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Abstract. With recent advances in real-time implementations of filters for solving the simultaneous localization and
mapping (SLAM) problem in the range-sensing domain, attention has shifted to implementing SLAM solutions using
vision-based sensing. This paper presents and analyses different models of the Rao-Blackwellised particle filter (RBPF)
for vision-based SLAM within a comprehensive application architecture. The main contributions of our work are the
introduction of a new robot motion model utilizing structure from motion (SFM) methods and a novel mixture proposal
distribution that combines local and global pose estimation. In addition, we compare these under a wide variety of
operating modalities, including monocular sensing and the standard odometry-based methods. We also present a detailed
study of the RBPF for SLAM, addressing issues in achieving real-time, robust and numerically reliable filter behavior.
Finally, we present experimental results illustrating the improved accuracy of our proposed models and the efficiency
and scalability of our implementation.
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1. Introduction

Simultaneous localization and mapping (SLAM) is the
problem of recursively estimating both the position of
a moving sensor and the structure of the environment it
senses. SLAM is a core problem in robotics, as it must
be solved in order to accurately and effectively explore
and navigate through an unknown environment, such that
the robot can learn a representation of its surroundings.
SLAM is especially difficult to solve because a robot’s
motions are often noisy and difficult to estimate accu-
rately over time—the error in a position estimate can
grow without bound. Likewise, many sensors, including
cameras, are noisy and the problem of recovering struc-
ture from their output can be ill-posed.

Recent advances in state estimation methods have led
to a plethora of approaches to solving the simultaneous lo-
calization and mapping (SLAM) problem (Barfoot, 2005;
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Davison, 2003; Eustice et al., 2005; Folkesson et al.,
2005; Leonard and Durrant-Whyte, 1991; Murphy, 1999;
Se et al., 2002). However, there are a limited number of
vision-based solutions that can address real-time map-
ping, that can scale up to tens of thousands of mapped fea-
tures, and that can operate robustly. SLAM is particularly
challenging when using a vision sensor. The conventional
noise models employed for structure recovery are highly
non-linear, landmark-based methods are prone to outlier
data-associations, and there are several steps of approx-
imation in developing reliable observation models. Un-
der the best of circumstances, the computed probabilistic
models can be biased, overconfident, or subject to other
numerical challenges. Furthermore, vision-based SLAM
is not always observable without additional information,
such as is the case for monocular SLAM without odomet-
ric or inertial measurements. In light of these challenges,
there is a need for a general-purpose architecture for solv-
ing SLAM with vision that exploits novel techniques in
state estimation for achieving accuracy and robustness
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while simultaneously providing maximum flexibility to
the user. In this paper we present new methods for achiev-
ing robust SLAM solutions and a flexible architecture for
SLAM deployment and evaluation.

We consider the family of SLAM solutions based on
the Rao-Blackwellised particle filter (RBPF) (Murphy,
1999). RBPF-based SLAM solutions operate by main-
taining multiple map hypotheses, each conditioned on
a stochastically sampled trajectory through the environ-
ment. The complete set of sampled trajectories and in-
ferred maps approximates the probability distribution of
maps conditioned on the vehicle’s actions and observa-
tions, p(M | ut , zt ), where M = {m1, m2, . . . , mn} is
the set of maps, each consisting of a set of probabil-
ity distributions describing landmark positions, ut =
{u1, u2, . . . , ut } are the control inputs to the vehicle
(that is, the vehicle’s actions), and zt = {z1, z2, . . . , zt }
are the vehicle’s observations of the world. RBPFs have
been widely and successfully deployed using laser range-
finder sensing modalities (Eliazar and Parr, 2004; Hähnel
et al., 2003; Montemerlo et al., 2002). Two core compo-
nents of robust RBPF SLAM are accurate motion mod-
els and a reliable proposal distribution. Our architec-
ture provides a visual ego-motion model that precludes
odometric measurement, in addition to the conventional
odometry-based motion estimation approach. Further-
more, we present a mixture proposal distribution that fa-
cilitates robustness by injecting samples derived from a
global pose estimator (Thrun et al., 2000). This approach
facilitates robust mapping of large cycles in the environ-
ment, even without odometric or inertial measurements.

This paper makes several important contributions.
First, we present an application architecture for imple-
menting vision-based SLAM solutions using the RBPF.
The focus of our architecture is on robust, real-time map-
ping of large-scale visual environments (trajectories on
the order of 100 m or more in length). As such, we con-
sider the scalability of data structures for achieving real-
time SLAM even as the number of landmarks in the map
grows to number in the tens or hundreds of thousands,
and the number of sampled trajectories numbers in the
thousands. Second, as mentioned above, we introduce
two new models for updating the RBPF; we derive a
motion model using structure from motion methods and
later we augment it with a novel mixture proposal distri-
bution that allows for the closing of large loops. These
models offer advantages over standard odometry-based
models in that they afford a more general SLAM solution
that is not dependent on odometric or inertial measure-
ments, and furthermore, they achieve the goal of robust
mapping even when the map includes long cycles. Third,
and finally, we present extensive experimental results il-
lustrating the functionality of the system, measuring the
effectiveness of the new models, and, significantly, pro-
viding the first extensive empirical analysis of the data

Vision-based options

• Monocular versus stereo sensing

• Vision-based ego-motion estimation

Particle filtering options

• Standard proposal distribution based on robot odometry.

• Vision-based proposal distribution (odometry-free ego-

motion)

• A mixture proposal distribution incorporating both ego-

motion and a global pose estimator.

