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Abstract

In this paper, we consider the problem of projective reconstruction based on the subspace method. Unlike existing subspace methods which

require that all the points are visible in all views, we propose an algorithm to estimate projective shape, projective depths and missing data

iteratively. All these estimation problems are formulated within a subspace framework in terms of the minimization of a single consistent

objective function, hence ensuring the convergence of the iterative solution. Experimental results using both synthetic data and real images are

provided to illustrate the performance of the proposed method.

q 2006 Published by Elsevier B.V.
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1. Introduction

The reconstruction 3D Euclidean structure from multiple

uncalibrated 2D images has been a long standing difficult

problem in computer vision that has many important

applications such as geometric modeling and virtual scene

synthesis. Many different approaches have been proposed for

3D reconstruction from multiple 2D images, including direct

methods [1] that impose metric constraints from the outset to

estimate cameras and 3D scene directly in an Euclidean frame,

and stratified methods [2] that perform the recovery of 3D

structure in stages, first in a projective frame followed by an

upgrade to an affine and then the Euclidean frame. The

stratified approach has the advantage that the 3D Euclidean

reconstruction is decomposed into independent and simpler

steps. Furthermore, it is shown in [3] that there is less chance

for optimization algorithms to be trapped in local minima in a

projective frame than a Euclidean frame, which is not

surprising because optimization for the projective reconstruc-

tion is free of metric constraints. In the stratified approach,

projective reconstruction is a necessary step prior to Euclidean

reconstruction.
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The factorization approach to projective reconstruction has

received considerable attention in recent years. Factorization-

based methods have an inherent advantage of being able to

handle any number of images simultaneously without special

treatment for any subgroup of views. In the factorization-based

approach, the projective reconstruction problem is formulated

as one of factorizing a scaled measurement matrix containing

unknown depth parameters into a product of the structure and

shape matrices. A key issue in the factorization approach is the

determination of the unknown projective depths. In [4], the

depths are determined by means of epipolar constraints in a

non-iterative manner, but the method requires the estimation of

the fundamental matrices between pairs of views and is

sensitive to noise. Most of the other recent approaches use

iterative methods to estimate the projective depths by

minimizing an algebraic error (e.g. [5–8]) or a subspace

proximity measure (e.g. [9–11]). Alternatives to factorization

methods include iterative eigen algorithm of [12,13] and

bundle adjustment techniques [14,15] which performs recon-

struction by minimizing the 2D reprojection error. However,

bundle adjustment [14], being based on non-linear optimiz-

ation algorithms, requires a good starting point to yield an

acceptable solution. Simulation studies based on synthetic and

real images sequences suggest that subspace-based methods

are able to converge to a solution with reprojection errors close

to that obtained by bundle adjustment, but do not require prior

knowledge of a good initial solution. In particular, the method

of [10] has the advantage of being independent of the
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coordinate system chosen for the image planes. However, there

are two issues that have not been addressed in [10].

First, the algorithm of [10] is not guaranteed to converge. In

the subspace method of [10], the iterative algorithm alternates

between (i) performing an SVD of a measurement matrix to

determine the best 4D subspace approximating that spanned by

the image points scaled by some yet unknown depths, and (ii)

determining the depths to re-scale the image points so that the

subspace for each image is as close as possible to the 4D

subspace obtained in (i). Both steps (i) and (ii) are posed as

minimization problems. However, different measures are

minimized in the two different steps as if they are distinct

minimization problems. Because of this, the convergence of

the algorithm cannot be established. Second, the method of

[10] assumes that all object points are visible on all images. In

practice, it is unlikely that this condition is satisfied due to

occlusion. For the factorization method to be practically

applicable, it is important that the method caters for object

points, which are visible only on some of the images but are

missing from the other images. Despite the merits of the

subspace approach, we are not aware of any existing subspace-

based factorization method that can handle missing points

while ensuring convergence.

In this paper, we will use the subspace method of [10] as a

basis for the factorization method. In order to establish

convergence, we will formulate the factorization problem as

a minimization problem with a single consistent objective

function that is optimized for distinct purposes (with respect to

different sets of parameters) throughout an iterative algorithm.

