h1

h2

P(s)
h(s) Observed edge segment

Fig. 3. The heavy line in this �gure represents the observed edge seg-
ment in the image while the lighter line represents the predicted
edge.

Points on the observed edge segment can be parameter-

ized by a single scalar variable s 2 [0; l] where l is the

length of the edge, l =
p
(x1 � x2)2 + (y1 � y2)2. Let h(s)

be a function which measures the shortest distance from a

point on the segment, p(s), to the predicted edge as shown

in Fig. 3.

h(s) = h1 + s
h2 � h1

l
(4)

where the scalar values h1 and h2 in (4) represent the short-

est distances from the endpoints of the edge segment to the

predicted edge, and are given by:

h1 =
mxx1 +myy1 +mzq

m2
x +m2

y

h2 =
mxx2 +myy2 +mzq

m2
x +m2

y

(5)

3To represent the coordinates of a vector, we follow the notation
established by Craig [22]; the leading superscript indicates the frame
in which the coordinates are expressed. Premultiplying the coordi-
nates of a vector written in frame w by a rotation matrix c

w
R yields

the coordinates in frame c.
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With these de�nitions in place, we can de�ne the total

error between the observed edge segment and the predicted

edge as:

Error =

Z l

0

h
2(s)ds =

l

3
(h21 + h1h2 + h

2
2)

=m
T (AT

BA)m

(6)

where: A =

�
x1 y1 1

x2 y2 1

�
, B = l

3(m2
x
+m2

y
)

�
1 0:5

0:5 1

�
.

Although the projection of the recovered line onto the

image plane has in�nite extent, only the portion nearest to

the observed image edge contributes to the error measure.

This can be contrasted with other approaches where the

observed edge is treated as though it were in�nite [8].

It should also be noted that in this formulation of the

error function, the contributions from various edges are

explicitly weighted by their lengths, l. This is a desirable

property since longer edges can be localized more accu-

rately in the image than shorter ones. If a line does not

appear in a particular image, this error term is set to zero.

Note that in order to reconstruct a particular straight line,

it must appear in at least two images in the sequence.

If each edge was viewed as a collection of edgels

(xi; yi) rather than as a continuous line segment, we

could measure the disparity between the expected edge

and the observed edgels by summing the squared dis-

tances between these points and our reprojected line, m =

(mx;my;mz). The resulting error function could be ex-

pressed as follows: Error = m
T
Am=(m2

x + m
2
y) where

A =
P

i(xi; yi; 1)(xi; yi; 1)
T . This error function has ex-

actly the same form as the one given in equation (6) so the

same minimization algorithm could be used to recover the

unknown parameters.

III. Recovery Algorithm

To obtain an estimate for the structure of the scene and

the motion of the camera, the objective function O, de-
scribed in the previous section, must be minimized. Like

most non-linear cost functions O can exhibit multiple local

minima. We propose to use a hybrid optimization tech-

nique that generates a series of random initial estimates

for the unknown parameters; these estimates are then used

as starting points for a gradient descent minimization pro-

cedure that locates local minima of the cost function O.
In this implementation, the global minimization algorithm

only needs to generate initial estimates for the camera ori-

entations, Rj, since initial estimates for the other parame-

ters (tj; v̂i;di) are obtained as part of the local minimiza-

tion algorithm described in section III-B. The e�ectiveness

of this global minimization strategy will be demonstrated

experimentally in section IV.

A. Global Minimization

The basic idea behind the global minimization strategy

is to randomly generate initial estimates for the unknown

parameters and then apply a standard gradient decent min-

imization procedure to locate a local minimum of the cost

function. If this local minimum satis�es certain conditions

it will be returned as the �nal answer, otherwise, the al-

gorithm tries again with a new set of random initial esti-

mates. This is the same technique that Horn employed to

recover the relative orientation of two cameras from point

correspondences [5].

The �rst stage of the global minimization process in-

volves generating a set of random initial estimates for

the camera orientations, Rj. The reconstruction algo-

rithm should be provided with an indication for the ori-

entation of each camera in the form of a rotation interval

hR0; �i : R0 2 SO(3); �max 2 IR. R0 represents an esti-

mate of the camera orientation while �max represents the

maximum amount of angular error in the estimate in ra-

dians. On a mobile robot, for example, initial estimates

for the camera orientations could be obtained from odome-

try while the parameter �max would reect the uncertainty

in these measurements. The rotation interval actually de-

notes a closed set of rotation matrices de�ned as follows:

fR j R = R0 expfJ(w)g;
p
wTw � �maxg where J(w) de-

notes the skew symmetricmatrix associated with the vector

w, and exp is the matrix exponential operator. Note that

if initial estimates for the camera orientation are unavail-

able, then R0 is simply the identity matrix and �max is set

to �.

