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Abstract. This paper presents a new real-time localization system for a mobile robot. We show that autonomous
navigation is possible in outdoor situation with the use of a single camera and natural landmarks. To do that, we use
a three step approach. In a learning step, the robot is manually guided on a path and a video sequence is recorded
with a front looking camera. Then a structure from motion algorithm is used to build a 3D map from this learning
sequence. Finally in the navigation step, the robot uses this map to compute its localization in real-time and it follows
the learning path or a slightly different path if desired. The vision algorithms used for map building and localization are
first detailed. Then a large part of the paper is dedicated to the experimental evaluation of the accuracy and robustness
of our algorithms based on experimental data collected during two years in various environments.
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1. Introduction

Localization is a key component in mobile robotics. The
most popular localization sensor for outdoor robotic ve-
hicles is the GPS receiver. A Real Time Kinematic (RTK)
GPS allows a localization accurate to 1 cm. Such an ac-
curacy is possible if enough satellites are visible from the
receiver. Unfortunately, in dense urban areas, buildings
can mask some satellites and in this case the accuracy
of the localization drops considerably. For this reason, it
is necessary to develop other localization sensors. The
use of vision is very attractive to solve this problem be-
cause in places where the GPS is difficult to use such
as city centers or even indoors, there are usually a lot of
visual features. So a localization system based on vision
could make a good complementary sensor to the GPS.
Of course, for satisfactory reliability of the localization
in a real world application, several sensors should be used
(see for example, Georgiev and Allen, 2004). But each
sensor itself should offer the best possible performance.
Our purpose in this paper is to show what can be done
with monocular vision only. We did not use odometry
because it may not be available (for a hand held camera
for example). We focused on monocular vision as op-
posed to stereo vision because it simplifies the hardware
at the expense of a more complex software of course. We
think, this is a good way to reduce the cost and size of
the localization system.

In order to navigate autonomously, a robot needs to
know where it must go. It also needs some knowledge
about the environment so that it is able to compute its cur-
rent localization. In our application, all these information
are given to the robot in a simple way: the user drives the
robot manually on a trajectory. After that the robot is able
to follow the same trajectory in autonomous navigation.
To do that we use only monocular vision and there is no
artificial landmark. The robot is equipped with a wide
angle camera in a front looking position. An overview of
the vision system is presented on Fig. 1. In the learning
step, the robot is manually driven and the camera records
a learning video sequence. This sequence is processed off
line to build a map of the environment with a structure
from motion algorithm. Then the robot is able to localize
itself in real-time in the neighborhood of the reference
trajectory. It allows the robot to follow the same path as
in the learning step or to follow a slightly different path
which is useful to avoid an obstacle for example.

1.1. Related Work

Several approaches for robot localization using vision
have been proposed. Simultaneous Localization And
Mapping (SLAM) is attractive because localization is
possible as soon as the system is started. But map build-
ing is something complex, so real time SLAM using only
monocular vision is a difficult task. Some approaches
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Figure 1. An overview of our vision system.

using more sensors such as stereo vision and odometry
have been presented by Se et al. (2002). Real-time SLAM
using only monocular vision has been achieved by Davi-
son (2003), but only for a small environment with less
than 100 landmarks. This would work well in a room for
example, but it is not suitable if the robot needs to travel
for hundreds of meters. It is also possible to compute ego
motion by using only visual data as done by Nistér et
al. (2004) or, in the specific case of urban environment
(Simond and Rives, 2004). In this case, maintaining a
large map is not required but the localization accuracy
decreases as the distance traveled increases. Moreover,
in two successive navigation experiments, the robot may
not use the same landmarks and the resulting trajectory
may be different.

Another approach for achieving robot navigation ac-
cording to a human guided experience consists in repre-
senting the trajectory as a set of key images. Then the
robot has to go from on key image to the next. With this
approach, the robot will go through a number of well de-
fined positions and the trajectory is repeatable from one
navigation experiment to the next. The first possibility to
do that is to go from one key frame to the next by visual
servoing as done by Matsumoto et al. (1996), Remazeilles
et al. (2004) and Blanc et al. (2005). In those algorithms,
the current pose of the robot is not computed, so it is not
possible to have the robot follow a path different from
the one which was learnt. A variant of these approaches
which uses an omnidirectional camera is described by
Argyros et al. (). Another possibility was presented by
Goedemé et al. (2005). In this algorithm, a relative lo-
calization of the robot with reference to the key frame is
computed from features matched using a wide baseline

technique. After that, a displacement vector is computed
so that the robot can reach the next key frame.