Missing points will be estimated as part of the algorithm. With

convergence of the algorithm in mind, the difficulty is that the

estimation of the missing points must be performed in a way

consistent with the measure being minimized in the solution of

the factorization problem. A key point underlying our approach

is that subspaces will always be represented by an orthonormal

basis, and this condition is enforced as a constraint at all stages

of optimization. The constraint that subspace basis should

always be orthonormal may render a minimization problem

non-linear. Necessary solutions to such problems will be

developed in this paper.

The paper is organized as follows. A measure for subspace

inclusion is introduced in Section 2 before we formulate the

factorization problem. An algorithmic solution to the factor-

ization problem incorporating missing point estimation is

developed in Section 3. Experimental results using both

synthetic data and real images are provided in Section 4 to

illustrate the performance of the proposed method. Section 5

contains some concluding remarks.

We shall use the following notation: span(M) denotes the

subspace spanned by the rows of a matrixM; kMkF denotes the

Frobenius norm of a matrix M.

2. The subspace method

Consider a set of 3D points XjZ ½ xj yj zj 1 �T (jZ
1,.,n) viewed by m cameras with projection matrices Pi2
R3!4 (iZ1,.,m). Let the projection of Xj on the ith view be the
image point wijZ ½ uij vij 1 �T (iZ1,.,m; jZ1,.,n) in

normalized homogeneous coordinates. The 2D image points wij

on the ith view can be assembled into an unscaled

measurement matrix Wi (for the ith view) given by:

Wi Z ½wi1 wi2 . win �2R
3!n:

The image point wij is related to Xj by

lijwij ZPiXj (1)

where lij is the depth of the object point Xj seen by the ith

camera (also referred to as the depth corresponding to wij). The

shape matrix X combines all 3D points Xj as:

X Z ½X1 X2 . Xn �2R
4!n: (2)

The product of Pi and X represents the projections of all the

3D points onto the ith view, giving rise to a scaled

measurement matrix ~Wi for the ith view:

~Wi Z ½ li1wi1 li2wi2 . linwin �ZPiX2R
3!n: (3)

We will also write the scaled measurement matrix as

~Wi Z ½ ~wi1 ~wi2 . ~win �

where

~wij Z lijwij:

The scaled measurement matrix is related to unscaled

measurement matrix by

~Wi ZWiLi (4)

where Li is a diagonal scaling matrix:

Li Z diagðli1;.;linÞ2R
n!n: (5)

From (3), the rows of the scaled measurement matrix ~Wi

span a 3D subspace in Rn that lies in the 4D subspace spanned

by the rows of X, i.e.

spanð ~WiÞ4spanðXÞ3R
n: (6)

Let PZ ½PT
1 ; P

T
2 ;.;PT

m�
T2R3m!4 be the joint projection

matrix. The projection of all the 3D points onto all the views

gives rise to a scaled measurement matrix ~W:

~W Z

~W1

«

~Wm

2
664

3
775Z

P1

«

Pm

2
64

3
75X ZPX2R

3m!n: (7)

It follows from (7) that the 4D subspace spanned by the rows

of X can be written:

spanðXÞZ spanð ~WÞZg
m

iZ1
spanð ~WiÞ: (8)

In general, the depths {lij} are unknown. In the factorization

method for projective reconstruction, a set of consistent depths

{lij} has to be estimated so that the scaled measurement matrix
~W can be factorized into two rank-4 matrices P and X as in (7).

This condition can be expressed in terms of the subspace

inclusion conditions (6) and (8), which provide the basis for the
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subspace method. In practice, these subspace conditions will

not be satisfied exactly because of image noise and other

uncertainties. The principle of the subspace method is to

determine a rank-4 matrix X whose row space best

approximates the union of all 3D subspaces spanned by the
~Wi’s, and to estimate for each view the depths Li so that the

subspace spanned by ~Wi is as close as possible to being

contained in the subspace spanned by X. To give a more precise

statement of the factorization problem based on the subspace

method, we need to introduce a measure for subspace inclusion

to quantify how far the conditions (6) and (8) are satisfied.