Initial estimates for the camera orientations are gener-

ated by choosing random elements from the rotation in-

tervals associated with each camera position. In each

case a random element is selected from the closed ball

fw j
p
wTw � �maxg, and the corresponding rotation

matrix is taken as an initial estimate. These initial esti-

mate are used as a starting point for the gradient descent

minimization procedure described in section III-B which

converges to a local minimum of the objective function.

At the end of the local minimization step, the dispar-

ity between the predicted edges and the observed edges

is compared to some preset threshold. If it is below, the

minimum is accepted as a feasible estimate; otherwise, a

new set of initial estimates for the camera orientations is

generated, and the local minimization process is restarted.

Since O is based on image error, the value of this thresh-

old is determined by considering the maximum amount of

error expected in the image measurements.

The number of local minimizations performed before a

feasible estimate is obtained will depend upon the shape of

the error surface and on the size of the rotation intervals

provided to the algorithm. A set of simulation experiments

was carried out to evaluate the convergence of this global

minimization technique, and the results are presented in

section IV-A.6. In practice, on the con�gurations that were

used in the simulations and in the real data experiments,

a feasible answer was usually obtained on the �rst try, al-

though some of the experiments took as many as twenty or

thirty passes before the global minimum was found.

B. Local Minimization

This subsection describes the procedure used to obtain

a local minimum of the objective function O from a set of
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TABLE I

An overview of the four stages in the local minimization

strategy.

A Construct initial estimates for the line orientations v̂i
by minimizing C1.
Free parameters : v̂i
Number of degrees of freedom : 2n

B Improve the estimates of Rj, v̂i by minimizing C1.
Free parameters : v̂i; Rj

Number of degrees of freedom : 2n+ 3(m � 1)

C Construct initial estimates for di and tj by minimiz-

ing the quadratic functional C2. One of the non-zero

translation parameters is held constant to �x the scale.

Free parameters : d̂i; tj
Number of degrees of freedom : 2n+ 3(m � 1)� 1

D Use the initial estimates for Rj, v̂i, di and tj pro-

vided by the previous stages as initial estimates and

minimize the main objective function O with respect

to all of the free parameters to obtain the �nal esti-

mates for Rj, v̂i, di and tj
Free parameters : v̂i; Rj;di; tj

Number of degrees of freedom : 4n+ 6(m � 1)� 1

initial estimates of the camera orientations, Rj. The reader

will notice that the objective function given in (1) is actu-

ally expressed in terms of four di�erent types of parame-

ters; camera orientations, Rj, camera translations, tj, line

directions, v̂i, and line positions, di. Before carrying out

the minimization of O, initial estimates (tj;vi;di) are gen-

erated from the image measurements uij and the random

initial estimate of Rj provided by the global optimization

procedure.

The local minimization process is decomposed into four

stages which are summarized in table I and now described

in detail. A multi-stage method was employed in order

to reduce the overall time taken by the algorithm. The

simpler initial stages were designed to provide good ini-

tial estimates for the �nal optimization stage which mini-

mizes the non-linear objective function with respect to all

the unknown parameters simultaneously. Each iteration at

the �nal stage is relatively expensive from a computational

standpoint. Computing these initial estimates helps to re-

duce the number of iterations required at this stage which

reduces the overall compute time.

In stage A the initial estimates for Rj are used to obtain

estimates for v̂i. In stage B, better estimates for Rj and

v̂i are determined. In stage C, we obtain initial estimates

for di and tj, and in stage D the objective function O
is minimized with respect to all of the free parameters to

produce the �nal estimates for the structure of the scene

and the positions of the cameras.

We begin our discussion with a careful examination of

(3) which determines how a particular line projects onto

the image plane at a particular camera location.

c
m = c

v̂ � c
d

= c
wR f w

v̂ � ( w d � w
tc )g (7)

From this equation the following constraints can be de-

duced.
c
m

T ( cwR
w
v̂ ) = 0 (8)

c
m

T ( cwR ( w d � w
tc )) = 0 (9)

Given an observed edge uij, the measured normal m̂0 to the

plane passing through the camera center and the observed

edge can be obtained as follows:

c
m

0 = (x1; y1; �1)T � (x2; y2; �1)T
c
m̂

0 = c
m

0
=k c

m
0k

(10)

An objective function can be devised which indicates how

well the estimates for Rj and v̂i satisfy the constraint given

in (8).