The last approach consists in building a map of the en-
vironment first in an off line learning step. After that, the
robot is able to localize itself with this map. The main ad-
vantage of these approaches is that they allow the robot
to localize itself even if it is slightly off the path that
was learnt. Since map building is done offline, compu-
tationally intensive algorithms can be used, resulting in
an accurate and rich map. This is not always the case in
SLAM approaches because map building and localiza-
tion must be done simultaneously in real-time. The map
can be built by using different techniques and different
sensors. Vacchetti et al. (2003) use a CAD model given
by the user and develop a very efficient localization sys-
tem. Cobzas et al. (2003) use a rotating camera along with
a laser range finder to build a set of panoramic images
enhanced with 3D information. With this map, a single
2D image is enough to localize the camera. Kidono et al.
(2002) build a 3D reconstruction from a stereo camera
and an odometer under the assumption that the ground is
planar. Then they use the map generated in the 3D recon-
struction process to localize the robot in real-time. Our
system works on the same principle, but we don’t make
the assumption that the ground is planar and we use only
one calibrated camera.

1.2. Paper Structure and Contribution

This article is a synthesis of previously published confer-
ence papers (Royer et al., 2005a,b,c) with new theoreti-
cal developments and experimental data. The main added
contribution of this paper is the real-time computation of
the localization uncertainty and its experimental valida-
tion. Navigation on a closed loop sequence or on a path
different from the learning path are also discussed.

Section 2 describes the off-line map building process
and details the structure from motion algorithm. The
method used for matching images, which is nearly the
same for the reconstruction and the localization, is also
detailed here. Section 3 describes how the localization of
the robot is computed from a video frame. The computa-
tion of localization uncertainty is presented in Section 4.
The experimental vehicle and the control law are pre-
sented in Section 5. Then, in Section 6 we evaluate the
performance of the algorithms with experimental data
obtained with a robotic vehicle equipped with the local-
ization system presented in this paper.

2. Map Building

2.1. Overview

The goal of the map building process is to obtain the
pose of a subset of the cameras in the reference sequence
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as well as a set of landmarks and their 3D location in
a global coordinate system. This must be done from a
monocular image sequence. The structure from motion
problem has been studied for several years and multiple
algorithms have been proposed depending on the assump-
tions we can make (Hartley and Zisserman, 2000). For
our experiments, the camera was calibrated using a planar
calibration pattern (Lavest et al., 1998). Radial distortion
is modelled with a fifth order polynomial. Camera cal-
ibration is important especially when using wide angle
lenses with a strong radial distortion. We have used two
lenses: a wide angle lens with 60◦ field of view and a
fish-eye lenses with 130◦ field of view. Both lenses per-
form equally well for reconstruction, but a fish-eye is
preferable for localization because it reduces the chances
of occultations. With a calibrated camera, the structure
from motion algorithm is more robust and the accuracy
of the reconstruction is increased. This is important for
us because in our video sequences with a front looking
camera, the triangulation of the points must be done with
very small angles. In spite of this difficulty, we chose
a forward looking camera because there is always some
free space in front of the vehicle, which means the field of
views contain both near and far objects. If the camera was
looking to the side, and the vehicle was moving along a
wall very close to the camera, features would move very
fast in the image which would make image matching very
difficult (motion blur could also be a problem).

In the first step of the reconstruction, we extract a set of
key frames from the reference sequence. Then we com-
pute the camera pose for every key frame by using interest
points matched between key frames. Additionally, the in-
terest points are reconstructed in 3D. These points will
be the landmarks used for the localization process.

2.2. Image Matching

Every step in the reconstruction as well as the localiza-
tion relies on image matching. In order to match two
images, interest points are detected in each image with
Harris corner detector (Harris and Stephens, 1988). Cor-
ner response R is computed as in Harris work and local
maxima of R are potential interest points. In order to have
interest points in each part of the image, we have divided
the image area in 64 buckets. In each frame (512 × 384
pixels), we keep the 20 best local maxima in each bucket
plus the 500 best maxima on the whole image. So we
get at most 1780 interest points in each frame. For an
interest point M1 at coordinates (x, y) in image 1, we
define a search region in image 2. The search region is a
rectangle whose center has coordinates (x, y). For each
interest point M2

i inside the search region in image 2,
we compute a correlation score between the neighbor-
hoods of M1 and M2

i . We use a Zero Normalized Cross

Correlation over a 11 × 11 pixels window. All the pairs
with a correlation score above 0.8 are sorted. The best
one is kept as a good match and the unicity constraint
is used to reject matches which have become impossi-
ble. Then the second best score is kept and so on until
all the potential matches have been kept or discarded.
This image matching scheme is used for the localization
part and as the first step in the reconstruction part. In the
reconstruction process, a second matching is done after
the epipolar constraint has been computed. In the second
matching step, the search region is a narrow strip around
the epipolar line and the correlation score threshold is
lowered to 0.82.