2.1. Measure for subspace inclusion

Let Xt be a matrix whose columns form an orthonormal

basis for the right null space of X. Suppose, without loss of

generality, that the rows of X has been normalized to give an

orthonormal basis for span(X). That is, ½XT Xt � is an

orthogonal matrix satisfying:

X½XT Xt �Z ½ I 0 �: (9)

For any ~Wi, let Oð ~WiÞ denote an orthonormal basis for

spanð ~WiÞ. If ~Wi is of full row rank, Oð ~WiÞ can be obtained as:

Oð ~WiÞZ ð ~Wi
~W
T
i Þ
K1=2 ~Wi: (10)

Clearly, (6) is satisfied if and only if:

Oð ~WiÞXt Z 0:

In the case where spanð ~WiÞ is not contained in span(X), we

will use ð1=
ffiffiffi
3

p
ÞkOð ~WiÞXtkF as a subspace inclusion measure

(of ~Wi in X) to indicate how far spanð ~WiÞ deviates from being

contained in span(X). The factor 1=
ffiffiffi
3

p
is introduced to

normalize the range of the subspace inclusion measure to

[0,1]. Note that since ½XT Xt � is orthogonal:

1ffiffiffi
3

p kOð ~WiÞ½X
T Xt �kF Z

1ffiffiffi
3

p kOð ~WiÞkF Z 1:

It follows that:

1

3
kOð ~WiÞX

Tk
2
F C

1

3
kOð ~WiÞXtk

2
F Z 1: (11)

Hence:

0%
1ffiffiffi
3

p kOð ~WiÞXtkF%1:

To approximate the condition (6) as close as possible, one

would minimize the subspace inclusion measure. Note that by

(11), minimizing ð1=
ffiffiffi
3

p
ÞkOð ~WiÞXtkF is equivalent to max-

imizing ð1=
ffiffiffi
3

p
ÞkOð ~WiÞX

TkF . The later may have some

advantages since X may have a dimension (Z4!n)

considerably smaller than the dimension (Zn!(nK4)) of

Xt, particularly if n is large.

2.2. Problem formulation

Given image coordinates wij (iZ1,.,m; jZ1,.,n), the

factorization problem is to determine projective depths lij so
that the scaled measurement matrix ~W can be factorized into

two rank-4 matrices P and X as in (7). If the image coordinates

contain noise, the factorization can only be approximate and

the results will depend on the criterion used in the factorization.

In the subspace method for factorization, the criterion for the

determination of lij is to enforce (6) and (8) as far as possible,

subject to the constraint that X has rank-4. Using the subspace

inclusion measure defined above, the problem can be stated as

min
lij

min
rankðXÞZ4

1

3m

Xm
iZ1

kOðWiLiÞXtk2F (12)

where the subspace inclusion measures for all m views have

been combined into a single objective function for minimiz-

ation in (12).

The ability to handle missing points is essential for any

multi-view techniques, as there are bound to be missing data

due to occlusion. Let the available image points be indexed by

ordered pairs of the set:

AZ fði;jÞjwij is observed as point j on view ig: (13)

If there are image points missing from some of the views,

the unscaled measurement matrix Wi will contain ‘holes’ that

need to be filled in before the minimization problem (12) can

be solved. In this case, (12) has to be extended to include the

estimation of missing elements as:

min
fwijjði;jÞ;Ag

min
lij

min
rankðXÞZ4

1

3m

Xm
iZ1

kOðWiLiÞXtk2F : (14)

As far as the missing data points are concerned, since both

lij and wij are to be determined, we may estimate ~wijðZlijwijÞ

instead of wij. In this case, (14) becomes:

min
f ~wijjði;jÞ;Ag

min
lij

min
rankðXÞZ4

1

3m

Xm
iZ1

kOðWiLiÞXtk2F : (15)
3. Algorithmic solution

In view of the form of the minimization problem (15), it is

natural to consider solving the variables of the three nested

minimization problems by estimating X, lij and ~wij (missing

points only) successively in an iterative loop, giving rise to the

following algorithm (where superscript k denotes the variables

in the kth iteration). In the algorithm, each of X, lij and ~wij is

solved in turn as a free parameter of an optimization problem

while the other two variables are fixed at their latest estimates.