State and Hybrid map representations

• 6-DOF pose representation.

• Ability to construct occupancy grids in addition to

landmark-based map.

Figure 1. Summary of supported operational modalities.

structures commonly used to achieve real-time RBPF-
based SLAM. Such an analysis is important for under-
standing the scaling behavior of the filter under changes
in the number of samples in the state estimate and the
number of landmarks mapped.

Our application architecture aims to provide a high de-
gree of functionality and user flexibility. Figure 1 summa-
rizes the main features of the framework. While the archi-
tecture can run in conjunction with an exploring robot, a
valuable feature of the architecture is its ability to process
data off-line, and therefore provide a test-bed for com-
paring and evaluating new proposal distributions and ob-
servation and motion models. Central to the architecture
are data structures for facilitating real-time operation and
maximizing efficiencies in the RBPF. In particular, we
exploit data structures for rapid, robust data association
(a key stumbling block for many landmark-based SLAM
approaches), and a tree-based data structure, similar to
that popularly known as FastSLAM (Montemerlo et al.,
2002), for optimizing memory efficiency and facilitating
the use of large numbers of particles in the RBPF.

In vision-based feature mapping, the number of land-
marks in the map can grow to hundreds of thousands,
as feature detectors typically return several hundred fea-
ture observations in a single image. Like conventional
landmark-based SLAM solutions in the range-sensing
domain, data association can be computationally ex-
pensive and subject to false positives. However, vision
sensing provides the added advantage that local im-
age information associated with a feature can constrain
data association, and therefore reduce the rate of false
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positives. In order to take advantage of this information,
we employ the scale-invariant feature transform (SIFT)
descriptor (Lowe, 1999), which has been shown to be very
robust for feature correspondence. Matching SIFT fea-
tures requires finding a nearest neighbour among many
thousands of points in a very high dimensional space. To
improve performance and facilitate real-time data associ-
ation, we apply a kd-tree over the space of SIFT features.
kd-trees facilitate approximate nearest-neighbor lookups
in time logarithmic in the number of visually distinct
landmarks (Beis and Lowe, 1997).

In addition to the presentation of new techniques for
vision-based SLAM, this paper examines in depth the
run-time behavior of efficiently designed RBPFs. Such
an analysis is important for understanding the scaling
behavior of the filter under changes in the number of
samples in the state estimate and the number of land-
marks mapped. Specifically, we examine the cost of
the map representation for various sample set sizes,
observation and resampling costs, and map accuracy
under the various operating modalities. Previous work
has suggested efficient data structures for map shar-
ing among particles (Montemerlo et al., 2002). In this
paper, we study the empirical efficiency of this data
structure.

The remainder of this paper is outlined as follows.
Section 2 describes related work on SLAM, Section 3
provides a Bayesian formulation of the SLAM problem
and Section 4 provides the details of our approach to
solving vision-based SLAM with RBPFs. The remaining
sections present experimental results and discussion of
the results.

2. Related Work

SLAM is a well studied problem because it is considered
one of the fundamental problems in robotics. Many pop-
ular solutions are based on the Extended Kalman Filter
(EKF) and most recently its inverse, the Extended Infor-
mation Filter (EIF) (Eustice et al., 2005; Leonard and
Durrant-Whyte, 1991; Smith et al., 1990; Thrun et al.,
2004). These approaches model the posterior distribution
over maps using a unimodal Gaussian distribution. The
EKF is known to scale poorly with respect to the number
of landmarks in the map and it is unable to handle bad
data associations in landmark observations. Recent work
has produced information filter approaches that operate
in constant time, but in most cases depend on approxi-
mations (Paskin, 2003; Thrun et al., 2004) or linear-time
iterative state recovery methods (Eustice et al., 2005). We
use particle filters in an approach that can model multi-
modal distributions, whose update cost scales logarith-
mically with respect to the map size, and that can handle
poor data association robustly.

The application of particle filters to SLAM was first
studied by Murphy (1999) in the context of learning
occupancy grid maps. He was the first to exploit the
method of Rao-Blackwellisation to show that a sam-
pling approach can be used to solve this challenging
problem. The properties of the Rao-Blackwellised Par-
ticle Filter were later studied in detail by Doucet et al.
(2000). However RPBF-based SLAM was popularized
by Montemerlo et al. (2002), Montemerlo and Thrun
(2003) and Montemerlo et al. (2003) that introduced the
FastSLAM algorithm for learning landmark-based maps
using a laser sensor. Their major contribution was a tree
data structure for sharing landmark estimates among par-
ticles, significantly reducing the memory requirements of
the algorithm and allowing for fast particle propagation.
Similarly, the work of Eliazar and Parr (2004) introduced
an efficient data structure for a variation of FastSLAM
that learns high fidelity occupancy grid maps from laser
measurements.

Recently focus is switching to vision as the sensing
modality. Se et al. (2002) utilized a stereo camera to
learn maps of 3D landmarks identified using SIFT. They
use the method of Rao-Blackwellisation to reduce the
size of the problem but employ a Kalman filter where
Murphy used a particle filter. This is equivalent to block-
diagonalizing an EKF (correlations between robot pose
and landmarks, and between the landmarks themselves
are ignored). They have demonstrated their approach suc-
cessfully mapping a small laboratory environment. For
larger environments, their method is likely to be incon-
sistent and lead to filter divergence- as it has been demon-
strated that a diagonalized (decoupled) EKF for SLAM
is overconfident (Dissanayake, 2001). Recently, Barfoot
(2005) has extended this work to use a particle filter in
place of the Kalman filter but he has only presented re-
sults using a single particle in which case it does not differ
significantly from the original work of Se et al.