C1 =
mX
j=1

nX
i=1

(m̂0
T

ijRjv̂i)
2 (11)

Notice that this objective function involves only,Rj and v̂i,

which means that it can be used to estimate the line direc-

tions and camera orientation independently of the camera

position and line position.

In stage A the rotation matrices Rj are held constant,

and the line directions are estimated by minimizing C1 with
respect to the v̂i parameters. Notice that this function can

be decomposed into C1 =
Pn

i=1 CAi
where

CAi
=

mX
j=1

(m̂0
T

ijRjv̂i)
2
: (12)

The global minimum of C1 with respect to the v̂i param-

eters can actually be determined by minimizing each CAi

term independently since each of these terms involves a dif-

ferent v̂i vector. Each CAi
term is a simple homogeneous

quadratic form which can be readily minimized using stan-

dard techniques like singular value decomposition.

In stage B the nonlinear objective function C1 is mini-

mized with respect to all of the free parameters, Rj and

v̂i, to yield better estimates for both the camera orienta-

tions and the line directions. Once estimates for Rj and v̂i
have been obtained, the constraint described in (9) can be

used to obtain initial estimates for the di and tj parame-

ters. The following objective function reects how well our

estimates obey this constraint:

C2 =
mX
j=1

nX
i=1

(m̂0
T

ijRj(di � tj))
2 (13)

From each line direction, v̂i, two unit vectors, v̂xi , and

v̂
y
i , can be constructed such that v̂ � v̂xi = 0, v̂ � v̂yi = 0, and

v̂
x
i � v̂yi = 0. Since vi is orthogonal to di, the line position

vector di can be expressed in terms of these two vectors as
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di = �v̂
x
i + �v̂

y
i . This allows us to rewrite the objective

function given in (13) as follows:

C2 =
mX
j=1

nX
i=1

(m̂0
T

ijRj(�v̂
x
i + �v̂

y
i � txx̂� tyŷ� tz ẑ))

2 (14)

Notice that this cost function is actually a simple quadratic

form with respect to the parameters �, �, tx, ty, and tz.

This means that the standard, closed form linear least

squares equations can be applied to obtain initial estimates

for these parameters.

Other researchers have used the constraints described in

equations (8) and (9) to recover the position of an observer

with respect to a known constellation of straight line fea-

tures from image data. Liu, Huang and Faugeras [24] pre-

sented an algorithm that solves for the camera orientation

�rst and then the camera translation. Kumar and Han-

son [25] proposed a related technique that solves for the

rotational and translational parameters simultaneously. In

this case, these constraints are being used to estimate both

the camera positions and the structure of the scene.

Once we have initial estimates for Rj, v̂i, d̂i and tj, the

main objective function O given in (1) can be minimized

directly using the technique described in [26] to obtain the

�nal estimate for the structure of the scene and the posi-

tions of the camera. This minimization involves a total of

4n+6(m�1)�1 independent parameters. The optimization

method used at this stage is very similar to the approach

advanced by Steven Smith in his dissertation [27]. Smith

showed how to carry out a version of the Newton minimiza-

tion algorithm on Riemannian manifolds and proved that

this method shared the quadratic convergence properties of

its Euclidean counterpart. The �nal results produced after

this stage are generally twice as accurate as the estimates

provided by stage C.

In an earlier version of this work [20] the unknown pa-

rameters were divided into two sets: the structural param-

eters v̂i;di and the camera position parameters Rj; tj. On

every iteration of the optimization algorithm, the objec-

tive function was minimized with respect to each set of

parameters independently as described in [28] in order to

reduce the computational complexity of the overall proce-

dure. More recently, Szeliski and Kang [12] have published

work which indicates that a more direct approach to the

optimization problem can actually yield a performance im-

provement. The argument against minimizing the objec-

tive function with respect to all the parameters simultane-

ously using a variant of Newton's method is that it would

involve inverting a very large Hessian matrix at every itera-

tion. Szeliski and Kang observed that this Hessian matrix

was actually sparse which makes the problem much sim-

pler. They also observed that the direct methods required

very few iterations to converge to the �nal minima so the

overall time taken to produce a result was quite reasonable.