Algorithm 1. (subspace algorithm)

(1) Put kZ0 and assign initial values to fw0
ijjði;jÞ;Ag (inW0

i )

and l0ij (in L0
i ). (e.g. set w

0
ij for all missing points at the

mean value of the available points and l0ijZ1ci, j).

(2) Put kZkC1. RegardingWkK1
i and LkK1

i as fixed, determine

Xk
t by solving
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3k1 Z min
rankðXkÞZ4

1

3m

Xm
iZ1

kOðWkK1
i LkK1

i ÞXk
tk2F (16)

subject to (9).

(3) For each i (Z1,.,m), fix WkK1
i and Xk

t and determine lkij
(in Lk

i ) by solving:

min
lkij

kOðWkK1
i Lk

i ÞX
k
tk2F : (17)

Compute:

3k2 Z
1

3m

Xm
iZ1

kOðWkK1
i Lk

i ÞX
k
tk2F : (18)

(4) Fix Xk
t and determine f ~wk

ijjði;jÞ;Ag (in ~W
i
k) by solving:

3k3 Z min
f ~wk

ij
jði;jÞ;Ag

1

3m

Xm
iZ1

kOð ~W
k
i ÞX

k
tk2F : (19)

(5) Repeat steps 2, 3 and 4 until 3k3 converges.

(6) Output Wk
i , L

k
i and Xk and stop.

Since, the same objective function is being minimized (but

with respect to different sets of parameters) in the three

minimization problems (16), (17) and (19) in Algorithm 1, the

cost 3k1, 3
k
2 and 3k3 are monotonic decreasing satisfying:

/R3kK1
3 R3k1R3k2R3k3R/R0:

It follows that 3k3 is guaranteed to converge. It is possible for

Algorithm 1 to converge to a local minimum. (This is however

in contrast to many existing factorization methods that

alternate between inconsistent objective functions in the

optimization process and are not guaranteed to converge

even to a local minimum.) Extensive experiments (see [16])

show that the subspace algorithm has a better chance of

converging to the global minimum as compared to methods

like bundle adjustment. This is because the subspace algorithm

is not purely local descent and therefore is less prone to be

trapped at local minima.

It remains to solve the minimization problems (16), (17) and

(19). In these problems, the objective function is linear in Xt,

but non-linear in Li (containing lij) and ~Wi (containing the

missing points ~wij). We will next develop solutions to the

minimization problems (16), (17) and (19). In the following,

the superscript k with be dropped for notational simplicity.
3.1. Estimation of rank-4 shape matrix

We need to estimate a rank-4 shape matrix in step 2 of

Algorithm 1. Regarding Wi and Li (iZ1,.,m) as known, X is
determined by solving

min
rankðXÞZ4

1

3m

Xm
iZ1

kOðWiLiÞXtk2F

Z max
rankðXÞZ4

1

3m
k

OðW1L1Þ

«

OðWmLmÞ

2
64

3
75XTk2F (20)

subject to XXTZI. It is well established that (20) can be solved

by means of an SVD:

OðW1L1Þ

«

OðWmLmÞ

2
64

3
75ZUSVT:

With the singular values along the diagonal of S arranged in

decreasing order of magnitude, the solution to (20) is obtained

by setting X and Xt to the submatrices consisting of the first 4

and the last (nK4) columns of V, respectively.
3.2. Depth estimation

GivenWi and X, the depths lij (jZ1,.,n) along the diagonal

of Li are determined from a minimization problem of the form

(17), which is equivalent to:

max
lij

kðWiL
2
i W

T
i Þ

K1=2ðWiLiÞX
Tk2F : (21)

The objective function (21) can be written:

f ðLiÞZ trace½XLiW
T
i ðWiL

2
i W

T
i Þ

K1WiLiX
T�:

To maximize f(Li) with respect to lij, consider:

vf ðLiÞ

vlij
Z trace

v

vlij
½XLiW

T
i ðWiL

2
i W

T
i Þ

K1WiLiX
T�

� �
:

Making use of the formula dðZK1ÞZKZK1ðdZÞZK1, we have:

vf ðLiÞ

vlij
ZtracefXjw

T
ijðWiL

2
i W

T
i Þ

K1WiLiX
Tg

CtracefXLiW
T
i ðWiL

2
i W

T
i Þ

K1wijX
T
j g

KtracefXLiW
T
i ðWiL

2
i W

T
i Þ

K1ð2lijwijw
T
ijÞðWiL

2
i W

T
i Þ

K1WiLiX
Tg

(22)

If we define

�Xij ZXLiW
T
i ðWiL

2
i W

T
i Þ

K1wij2R
4!1 (23)

then (22) can be simplified as

vf ðLiÞ

vlij
Z tracefXj

�XT
ijgC tracef �Xij

�XT
j gK2lij tracef �Xij

�XT
ijg

Z 2 �XT
ijXjK2lij �X

T
ij
�Xij

where we have made use of trace(AB)Ztrace(BA) when A has

the same dimension as BT. A necessary condition for lij to
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maximize f(Li) is:

vf ðLiÞ

vlij
Z 2 �XT

ijXjK2lij �X
T
ij
�Xij Z 0: (24)

As �Xij in (24) depends on lij, the equation cannot be solved

in closed form for lij. However, an iterative solution to (24) can

be obtained by setting

lij Z
�XT
ijXj

�XT
ij
�Xij

(25)

where the �Xij on the right hand side of (25) are based on old

values of lij obtained in the previous iteration. Our experience

is that such a solution will typically converge in about five

iterations. If we use suboptimal estimates of lij in Algorithm 1,

the algorithm will still converge, but at the expense of more

iterations of the main loop. For example, if we compute lij only

once using (25) in step 3 of Algorithm 1, the number of

iterations through the main loop may be increased by three to

four times. As a result, the total computation time is increased.

It is therefore preferable to iterated the sub-loop until lij
converges in step 3.
3.3. Missing data estimation

Given Xt, the problem stated in (19) is:

min
f ~wijjði;jÞ;Ag

1

3m

Xm
iZ1

kOð ~WiÞXtk2F

Z min
f ~wijjði;jÞ;Ag

1

3m

Xm
iZ1

kð ~Wi
~W
T
i Þ
K1=2 ~WiXtk2F : (26)

This is a non-linear optimization problem where some

elements of the matrix ~Wi (corresponding to missing data

points with ði;jÞ;A) contain free parameters. From the left

hand side of (26), we can regard the problem as one of finding

an orthonormal basis for a 3D subspace which is free up to

choices in the entries f ~wk
ijjði;jÞ;Ag so that the subspace is

orthogonal to Xt as far as possible. We will now show that by

separating the fixed and the free parts of ~Wi, we can transform

(26) into an equivalent problem solvable by means of a singular

value decomposition technique.

Since, each column of ~Wi is either free or fixed, we can

reorder the columns of ~Wi by a permutation matrix Ri so that

~WiRi Z ½M A � (27)

where M contains all the free columns of ~Wi corresponding to

missing points and A contains the available part of ~Wi

corresponding to indices ði;jÞ2A. Note that Ri is orthogonal

satisfying RiR
T
i Z I. Let RT

i Xt be partitioned in a way

compatible with ½M A �:

RT
i Xt Z

Xt1

Xt2

" #
:

Then, we have

ð ~Wi
~W
T
i Þ
K1=2 ~WiX

T
t Z ðð ~WiRiÞð ~WiRiÞ

TÞK1=2ð ~WiRiÞðR
T
i XtÞ

Z ½M A �
MT

AT

" # !K1=2

½M A �
Xt1

Xt2

" #

Z ðMMT CAATÞK1=2½M ðAATÞK1=2 �
Xt1

ðAATÞK1=2AXt2

" #

(28)

where we have assumed that A is of full row rank (Z3) so that

(AAT)1/2 is invertible.