Recent work also addresses the SLAM problem using
a single camera. Davison (2003) presents monocular
SLAM using a Kalman filter. He uses as landmarks salient
image features and he employs a Bayesian approach
to estimating their 3D position. Notably, his algorithm
runs in real-time but it has only been demonstrated to
work well on small trajectories. The vSLAM (Karlsson
et al., 2005) approach employs particle filters to localize
in a hybrid metric-topological map. They identify land-
marks using SIFT but can only localize accurately in lo-
cations where nodes of the topological map have been
instantiated.

Our work is similar to Se et al. (2002) because we learn
the same type of maps and identify landmarks using SIFT.
It is also similar to Barfoot (2005) because we employ
a particle filter. The chief differences between that work
and ours are the real-time performance of our system
for numbers of particles up to and above 3000,1 and its
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flexibility in the variety of operating modalities, such as
operating without odometry when it is unavailable, or
the ability to cope with monocular data. Furthermore, we
can demonstrate robust loop-closing capabilities in large
environments using a mixture proposal mechanism.

The problem that we are solving is very closely related
to the structure from motion problem, wherein given a
set of images taken of a scene from unknown positions
with an arbitrary amount of overlap, the problem is to
recover the position of the camera for each image, as
well as the structure of the scene (or a subset of 3D
point features extracted from the images) (Hartley and
Zisserman, 2000). In fact, we use a SFM-based approach
for visual odometry estimation, similar in nature to that
developed in Zhang and Shan (2001). The primary dif-
ference between SFM and the SLAM problem is that
SLAM involves recursive estimation of the camera posi-
tion and scene structure (usually taking advantage of the
spatio-temporal adjacency of images in the sequence),
whereas SFM solutions are usually batch methods. Re-
cursive estimation is especially important for a robot that
must explore autonomously.

3. Simultaneous Localization and Mapping

This paper represents map estimation as the evolution of
a Rao-Blackwellised particle filter (Murphy, 1999). In
this context, the trajectory and landmark distribution is
modeled as a dynamic Bayes network, where trajectories
are instantiated as samples, and the landmark distribution
can be expressed analytically for each trajectory. At time
t , let st denote the vehicle pose, m the map learned thus far
and xt = {st , m} be the complete state. Also, let ut denote
a control signal or a measurement of the vehicle’s motion
from time t −1 to time t and zt be the current observation.
The set of observations and controls from time 0 to t are
denoted as zt and ut respectively. Normally, our goal is
to estimate the density

p(st , m|zt , ut ) = p(xt |zt , ut ). (1)

By applying Bayes’ rule and making the Markov assump-
tion, the posterior can be estimated recursively using

p(xt |zt , ut ) = Bel(xt )

= ηp(zt |xt )

∫
p(xt |ut , xt−1)p(xt−1|zt−1, ut−1)dxt−1

= ηp(zt |xt )

∫
p(xt |ut , xt−1)Bel(xt−1)dxt−1 (2)

where η is a normalizing constant. Equation (2) requires
that we evaluate integrals for which there is no closed
form solution and as such we cannot directly use it for
SLAM. However, it has been shown previously that we

can avoid integrating if we estimate the density over tra-
jectories instead of just the current pose,

p(st , m|zt , ut ) = p(xt |zt , ut ) (3)

In addition, we can take advantage of the structure in the
problem to factor the posterior into the product of simpler
distributions (Murphy, 1999)

p(st , m|zt , ut ) = p(st |zt , ut )
∏

k

p(m(k)|st , zt , ut ) (4)

where m(k) denotes the k-th landmark in the map. We
can then use a particle filter to estimate the first factor
and a Kalman Filter to estimate the position of each of
the k landmarks in the map.

In order to implement the particle filter, we must spec-
ify a measurement model, p(zt |xt ), and a proposal dis-
tribution that is often derived from the motion model,
p(xt |ut , xt−1, zt ). The choice of these distributions is the
main difference among all SLAM methods using the par-
ticle filter. In the next section, we present a number of
different models that we have studied in the context of
vision-based SLAM.

4. Solving SLAM with RBPFs

In this section we will describe our system architecture,
including map representation, observation models, and
proposal distributions.

4.1. Map Representation

In this paper, each state sample si,t has an associated map
mi = m(1) . . . m(K ), where each m(k) is a 3D Kalman
Filter describing a landmark position estimate. A simplis-
tic approach to implementing an RBPF for SLAM would
be to store a separate map for each sample, yielding an
update and storage complexity of O(NK), where N is
the number of samples at each step and K is the number
of landmarks. However, Montemerlo et al. introduced in
their FastSLAM work a tree-based structure which, on
average, refines the update complexity to O(N log K )
and reduces storage requirements by sharing landmark
estimates between samples (Montemerlo et al., 2002).
Each sample in the filter will share unaltered landmark
estimates with other samples (those landmarks that have
not been observed since the time the samples became sib-
lings). Each landmark observation results in a landmark
being copied and updated but the rest of the map remains
unaltered.

We employ a data structure similar to that described
in Montemerlo et al. (2002) as a map representation.
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SIFT ID’s Landmark EstimatesSample

Figure 2. Conceptually, each sample has an associated map, indexed

by SIFT descriptor. Each SIFT descriptor might have multiple landmark

estimates, each spatially distinct. The physical implementation of this

representation is in a reference-counted tree structure similar to that

presented in Montemerlo et al. (2002).