It is a well known fact that SFM algorithms can only re-

cover the structure of the environment up to a scale factor.

In our implementation, the scale factor is set by holding one

of the non-zero translation parameters constant during the

last two stages.

Stage D has a much greater computational complexity

than stages A or B since it involves a larger number of

parameters. One technique for reducing the overall time

required by the algorithm involves storing the initial esti-

mates for the camera orientation provided to stage D by

stage B in a database. On each global iteration the al-

gorithm can then check whether the current set of initial

estimates has been investigated previously before invoking

the �nal minimization stage.

Once the in�nite straight lines have been recovered, the

endpoints of the lines can be reconstructed by projecting

the endpoints in the images back onto the in�nite straight

lines. Note that these reconstructed endpoints need not

correspond to the physical endpoints of the line due to

occlusions or edge detector failures, and so we make no

claims about the accuracy of the endpoints.

IV. Experimental Results

This section describes a series of experiments that were

carried out on both real and synthetic image data in order

to evaluate the e�ectiveness of the proposed algorithm.

Thousands of simulation trials were carried out to de-

termine how the accuracy of the algorithm changed as dif-

ferent parameters of the simulation were varied. These

parameters included the amount of error in the image mea-

surements, the number of camera positions, the number of

straight lines in the scene, calibration errors, and the e�ec-

tive baseline. The algorithm was also applied to a number

of data sets obtained from actual image sequences. These

experiments qualitatively demonstrate that the method

can be used to successfully reconstruct a variety of scenes.

Section V presents the results from a series of simulation

experiments that compare the proposed algorithm to the

three frame linear method presented in [16].

A. Simulation Experiments

In all of the simulation experiments a similar arrange-

ment of camera positions and straight line features was

used. The cameras were arranged in a circular stereo con-

�guration as shown in Fig. 4. The �rst camera position

is located at the origin of the coordinate system and the

other (m � 1) positions are equally spaced along the cir-

cumference of a circle of radius 250 mm. centered at the

origin. This arrangement of camera positions ensures that

the maximum stereo baseline between any two positions

remains the same regardless of the number of camera po-

sitions used in the simulation.

The reference object is composed of a set of randomly ro-

tated wire frame cubes 200 mm. on a side placed 1 meter

away from the origin along the z-axis as shown in Fig. 4.

Experiments were also carried out on con�gurations of ran-

dom line segments, but we found that it was much easier

to visually interpret the results of the reconstruction when

polygonal structures were used.

Before describing the results of these experiments, we

need to have some means for evaluating the accuracy of

the recovery process. Below, we de�ne three metrics that
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cameras rotated cubes

z − axis

radius

Fig. 4. A circular stereo camera con�guration.

characterize the accuracy of the reconstructed lines and

camera locations and orientations.

A.1 Measuring Camera Rotational Error

Any rotation matrix R 2 SO(3) can be written in

the form R = expf�J(ŵ)g where � 2 [0; �], ŵT
ŵ = 1.

The magnitude of a rotation can be de�ned as jjRjj =
jj expf�J(ŵ)gjj = �. Given two rotation matrices R1 and

R2 we can de�ne a metric function hR1; R2i, as hR1; R2i =
jjRT

1R2jj. It is relatively straightforward to show that this

function is actually a metric on the Lie Group SO(3). This

function e�ectively measures the \distance" between two

rotation matrices in radians.

A.2 Measuring Structural Error

In order to evaluate the accuracy of the reconstructed

lines, we need to de�ne an error measure that reects the

di�erence between the recovered scene structure and the

actual scene. This can be accomplished by calculating the

mean squared distance between each of the recovered in�-

nite 3-D lines and the actual 3-D line segments. For every

point on the line segment, the square of the distance to

the closest point on the in�nite straight line can be deter-

mined in closed form. This value can be integrated along

the extent of the segment to obtain the total squared dis-

tance between the segment and the line. This integral is

then divided by the length of the segment to yield the �nal

result.

A.3 Experiment 1: Image Noise

The �rst set of simulation experiments was designed to

determine how the accuracy of the reconstruction would

vary as the amount of error in the image measurements

was increased. A uniformly distributed random image error

was added to the endpoints of the image segments. In these

simulations the virtual camera had a focal length of 8 mm

with a 30 degree �eld of view and the pixels on the image

plane were assumed to be 8.37e-3 mm. on side. These

parameters closely model the camera system that was used

for the real data experiments.