2.3. Key Frame Selection

Before computing camera motion, it is necessary to ex-
tract key frames from the reference video sequence. If
there is not enough camera motion between two frames,
the computation of the epipolar geometry is an ill con-
ditioned problem. So we select images so that there is
as much camera motion as possible between key frames
while still being able to find enough point correspon-
dences between the key frames. Some algorithms have
been proposed to do that. For example, Nistér (2001)
considers the whole video sequence then drops redun-
dant frames. Another method is possible based on the Ge-
ometric Robust Information Criterion (GRIC) proposed
by Torr et al. (1999). Our method is much simpler and less
general than these ones but works well for our purpose.

The first image of the sequence is always selected as
the first key frame I1. The second key frame I2 is chosen
so that there are as many video frames between I1 and
I2 while there are at least M common interest points
between I1 and I2. When key frames I1 . . . In are chosen,
we select In+1 so that:

• there are as many video frames as possible between In

and In+1,
• there are at least M interest points in common between

In+1 and In ,
• there are at least N common points between In+1 and

In−1.

In our experiments we choose M = 400 and N = 300.
Figure 2 shows consecutive key frames extracted from the
city sequence.

2.4. Initial Camera Motion Computation

We compute an initial solution for camera motion and a
hierarchical bundle adjustment is used to refine this initial
estimation.
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Figure 2. Consecutive key frames extracted from the city sequence.

For the first image triplet, the computation of the cam-
era motion is done with the method described in Nistér
(2003) for three views. It involves computing the essential
matrix between the first and last images of the triplet using
a sample of 5 point correspondences. This gives at most
40 solutions for camera motion. The solutions for which
at least one of the 5 points is not reconstructed in front of
both cameras are discarded. Then the pose of the remain-
ing camera is computed with 3 out of the 5 points in the
sample. This process is done with a RANSAC (Fischler
and Bolles, 1981) approach: each 5 point sample pro-
duces a number of hypothesis for the 3 cameras. The best
one is chosen by computing the reprojection error over
the 3 views for all the matched interest points and keeping
the one with the higher number of inlier matches. With a
calibrated camera, three 3D points whose projections in
the image are known are enough to compute the pose
of the second camera. Several methods are compared
in Haralick et al. (1994). We chose Grunert’s method
with RANSAC.

For the next image triplets, we use a different method
for computing camera motion. Assume we know the lo-
cation of cameras C1 through CN , we can compute cam-
era CN+1 by using the location of cameras CN−1 and
CN and point correspondences over the image triplet
(N − 1, N , N + 1). We match a set of points Pi whose
projections are known in each image of the triplet. From
the projections in images N − 1 and N , we can compute
the 3D coordinates of point Pi . Then from the set of Pi

and their projections in image N + 1, we use Grunert’s
calibrated pose estimation algorithm to compute the lo-
cation of camera CN+1. In addition the 3D locations of
the reconstructed interest points are stored because they
will be the landmarks used for the localization process.
The advantage of this iterative pose estimation process
is that it can deal with virtually planar scenes. After the
pose computation, a second matching step is done with
the epipolar constraint based on the pose that had just
been computed. This second matching step allows to in-
crease the number of correctly reconstructed 3D points
by about 20%. This is important for us for two reasons.
Those 3D points are used in the computation of the next
camera, and they are also the landmarks used in the lo-
calization process. So we need to get as many as possible
which wouldn’t be the case if the goal was just to recover
the motion of the camera.