Conceptually, each particle has an associated set of land-
mark estimates, each described by Gaussian distributions.
However, unlike the anonymous features used in the pre-
vious work, vision provides additional information about
the image features—we use SIFT descriptors for corre-
spondence, enabling us to improve the quality of data
association. In this formulation, each sample maintains a
list of SIFT IDs, and these IDs in turn point to a linked list
of one or more 3D landmark estimates (Fig. 2). Note that
one SIFT ID can point to multiple landmarks—landmarks
that have similar appearance but are spatially distinct. The
implementation of the map structure is identical to that of
the original reference-counted FastSLAM binary search
tree, with the exception that indexing a landmark by SIFT
ID returns a linked list of the landmarks associated with
that ID. Individual landmark estimates are represented
as 3D Gaussian distributions using the Extended Kalman
Filter.

4.2. Observation Model and Data Association

Figure 3 and Algorithm 1 summarize the observa-
tion update process. We select points of interest using

Figure 3. Observation update (refer to text for details).

the difference of Gaussian detector described in Lowe
(1999), and locate stereo matches in the left and right
images by matching SIFT keys. Our framework allows
for SIFT feature representations with either 36 or 128 di-
mensions (trading off memory consumption versus res-
olution in the matching domain). In the stereo case,
we perform a straightforward linear search of the keys
in the left image for the best match to each key in
the right, subject to epipolar constraints, producing an
observation:

z = [u v d] (5)

where [u v] is the pixel position of the key in the right
camera, and d is the observed disparity between the keys
in the left and right camera. Observations are assumed to
have a diagonal covariance Cz matrix with noise param-
eters σ 2

uv for u and v, and σ 2
d for the disparity. A typical

value for σuv is 5 pixels, and 0.5 pixels for σd .

Algorithm 1 Observation update procedure

F := Extract features f = {k, p} from image. {k = SIFT
key, p = feature position.}

for all features f in F
id := kd tree lookup( f.k) {Index into kd-tree.}
for all Samples s

List L := s.map lookup(id)
Find most likely landmark estimate l in L , given f.p
{Maximizing observation likelihood.}

Copy l if necessary {If shared with other sam-
ples.}

Update l with f.p using Kalman Filter update.
Update wt for s according to observation likeli-

hood.
end for

end for

From Eq. (5), the 3D position of the landmark
can be computed according to the well-known stereo
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equations: ⎡⎣ X
Y
Z

⎤⎦ =
⎡⎣ u B/d

vB/d
f B/d

⎤⎦ (6)

where f is the focal length of the camera and B is
the base-line of the stereo head. The covariance of the
landmark is then approximated as ∇hCz∇hT , where ∇h
is the Jacobian of Eq. (6) with respect to z (Faugeras,
1993).

Once landmark observations are extracted from the
stereo pair,2 the landmark estimates must be updated for
the individual samples. To efficiently store and access
what can quickly become a large number of SIFT keys
we use a kd-tree. The kd-tree facilitates nearest-neighbor
matching in time logarithmic in the size of the tree, and
has been demonstrated to be reliable for object recogni-
tion tasks (Beis and Lowe, 1997). The disadvantage of
using a kd-tree is that it can sometimes produce not the
nearest match but a close match. We maintain a single tree
for the sensor and associate an arbitrary integer ID with
each SIFT identifier we add. New keys are considered to
be candidate keys and are not passed as an observation
to the particle filter until they have been observed for a
sufficient number of frames.

Each particle’s map is indexed by a set of IDs asso-
ciated with SIFT descriptors and each node contains a
linked list of 3D landmarks sharing that descriptor. Mul-
tiple data associations can be entertained by the filter
because each particle determines the specific landmark
to which an observation corresponds. A sample’s weight
is updated for a given landmark observation according
to Eq. (10) by first selecting from the linked list for the
matched landmark ID the landmark estimate that is most
likely to have generated the observed point. If the obser-
vation deviance exceeds a particular threshold, or if no
previous landmark estimates exist for a particular SIFT
ID, a new landmark estimate is instantiated using the ob-
servation as the initial estimate.

f

smin

σ1 = αs1

s1

s2 = βs1

s3 = βs2

s

σ2 = αs2

σ3 = αs3

Figure 4. Monocular landmark initialization. The probability distribution for landmark position is described as a geometric progression of Gaussian

distributions along the ray from the focal point f of the camera through the observed pixel position in the image plane. Refer to Solà et al. (2005)

for further details.

4.3. Monocular SLAM

In addition to stereo sensing, our architecture supports
mapping with a monocular camera. Several authors have
demonstrated that in order to successfully map an en-
vironment with a bearings-only sensor, it is important
to maintain several initial landmark hypotheses until a
substantially wide baseline is achieved between obser-
vations (Davison, 2003; Kwok and Dissanayake, 2004;
Solà et al., 2005). We take advantage of the framework’s
ability to assign multiple landmarks per SIFT ID in or-
der to perform undelayed landmark initialization for ac-
complishing SLAM using a monocular camera (that is,
performing bearings-only SLAM). We employ the ini-
tialization method proposed by Solà et al., which aims
to accurately represent the full probability distribution
of a landmark’s position using a geometric progression
of Gaussian distributions along the cone projected from
the camera’s focal point through the pixel location of the
observation (Solà et al., 2005).