Fig. 5 shows how the accuracy of the reconstruction

varied as a function of the measurement error. Each point

on these graphs represents the average of 50 trials, each of

these trials involved 6 camera positions and 36 straight line

features. As expected, the reconstruction error increased

as the random image errors were increased.

a.
1 2 3

Random error in edge endpoints in pixels

0.005

0.010

A
ve

ra
ge

 e
rr

or
 in

 c
am

er
a 

or
ie

nt
at

io
n 

in
 r

ad
s

b.
1 2 3

Random error in edge endpoints in pixels

0.1

0.2

0.3

 A
ve

ra
ge

 e
rr

or
 in

 r
ec

on
st

ru
ct

ed
 li

ne
s 

in
 m

m
^

2

Fig. 5. How the accuracy in the reconstruction varies as a function
of the magnitude of the random errors in the edge endpoints: a.
Camera orientation error; b. Structure error.

A.4 Experiment 2: Calibration Errors in Camera Center

As is well known, it is very di�cult to accurately and reli-

ably determine the center of projection of a camera through

calibration. This experiment was designed to explore the

impact of this type of calibration error on the SFM algo-

rithm by adding a randomly chosen camera center bias to

all of the edges in the sequence. The simulation parame-

ters were the same as in experiment 1, however no random

error was added to the endpoints.

The results indicated that the algorithm is much more

sensitive to random errors in the edge endpoints than it is

to camera center bias, even with a camera center bias of

25 pixels the average error in the recovered camera orien-

tations was only 0.0045 rads. while the error in the recon-

structed lines was only 0.1 sq. mm..

A.5 Experiment 3: Number of Images and Number of

Lines

The third set of simulation experiments was designed to

determine how the accuracy of the reconstruction changed

as a function of the number of camera positions m and the

number of straight line features n. The random image er-

rors were on the order of 0.5 pixels while the camera center

errors were on the order of 5.0 pixels. For each combina-

tion of n and m, 100 random scenes were generated. The

graphs in Fig. 6 clearly demonstrate that the accuracy of
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closely spaced positions. Each point on the graph repre-

sents the average results obtained over 100 experiments.

The random image errors in these experiments were on the

order of 0.5 pixels while the camera center errors were on

the order of 5.0 pixels, each experiment involved 36 line

segments.

B. Real Data Experiments

Experiments were carried out on a variety of image se-

quences taken in and around our laboratory. Images were

digitized to 464 by 572 pixels using a CCD camera with

an 8 mm lens. In each of these experiments the image

edges were obtained using a variation of the Canny edge

detector [21]. The line correspondences were determined

manually, and initial estimates for the camera orientations

were obtained by taking eyeball estimates. The intrinsic

parameters (aspect ratio, camera center and quadratic ra-

dial distortion) of the camera system were obtained from a

set of calibration images.

B.1 Scene 1: Building Blocks

Fig. 8 shows two of the eight images taken of a stack

of building blocks, and Fig. 9 shows various views of the

reconstruction of that scene. These scenes are rendered

assuming perspective projection with the same focal length

as the actual camera.

a.

            

b.

            

Fig. 8. Two images from a sequence of eight that were used for
reconstruction.

a. b.

Fig. 9. Two views of the reconstructed scene. The small coordinate
axes in �gure b represent the reconstructed camera positions.

Qualitatively, the lines appear to be well reconstructed.

The �gures show that the relationships between lines in the

reconstruction reect the relationships between the corre-

sponding lines in the actual structure; parallel, perpendic-

ular or coplanar lines on the actual object appear in the

same con�guration in the reconstruction. Notice that the

algorithm could not provide estimates for the positions of

the line segments on the far side of the structure since none

of these lines were visible in any of the images. Note that we

make no claims about the locations of the endpoints since

these are simply taken to be the extrema of the projections

of the measured image endpoints onto the reconstructed

lines.

B.2 Scene 2: The Eli Cube

Fig. 10 shows two of the ten images taken of a marked

box, while Fig. 11 shows various views of the reconstruction

of that scene including the location of the cameras.

a.

            

b.

            

Fig. 10. Two images taken from a sequence of ten.

a. b.

c. d.

Fig. 11. A variety of views of the reconstructed scene. The small
coordinate axes in �gure c indicate the reconstructed camera
positions. Figure d is rendered under orthographic projection.