Proposition 1.Given A of full row rank. For any M2R3!p, let:

U1 Z ðMMT CAATÞK1=2M and

U2 Z ðMMT CAATÞK1=2ðAATÞ1=2
(29)

Then, (29) represents a one-to-one correspondence between

the set of all M2R3!p and row orthonormal matrices

½U1 U2 �2R3!ðpC3Þ for which U2 is non-singular.

Proof. For any M2R3!p, the matrix ½U1 U2 � defined by

Eq. (29) satisfies

½U1 U2 �½U1 U2 �
T Z I

and hence is a row orthonormal matrix. Since, A is of full row

rank, U2 is non-singular.

Conversely, suppose ½U1 U2 � is row orthonormal with U2

non-singular. From (29), we can solve for a uniqueM given by

M Z ðMMT CAATÞ1=2U1 Z ðAATÞ1=2UK1
2 U1 (30)

which completes the proof. ,

Proposition 1 shows that to solve an optimization problem

in which the free parameterM appears in the form given by the

right hand side of (29) is equivalent to solving for a row

orthonormal ½U1 U2 � under the condition that U2 is non-

singular. In view of (28), the problem (26) is equivalent to:

min
½U1U2�

k½U1 U2 �
Xt1

AAT
� �K1=2

AXt2

" #
k2F subject to

½U1 U2 �½U1 U2 �
T Z I and det U2s0:

(31)

The minimization problem (31) can be solved by means of a

singular value decomposition:

XT
1

ðAATÞK1=2AXT
2

" #
ZUSVT:

½U1 U2 � is then obtained as the last three rows of UT

corresponding to the largest three singular values of S. The

condition that U2 is non-singular needs to be verified. Since, A

is of full row rank, we see from (29) that U2 is non-singular

unless M becomes unbounded. Noting that M is an estimate of

the homogeneous image coordinates of the 2D projections of
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the missing points represented by X1,M must be finite since X1

as obtained in step 2 of the algorithm is finite. Hence, the case

where U2 is singular should never arise. Under the condition

thatU2 is non-singular,M can be determined using (30). ~Wi can

then be recovered using (27). With the solutions given in

Sections 3.1–3.3, Algorithm 1 can be readily implemented.
4. Experimental results

In this section, the proposed method is firstly evaluated

using synthetic data and compared with Sturm–Triggs’ method

[4] and Heyden’s subspace method [10]. Then, we consider

real images with missing data, in which case only the proposed

method is evaluated as the methods of [4,10] are not applicable.
4.1. Synthetic data

A total of 40 points are generated at random spatial

locations within a sphere C of radius 0.2 m. Eleven cameras

with fixed intrinsic parameters are then placed randomly inside

a box B of dimensions 0.4 m!1 m!1 m in front of the 3D

points, with the centre of the box located at 1 m from the centre

of the sphere C, as shown in Fig. 1(a). The cameras are pointed

towards the set of points and the intrinsic parameters are

chosen so that all points are visible on all the image planes

within an image area of 800!800 pixels.

The image points are contaminated by different Gaussian

noise levels (with standard deviation ranging from 0 to 4 pixels

in increments of 0.5 pixel). For each noise level, the algorithm

of Section 3 is applied to 20 sets of randomly generated noisy

data and mean values of various error measures are computed.