Specifically, when a landmark is initialized, its proba-
bility distribution is a cone with Gaussian cross-section,
lying along the ray projected from the focal point of the
camera through the pixel corresponding to the observa-
tion such that the intersection of the cone with the im-
age plane represents the measurement covariance R. This
distribution is approximated by defining a progression of
weighted Gaussian distributions such that

p(lt |zt ) =
Ng∑
1

� j N (s j , σ j ) (7)

where, as depicted in Fig. 4, s j = β j−1s1, σ j = β j−1σ1

and Ng , β, s1, and σ1 are user-defined constants cali-
brated according to the scale of the environment being
mapped, and � j is the weight assigned to each Gaussian,
as described in Solà et al. (2005).

Observation updates in the monocular case are per-
formed by updating all of the individual landmark esti-
mates and recording the observation likelihood for each
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in a vector �. The landmark whose observation likeli-
hood is highest is used to weight the sample, and over
time landmarks whose � j drops below a threshold are
pruned, until a single landmark estimate is determined.
Note that for the monocular case, this approach precludes
the estimation of multiple distinct landmark estimates
(corresponding to distinctly different 3D points) per
SIFT ID.

In this paper we will present results for the monocular
case, however our current implementation requires that
odometry be available to resolve the well-known scale
ambiguity in monocular SLAM and structure from mo-
tion (SFM) problems.

5. State Representation and Proposal Distributions

We describe samples of the vehicle’s pose with the set
st = {T, R}, where T = [x y z] is the robot’s position and
R is a 3 × 3 rotation matrix. We have implemented three
different proposal mechanisms, two of which depend on
the next state model that is either derived from the robot’s
mechanical odometry or from an estimate of the robot’s
motion using structure from motion methods. We also
study a third mixture proposal that suggests hypotheses
from either the motion model or a global localization
estimate. We next describe these proposals and define
how the particles’ weights are computed in each case.

5.1. Proposal Distributions Derived from a Motion
Model

At each time step, the N pose samples are propagated
according to the proposal distribution q(st |st−1, zt , m).
We will refer to the standard proposal as the distribution
based on the robot’s motion model:

q(st |st−1, zt , m) = p(st |st−1, ut ).

This model is similar to those used in previous work.
Other proposal distributions have been suggested, and
our system employs a vision-based ego-motion estimator
to produce a visual odometry model:

q(st |st−1, zt , m) = p(st |st−1, zt ),

Note that the visual odometer is independent of odom-
etry inputs, enabling SLAM in the absence of odometry
or IMU measurements. We can do this using structure
from motion techniques taking advantage of our stereo
camera setup.

Let It and It−1 represent the pairs of stereo images
taken with the moving robot’s camera at two consecutive
time steps. For each pair of images we detect points of

interest, compute SIFT descriptors for them and perform
stereo matching resulting in 2 sets of landmarks Lt−1 and
Lt . We compute the camera motion using a non-linear op-
timization algorithm minimizing the re-projection error
of the 3D coordinates of the landmarks. We employ the
Levenberg-Marquardt (LM) non-linear optimization al-
gorithm (Hartley and Zisserman, 2000; Arun et al., 1987).

In Elinas et al. (2006), we show how we can effi-
ciently solve for the camera that relates the two coor-
dinate systems and also obtain the covariance of the so-
lution as the inverse of J T J , where J is the Jacobian
matrix. The solution and its covariance determine a Gaus-
sian distribution that we can sample from and use as the
proposal.

After taking an observation zt of a landmark (described
in the next section), each particle in the current generation
of particles is weighted according to the probability of
the current observation zt , conditioned on that particle’s
map:

wi,t = p(zt |si,t , mi )p(si,t |si,t−1, ut )

q(si,t |si,t−1, ut , zt , mi )
wi,t−1 (8)

= p(zt |si,t , mi ) wi,t−1 (9)

= k exp(−0.5�zT �−1�z) wi,t−1 (10)

where for this derivation we assume the standard pro-
posal, �z = h(si,t ) − zt , h(·) is a generative model of
the observation as a function of pose, and � is the sum
of the measurement covariance and prediction covari-
ance. The derivation from reasoning over all time steps
to considering only the current time step is based on
the Markov properties of the system and is presented by
Montemerlo et al. (2002). Each particle is weighted ac-
cording to how well the current observation agrees with
the map constructed from that particle’s trajectory. Be-
cause we have noisy data association, we must make
sure that the outliers do not bias the weight computa-
tion. We describe in Section 5.3 how we deal with this
problem.

5.2. Proposal Distribution Derived from a Mixture
Model

One of the drawbacks of using a local motion model as
the proposal distribution is that it does not take into ac-
count that the observation might be better explained at
a more distant location (an undesirable consequence of
filter over-confidence and particle depletion). So there
is no guarantee that the proposed hypotheses will be
in the correct space and filter divergence might result.
In order to eliminate this problem we have also devel-
oped a model that samples from a mixture proposal dis-
tribution. This approach has been studied before both
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in Monte Carlo Localization (Thrun et al., 2000) and
vision-based SLAM (Karlsson et al., 2005). We differ
in our choice of mixture components and their com-
putation that is driven by our selection of sensor and
map representation. Specifically, new hypotheses are pro-
posed from either the motion model or a global pose
estimator:

q(st |st−1, zt , m) = φp(st |st−1, zt ) + (1 − φ)qglobal(st |m)

where φ is known as the mixing ratio. In the following,
we describe the computation of qglobal.