In this experiment, the camera was moved around the

object in order to obtain views of di�erent sides of the

cube; note that opposite sides of the cube (A and E) cannot

be seen simultaneously. The algorithm was able to take

advantage of all available image data to reconstruct four

of the six faces of the cube. From the side view under

orthographic projection shown in Fig. 11.d, one can see

that the individual letters in the reconstructed scene are

nearly coplanar with the faces of the cube.

B.3 Scene 3: Inside a building

Fig. 12 shows four of the twenty four images taken from

an area inside our o�ce complex. A large number of views

were taken to cover a large area of the scene; in contrast to

the two previous examples where the objects being viewed

were relatively small, here the robot is immersed within the

scene being reconstructed. Several panoramic views of the
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scene (Figs. 12.a{12.b) were used in this experiment along

with more focused views (Figs. 12.c{12.d) which captured

various details.

a.

            

b.

            

c.

            

d.

            

Fig. 12. Four images taken from a sequence of 24 taken from a section
of our o�ce complex.

a. b.

c. d.

Fig. 13. A set of views of the reconstruction of the scene. The small
coordinate axes in �gure d represent the reconstructed camera
positions.

Fig. 13 shows various views of the reconstruction of that

scene. The algorithm successfully reconstructed the walls,

the doors and the markings on the oor. Because of the

limited �eld of view, more images were needed to capture

the structure of the scene than in the previous two exam-

ples.

B.4 Summary

Note that each of these image sequences contained edges

that were visible in some images but not in others. The

presented algorithm can handle this situation quite natu-

rally and still provide acceptable reconstruction results.

The reconstruction times are given in table III. The

algorithm was implemented in C and all the computations

were performed on a Silicon Graphics R4000 Indigo.

TABLE III

Compute time required for each scene.

Scene number of number of camera Total compute

lines, n positions, m time in secs.

1 45 8 437.09

2 48 10 553.40

3 33 24 790.47

V. Comparison with Linear Algorithm

A series of simulation experiments were carried out in

order to compare the algorithm presented in this paper to

the three frame linear techniques proposed in [16], [29],

[17]. We chose to implement the algorithm described in

[16] because it was considered to be one of the best linear

structure from motion methods.

These experiments simulated a trinocular stereo con�g-

uration viewing a set of three rotated cubes (a total of

36 line segments). In this con�guration the three cameras

were placed at regular intervals along a circle of radius 250

mm., the rotated cubes were 200 mm. on side and were

positioned 1 meter away from the center of the trinocular

system. This arrangement is almost identical to the one

shown in �gure 4 the only di�erence being that the camera

at the center of the circle was omitted.

These experiments were designed to determine how the

accuracy of the reconstruction would vary as the amount

of error in the image measurements was increased. A uni-

formly distributed random image error was added to the

endpoints of the image segments. The simulated cameras

had a focal length of 8mm with a 30 degree �eld of view,

and the pixels in the image plane were assumed to be

8.373e-3 mm. on a side. The same input data was sup-

plied to the three frame linear algorithm (WLHA88) and

the non-linear algorithm (TK93).

Fig. 14 shows a side by side comparison of the results

obtained from the WLHA88 algorithm and the TK93 algo-

rithm for the same data set. The image error in the input

data set was 0.5 pixels. Fig. 15 shows how the accuracy

of the reconstruction varied as a function of image error.

Each point in these graphs represents the average of 50

trials.

These experiments demonstrate that the linear method

does not perform well in the presence of image error. In

fact, the results become unusable as the image error is in-

creased beyond 0.5 pixels. When the errors in the image

measurements are relatively large, 1.5 pixels or greater,

the estimate for the camera orientations provided by the

WLHA88 algorithm is essentially random since the average

error in these estimates approaches and exceeds �=2. This

also means that no real advantage would be gained by us-

ing the results from the linear algorithm as initial estimates

for a more sophisticated iterative technique. Fig. 15 also

indicates that the TK93 algorithm produced results that

were at least an order of magnitude more accurate than
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parallelism could also be used to achieve greater accuracy.

One further improvement would be to explicitly satisfy the

inequality constraints imposed by T-junctions as is done in

Sugihara's work on line drawing interpretation [30].

Implementation: The implementation of this algo-

rithm, our implementation of the algorithm presented

in [16], and the data sets used during our experiments are

available for noncommercial use. They can be accessed via

anonymous ftp at daneel.eng.yale.edu or by contacting ei-

ther of the authors.

Acknowledgments: We would like to thank P. Anandan

for his contributions to this research.
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