The figures to be given below are plots of such mean values.
4.1.1. Performance on 2D reprojection error

The 2D reprojection errors (2DRPE) of the reconstruction

results using our algorithm, Sturm–Triggs’ method [4] and

Heyden’s method [10] for different noise levels are given in

Fig. 1(b). Since, the subspace algorithms do not directly

minimize 2D reprojection error, the results are obtained while

the root mean square (RMS) values of the 2D reprojection

errors are smallest. Fig. 1(b) shows that our method produces

only marginally better 2D reprojection errors compared with

the method of [10]. The RMS 2DRPE of the method of [4] is

almost equal to the added noise. Since, the proposed method

and Heyden’s method are based on similar subspace criterion,

it is not surprising that the results are similar when both

methods are applicable. Note that the RMS 2DRPE are almost

linearly related to and are less than the magnitude of the added

noise levels. It is also notable that both subspace methods are

superior than the factorization method [4] in term of 2DRPE.
4.1.2. Performance on projective depth estimation

Since, the projective depths cannot be uniquely recovered,

to assess how good the estimated projective depths are, we

make use of the cross ratio of estimated projective depths

defined as (iZ1,.,mK1; jZ1,.,nK1)
ĉij Z
l̂ijl̂iC1;jC1

l̂i;jC1l̂iC1;j

(32)

where l̂ij represents the estimated projective depths. The mean-

squared cross-ratio error (MSCRE) is then defined as

1

ðmK1ÞðnK1Þ

X
i;j

ðcijKĉijÞ
2 (33)

where cij are the cross ratios computed using the ground truth

depths. Fig. 1(c) shows that the MSCRE of the proposed

method is slightly better than that obtained using the methods

of [4,10] and both methods of [4,10] are overlapped.
4.1.3. Performance on 3D error

The evaluation on 3D error is performed by upgrading the

reconstructed 3D points X�
j in the projective space to an

Euclidean space by means of a collineation T2R4!4 which is

obtained by minimizing

e3D Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min
T

X
j

kXjKajTX
�
j k

2

s
(34)

where Xj is the ground truth 3D point and aj is a scaling factor

for normalizing the fourth component of TX�
j to 1. The RMS 3D

error is defined as 1=
ffiffiffi
n

p
e3D. Fig. 1(d) shows the RMS 3D errors

plotted against different noise levels. The RMS 3D errors for

both subspace methods are very small compared with the

diameter (Z400 mm) of the cloud of 3D points.
4.1.4. Convergence of algorithm

Fig. 1(e) shows the convergence of the objective function

being minimized in the proposed method for different noise

levels. For the synthetic scene, it takes less than 10 iterations to

converge to an acceptable solution. The number of iterations

for convergence is not significantly affected by the added noise

levels. Computational experiments show that the computation

time required for each iteration of the main loop in Algorithm 1

is of the order of O(nm), i.e. proportional to the size of the

measurement matrix.
4.1.5. Missing data estimation

To evaluate the performance of our algorithm for missing

data estimation, we use the same synthetic data sets as before

but remove 10% of 2D points in the measurement matrix

randomly to simulate missing data. Since, Sturm–Triggs’ and

Heyden’s methods do not cater for missing points, only the

proposed method is applied in this experiment. The RMS 2D

reprojection errors for both visible points and missing points

are plotted against different noise levels in Fig. 1(f). For visible

points, the RMS 2D reprojection errors are computed with

respect to the noisy data as well as the ground truth, whereas for

missing points, the reprojection errors are computed with

respect to ground truth only as measured data is supposedly not

available. Fig. 1(f) shows that the errors of the estimated

missing points are comparable with the levels of the added

noise.
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Fig. 1. Results of the synthetic data example.
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In order to assess how much missing data the algorithm can

handle, we remove from the synthetic images varying

percentages of data ranging from 5 to 40% in 5% increments.

The Gaussian noise level is set at sZ2 pixels. We perform 30

trials for each percentage of missing data with 2D points

randomly marked as missing. To ensure that the data is not

degenerate, we require that at least seven points remain visible

to every three consecutive views. This condition becomes

increasingly hard to satisfy when the percentage of missing

points exceeds 40%, as the scene contains only 40 feature points.
Fig. 2(a) and (b) show that both the 2D reprojection error and 3D

error remain acceptable for all visible points, but the RMS and

maximum error for the missing points increase with increasing

percentages of missing data. The increase is gradual and

somewhat linear as opposed to an abrupt breakdown of the

algorithm. The amount of missing data that can be tolerated

therefore depends on the level of error acceptable for the

reconstruction. In the real experiments to follow,wewill see that

reasonable reconstruction of shape can be achieved from real

images with more than 50% missing data.
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Fig. 2. Results of the synthetic data with missing data.
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4.2. Real images with missing data