Let zt be the current observation and mi be the map
of the i th particle learned thus far. Given the correspon-
dences in zt , we can compute the transformation that
relates the two coordinate frames using weighted-least
squares. The procedure is similar to that described ear-
lier except that in this case instead of minimizing the
re-projection error of the 3D points, we minimize their
Euclidean distance in 3D. This approach is sensitive to
outliers that are present in our data association. To over-
come this problem, we employ a RANSAC-based ap-
proach (Bolles and Fischler, 1981) where we select sub-
sets of the point correspondences and compute a candi-
date robot pose for each. We have found that generating
as few as 200 candidate poses, s̃t1...200

, is sufficient for good
localization given our noisy observations. For computa-
tional efficiency, we only compute the candidate poses
with respect to the map of the most likely particle at time
t − 1.

In order to sample from this distribution, we evaluate,
using Eq. (13), the probability of our latest observation
given each candidate pose. We then fit a Gaussian distri-
bution to these data points such that:

qglobal = Nglobal(μ, �)s̃t1...200
(11)

In order to compute the weights for the i th particle
correctly, we must evaluate the ratio of the target and
proposal distributions,

wi,t = p(zt |si,t , mi )p(si,t |si,t−1, ut )

(1 − φ)qglobal (si,t |zt , mi ) + φp(si,t |si,t−1, ut )
wi,t−1

(12)

Each of the distributions involved is a Gaussian that
we have already described how to compute. One should
notice that the weights for the particles are equal to the
observation likelihood scaled by the ratio of the probabil-
ity of the pose under the motion model and the weighted
sum of the probability under the motion model and the
global distribution. That is, those particles that are sup-
ported by both models are given weights that are mostly

proportional to the observation probability while those
that disagree are penalized.

Finally, our empirical results show that using a con-
stant mixing ratio tends to generate noisy robot trajec-
tories. This is the result of the bad and ambiguous data
associations in our observations. Also, the observations
are often dominated by landmarks that were seen most
recently biasing the global distribution towards the most
recently added landmarks. This potentially prohibits the
closure of large loops. To correct this, we only generate
and sample from qglobal as a function of the ratio of old
landmarks to total landmarks observed at time t . If this
ratio is larger than 30% then we set φ = 0.5 and sam-
ple evenly from both mixture components, otherwise we
set φ = 0 and only sample from p(st |st−1, zt ). An old
landmark in our case is defined as one that has not been
observed for longer than 2 minutes. Using this approach,
we rely on the standard proposal in the short term and the
mixture proposal for closing loops.

5.3. Weight Normalization and Adaptive Resampling

Special consideration must be taken when computing the
particle weight, particularly where large numbers of fea-
ture observations, with significant potential for outlier
correspondences, are present. We consider the weight
computation for a standard proposal distribution here,
with similar implications for the other proposal dis-
tributions. Weights are computed by accumulating the
log likelihood of observations over time, and employ-
ing a normalization technique described below to prevent
catastrophic numerical outcomes.

Following from Eq. (12),

log wi,t = log p(zt |si,t , mi ) + log wi,t−1 (13)

= −0.5 min(Tl , �zT �−1�z) + log wi,t−1 (14)

where the maximum observation deviance Tl is selected
so as to prevent outlier observations from significantly
affecting the observation likelihood. However, given the
potentially large numbers of observations, even with
a reasonable setting for Tl , the magnitude of the log-
likelihood can be such that raising it to the exponential
to evaluate the i th particle weight results in machine-
precision zero—we employ a normalization procedure
described in Sim et al. (2005a) that preserves accuracy
while preventing catastrophic numerical results. We note
the following simplification. Let Hi = log p(zt |si,t , mi ).
Without loss of generality, assume that sample index
i = 0 corresponds to the particle that minimizes |Hi |.
Then for all particles:

Hi = (H0 + H ′
i ). (15)
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where H ′
i = Hi − H0. Substituting into Eq. (13) and

subsequently normalizing the weights yields:

wi = exp(H0 + H ′
i )∑N

j=1 exp(H0 + H ′
i )

(16)

= exp(H0) exp(H ′
i )

exp(H0)
∑N

j=1 exp(H ′
i )

(17)

= exp(H ′
i )∑N

j=1 exp(H ′
i )

(18)

Note that for sample {s0,t , m0}, H ′
i = 0, so by subtract-

ing H0 we guarantee that at least one sample weight has
a numerator of 1 in normalizing Eq. (8), and the denomi-
nator is at least 1.0. This approach effectively eliminates
the probability mass associated with outliers that is com-
mon to all particles. It is also important to note that using
this approach assures that all particles have comparable
weights—every particle has the same number of input
observations, and outliers are represented in the model
on a per-particle basis. Hence, a particle with more out-
lier matches will have a lower weight than a particle with
better data association.

Once particle weights are calculated, the filter deter-
mines whether it is appropriate to resample. Resampling
too often can result in sample starvation in the filter, re-
sulting in poor modeling of the posterior distribution over
states. We use the technique suggested in Stachniss et al.
(2005) to evaluate the effective sample size Nef f :

Nef f = 1∑
i w2

i

The general heuristic is to resample when Nef f falls less
than N/2, where N is the number of samples in the fil-
ter. Resampling involves sampling probabilistically with
replacement to produce the next generation of particles.
When any particle is not chosen for advancement it is
pruned, and all nodes in the landmark tree to which it
refers have their reference counts decremented, and are
deleted if their reference counts reach zero. After resam-
pling, the particle weights are reset to 1/N .