The proposed method is further evaluated using two real

image sequences with large percentages of missing points. The

methods of [4,10] are not applicable to these examples because

of the missing data.
Fig. 3. Castle model
4.2.1. Castle model image sequence

In this example, images of a toy castle model are captured

using a Canon D-30 digital camera with all camera intrinsic

parameters fixed. The castle model has dimensions measuring

less than a rectangular box of size 25 cm!9 cm!16 cm (W!
D!H) and is imaged with a checker-board calibration pattern
image sequence.



Fig. 4. Model house image sequence.
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(which however is not used) in the background. The image size

is 2160!1440 (pixels). Five images (including three front and

two rear views) are taken around the castle at an elevation

angle of around 308. The rear views are captured after turning

the castle 1808 on the calibration background. Fig. 3(a) shows

the first image of the sequence. A total of 154 corresponding

points are matched manually across the five images. Manual

matching enables us to select the specific points for

reconstruction, so that the reconstructed castle can be

represented by a wire-frame for easy visualization. None of

the points are visible in all five images and most of them are

visible only in two views. Fig. 3(b) shows the missing-data map

of the measurement matrix where each element wij is marked at

the (i, j)th position as the symbol ‘C’ in blue if it corresponds

to a visible point and as a light grey ‘C’ if it corresponds to

missing data. There are 378 missing points among the five

views (i.e. the percentage of missing points is 49.1%).

Our implementation of the algorithm of Section 3 takes 533

iterations to converge (requiring 12.4 s on a 2.4 GHz PC

Pentium-4). The maximum 2D reprojection error (for visible

points only) among all the views is 3.53 pixels and the RMS 2D

reprojection error (also for visible points only) is 1.05 pixels.

To visualize the reconstruction, we use the normalization
method of Han and Kanade [17,18] to upgrade the projective

space to the Euclidean space, assuming that the principal point

is fixed and the skew ratio is zero across all views. A view of

the scene of the reconstructed Euclidean space is shown in

Fig. 3(c) and a close-up in Fig. 3(d).
4.2.2. Model house

In this example, we make use of the image sequence and

correspondences of a ‘Model House’ (courtesy of the Visual

Geometry Group at University of Oxford). There are 10 images

of size 768!576. Fig. 4(a) shows the first image in the

sequence and Fig. 4(b) shows the missing-data map of the

image sequence. There are a total of 672 3D object points

matched automatically, and the percentage of missing data is

57.6%. Our proposed method takes 2000 iterations to converge

in 225 s. The RMS 2D reprojection error for visible points is

0.72 pixels and the maximum 2D reprojection error is 9.07

pixels. Using the normalization method of [17] to upgrade the

projective space to the Euclidean space, a view of the upgraded

Euclidean space is shown in Fig. 4(c). It can be seen that the

reconstructed cameras are almost in circular motion. A side

view of the reconstructed 3D points is given in Fig. 4(d), which

shows that the angle between the front wall of the house and the
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ground is approximately 908. Despite some mis-matched

corresponding points in this image sequence, the proposed

method is sufficiently robust to converge to a reasonable

solution.

5. Conclusion

In this paper, we have used the subspace approach to

consider the factorization problem for projective reconstruc-

tion from multiple images. The novelty of our method lies in a

formulation of the factorization problem in terms of the

optimization of a single objective function that is minimized in

a consistent manner with respect to three distinct sets of

parameters for different purposes. As a result, we are able to

estimate missing data as part of the algorithm while preserving

guaranteed convergence of the iterative solution. The ability to

handle missing points greatly enhances the applicability of the

factorization method to real images. Simulation results

(including examples (see [16]) not shown here because of

reasons of space) and comparisons with other methods shows

that the subspace method produces reconstructions that are

superior in terms of 2D reprojection errors. The solution

obtained using the proposed method can however be further

refined using bundle adjustment [8,14,15] to minimize the 2D

reprojection error.
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