6. Implementation

Our system architecture is described in Fig. 5. We use a
multi-threaded design, enabling user and robot respon-
siveness while the filter is computing observation up-
dates. Our current robot interface connects to RWI B-14
and Activmedia Powerbot bases. We typically run the
system on a desktop system which communicates with
the robot and its camera over a high-speed wireless con-
nection.

Figure 5. System architecture overview.

7. Experimental Results

For the purposes of our experiments, we used an RWI B14
robot with a BumbleBee stereo head from Point Grey Re-
search. The robot was driven by a human operator through
a laboratory environment consisting of two rooms of total
size approximately 19 m by 16.5 m, and the robot col-
lected 8500 stereo images along a trajectory of approx-
imately 120 m. The entire sequence and odometry log
were saved for testing under the various operating modes
of our system. Using the same procedure, we also col-
lected a second data set with 3500 images, as the robot
traversed a corridor environment. All of the filter tests
were conducted on a Pentium Xeon 3.2 GHz PC with
4 GB of RAM. We begin by reporting on the accuracy
of the different models and then proceed to discuss our
study of the scalability of the RBPF with respect to the
number of particles and map size.

During typical run-time behaviour of the filter, each
320 × 240 image yields approximately 400 SIFT keys, of
which roughly 75 yield good stereo matches, and subse-
quently typically 12–25 are successfully matched against
the SIFT keys in the map. This drastic reduction in the
number of keys helps prevent outliers (since we impose
tight thresholds for matching at each step), boosting the
confidence and performance of the filter.

7.1. Accuracy

The main goal of any SLAM architecture is robust, ac-
curate mapping. However, without an accurate map in
the first instance, it is difficult to reliably evaluate the
performance of a SLAM algorithm. Our approach to
map evaluation was to record the filter’s estimate of
the robot’s position as it visited a set of pre-determined
waypoints. Map accuracy was then defined in terms of
the accuracy of the robot’s trajectory, as evaluated by
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Figure 6. Sample frames from our test sequences. The top row shows example frames from the data used for constructing the map in Fig. 8 and the

bottom rows shows example frames from the data used for constructing the map in Fig. 10.
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Figure 7. The localization error for the filter using just the standard proposal, mixture proposal and the raw visual odometry estimates. Note that

the robot starts at the left-most node in the plot and finishes at the right-most node. The legend is described in Table 1.

its ability to localize at the waypoints. We defined five
waypoints located in the corners and center of the main
room that the robot explored and measured their posi-
tions. Figure 9 illustrates the set of waypoints and their
positions superimposed on a learned occupancy grid map
of the same area. The waypoints were visited in the se-
quence 1, 3, 1, 4, 1, 2, 1, 5, 1, 1, 2, 1, 3 where the robot
traversed a large loop through an adjacent room in the
1,1 phase of the sequence. In addition, we run an exper-
iment using data from a corridor environment closing a
large loop in the order of 100 meters. However, we do
not have ground truth information for these data. Figure 6
shows a few examples of the frames in the two data sets.

For the following set of experiments, we ran the filter
with 500 samples, and varied the operating modality of
the filter. Figure 7 shows the error at each ground truth
node for all the different models. As expected the filter
outperformed the raw odometers in all cases. In addition,
using the visual odometry performed better than using
mechanical odometry. The filter that implements a mix-
ture proposal performed better overall. Figure 8 shows an
example of the 3D landmark map and the occupancy grid
learned for the best particle at the end of the trajectory.
The map shown was generated using the mixture proposal
with visual odometry and variable mixing ratio. The map
consists of about 30,000 landmarks. Table 1 summarizes
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Figure 8. Example of the map learned with a mixture proposal and visual odometry for two adjacent rooms size 19 × 16.5 meters. The figure

depicts a top-down view of the map of 3D landmarks used for localization. Shown in black is the filter trajectory and in red the raw visual odometry

trajectory. The robot’s final position is marked with a red ‘X’, and the set of landmarks observed in the final few frames is highlighted with red and

yellow ellipses.

Figure 9. The occupancy grid constructed using the maximum likeli-

hood trajectory for camera location in Fig. 8. In the grid, white pixels

represent empty space while black pixels represent occupied space.

Gray pixels denote unobserved areas. The grid’s resolution is 15 ×
15 cm.

the configuration of the filter for each run, along with the
mean error in the trajectory estimate over all ground truth
nodes. Figure 10 shows another example of a learned 3D
map for a corridor environment and Fig. 11 shows its cor-
responding occupancy grid. It should be noted that since
the filter does not perform backwards correction, the cor-
ridors are not perfectly aligned. Further post-processing
improvements can be realized by using the filter-based
solution to initialize a full bundle-adjustment.

It is important to note that even the worst perform-
ing approach (SLAM with a monocular camera) out-
performed the robot’s dead reckoning. The erroneous
monocular estimates are largely due to the robot’s failure
to re-localize when it closed the large loop through the
second room. We hope that advanced mixture proposal
techniques, such an extension to the mixture proposal that
we have presented for stereo vision, will lead to improved
performance with the monocular modality. We also note
that the accuracy of the visual odometry approach facili-
tates the use of non-robotic platforms, such as hand-held
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Table 1. Summary of operating modes and experimental results for evaluating map accuracy.

Run title Mechanical odometry Visual odometry Stereo/Monocular Mean pose error (m)

Dead Reckoning no yes stereo 1.6

Standard (odometry) yes no stereo 0.28

Standard (visual odometry) no yes stereo 0.28

Mixture (visual odometry) no yes stereo 0.14

Monocular yes no monocular 0.71

Figure 10. Example of the map learned with a mixture proposal and visual odometry for a corridor environment. The figure depicts a top-down

view of the map of 3D landmarks used for localization. Shown in black is the filter trajectory and in red the raw visual odometry trajectory.

cameras, and other devices where odometry may not be
available.

7.2. RBPF Run-Time Behavior

In this section we examine the empirical behavior of our
RBPF implementation. For this section we consider only
the standard proposal distribution and measure run-time
and memory performance relative to variations in the

sample set size, N . For these experiments, we employed
a data set consisting of 8500 images along an exploratory
trajectory similar to that presented above, and in the same
laboratory environment. Figure 12 presents the map con-
structed by our system using 100 samples, with an archi-
tectural drawing overlaid to illustrate the features of the
environment.

Figure 13 illustrates the run-time performance of the
filter as we varied the number of samples in the filter, from
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Figure 11. The occupancy grid constructed using the camera location

for the maximum likelihood trajectory in Fig. 10. In the grid, white

pixels represent empty space while black pixels represent occupied

space. Gray pixels denote unobserved areas. The grid’s resolution is

15 × 15 cm.

Figure 12. Map constructed using standard proposal distribution, with overlaid architectural drawing. Note that apparently spurious landmarks

correspond to furniture or points on the ceiling or floor. The grid marks 25 cm intervals. The trajectory of the filter is plotted, with the set of samples

marked by red ’x’s (in this case, nearly all are coincident). Note that the robot successfully closes a large loop (going out one door and returning

through another), although the precise location of one door is off by about 0.5 m, and also successfully locates the top door on three occasions.

values of 1 up to 16000, roughly doubling the number of
samples at each increment. The performance is measured
in terms of the mean processing time per frame, in mil-
liseconds, over the run of 8500 frames. In all cases the
number of landmarks represented per map at the end of
each of these runs was 12,316. Note that the plot is in
log-log format.

It is worthwhile noting that the filter can run at 1 Hz at
approximately 3000 samples, enabling real-time perfor-
mance for large sample sets. It is also interesting to note
that the slope of the log-log plot is less than 1 up to approx-
imately 2000 samples, but begins to demonstrate super-
linear behavior beyond this value. Note that the worst case
performance of the RBPF should be O(N K ). The main
reasons for the superlinear performance appears to be an
increased cache and page fault frequency as N grows, as
well as non-constant time performance of the standard
C++ memory allocators. We have mitigated this latter
issue somewhat by implementing custom allocators that
improve performance for sample allocation.

We note at this point that for reliable performance the
filter typically requires at least 400 samples (which can
run at about 10 Hz), and will likely require more samples
for very large environments.
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Figure 13. Mean processing time per frame versus number of samples.
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Figure 14. Mean nodes in the FastSLAM tree versus number of sam-

ples.

Figure 14 illustrates the memory consumption of the
filter for varying N , represented in terms of the total
number of nodes in the FastSLAM tree, averaged over
all time instances. As N increases, the number of nodes
required for map maintenance increases, and while the
mean number of nodes is much smaller than the the-
oretical maximum of O(N K ), the slope of the plot at
8000 samples is 1.17, suggesting that the consumption
for larger numbers of samples may not scale well.

The main concern for many SLAM implementations
is the performance as the number of landmarks increases.
Figure 15 shows the average processing time per frame
over 400 frame intervals for a selection of sample set
sizes N . The rate of growth in the number of landmarks
is approximately constant over the entire run (at most 5
new landmarks per frame). This plot demonstrates that
while there is a modest increase in the cost of maintaining
the map over time, the filter performance does not degrade
significantly.
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Figure 15. Processing time versus time instance for varying values of

sample set size N .

From these results we can conclude that while the Fast-
SLAM landmark tree scales well for large numbers of
landmarks (for the environments considered), it is not
clear that the filter will scale well for very large num-
bers of samples. This may explain in part the difficulty
other researchers have had in implementing vision-based
RBPFs with more than a small number of samples.

8. Conclusion

This paper has presented the design and analysis of an
application architecture for conducting experiments in
vision-based SLAM using Rao-Blackwellised particle
filters. The architecture can successfully manage large
maps and large sample sets in real-time. Among the more
notable contributions are the development of a motion
model that is independent of odometric measurements,
and a mixture proposal distribution that facilitates large
loop closure. The experimental results presented illus-
trate the capability of the system for operating in real-time
with significant numbers of samples and over large envi-
ronments. We also demonstrate successful mapping for a
variety of modalities, including vision-based ego-motion
estimation and monocular sensing. This work represents
a significant step beyond the state of the art in terms of
both its flexibility and the scale and density of the envi-
ronments we are successfully mapping with vision.

Our system retains a few limitations that are charac-
teristic of many vision-based SLAM solutions. Monocu-
lar SLAM, particularly without odometry, remains chal-
lenging due to the inherent scale ambiguity and approx-
imations in landmark initialization. Our approach also
requires a well-calibrated camera. We have observed
the importance of the camera’s exploration strategy (as
controlled by a human operator) in constructing accu-
rate maps. Furthermore, in recent work Bailey et al.
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demonstrate that RBPF-based SLAM approaches are
overconfident over long trajectories (Bailey et al., 2006).
In these aspects, our future work will involve examining
how intelligent exploration can improve map quality, and
how we can further increase the scale of the environments
that can be successfully mapped.

Notes

1. We consider real-time operation to be an update frequency greater

than 1 Hz.

2. In the monocular case, the complete list of SIFT keys is returned

along with their pixel positions—no depth computation is per-

formed.
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