2.5. Hierarchical Bundle Adjustment

The computation of camera CN depends on the results
of the previous cameras and errors can build up over
the sequence. In order to greatly reduce this problem,
we use a bundle adjustment. The bundle adjustment is a
Levenberg-Marquardt minimization of the cost function
f (C1

E , . . . , C N
E , X1, . . . , X M ) where Ci

E are the external
parameters of camera i , and X j are the world coordinates
of point j . For this minimization, the radial distortion of
the 2D point coordinates is corrected beforehand. The
cost function is the sum of the reprojection errors of all
the inlier reprojections in all the images:

f
(
C1

E , . . . , C N
E , X1, . . . , X M

)
=

N∑
i=1

M∑
j=1, j∈Ji

d2
(
x j

i , Pi X j
)

where d2(x j
i , Pi X j ) is the squared euclidian distance

between Pi X j the projection of point X j by camera i ,
and x j

i is the corresponding detected point. Pi is the 3×4
projection matrix built from the parameters values in Ci

E
and the known internal parameters of the camera. And Ji

is the set of points whose reprojection error in image i is
less than 2 pixels at the beginning of the minimization.
After a few iteration steps, Ji is computed again and more
minimization iterations are done. This inlier selection
process is repeated as long as the number of inliers
increases.

Computing all the camera locations and using the
bundle adjustment only once on the whole sequence
could cause problems. this is because increasing errors
could produce an initial solution too far from the op-
timal one for the bundle adjustment to converge. Thus
it is necessary to use the bundle adjustment throughout
the reconstruction of the sequence. So we use a hierar-
chical bundle adjustment as in Hartley and Zisserman
(2000). A large sequence is divided into two parts with
an overlap of two frames in order to be able to merge
the sequence. Each subsequence is recursively divided
in the same way until each final subsequence contains
only three images. Each image triplet is processed as
described in Section 2.4. After each triplet has been
computed we run a bundle adjustment over its three
frames.
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Figure 3. Top view of the 3D reconstruction computed from the city

sequence. The squares are the camera position for each key frame. The

dots are the reconstructed interest points projected on an horizontal

plane.

In order to merge two sequences S1 and S2, we use the
last 2 cameras S1

N−1 and S1
N of S1 and the first 2 cameras

S2
1 and S2

2 of S2. As the images are the same, the cameras
associated after merging must be the same. So we apply
a rotation and a translation to S2 so that S1

N and S2
2 have

the same position and orientation. Then the scale fac-
tor is computed so that d(S1

N−1, S1
N ) = d(S2

1 , S2
2 ), where

d(Si
n, S j

m) is the euclidian distance between the optical

centers of the cameras associated with Si
n and S j

m . This
doesn’t ensure that S1

N−1 and S2
1 are the same, so a bundle

adjustment is used on the result of the merging operation.
Merging is done until the whole sequence has been re-
constructed. The reconstruction ends with a global bun-
dle adjustment. The number of points used in the bun-
dle adjustment is on the order of several thousands. For
example, Fig. 3 shows the result of the 3D reconstruc-
tion computed for the city sequence. There are 308 key
frames and 30584 points. The path is about 600 meters
long.

3. Real Time Localization

3.1. Camera Localization

The output of the learning process is a 3D reconstruction
of the scene: we have the pose of the camera for each
key frame and a set of 3D points associated with their 2D
positions in the key frames. At the start of the localization
process, we have no assumption on the vehicle localiza-

tion. So we need to compare the current image to every
key frame to find the best match. This is done by match-
ing interest points between the two images and computing
a camera pose with RANSAC. The pose obtained with
the higher number of inliers is a good estimation of the
camera pose for the first image. This step requires a few
seconds but is needed only at the start. After this step, we
always have an approximate pose for the camera, so we
only need to update the pose and this can be done much
faster.

The localization process can be divided in four steps.
First, a set of the landmarks which should be visible
is selected by finding the closest key frame. Then an
approximate 2D position of each landmark in the current
frame is computed based on the pose of the camera of
the previous frame. With this information the landmarks
are matched to the interest points detected in the current
frame. And finally the pose is computed with these
matches. Figure 4 shows interest points matched between
the current video frame and the closest key frame in
the reference sequence recorded with different weather
conditions.

The current image is denoted I . First we assume that
the camera movement between two successive frames is
small. So an approximate camera pose (we note the as-
sociated camera matrix P0) for image I is the same as
the pose computed for the preceding image. Based on P0

we select the closest key frame Ik in the sense of shortest
euclidian distance between the camera centers. Ik gives
us a set of interest points Ak reconstructed in 3D. We
detect interest points in I and we match them with Ak .
To do that, for each point in Ak , we compute a correla-
tion score with all the interest points detected in I which
are in the search region. For each interest point in Ak we
know a 3D position, so we can project it with P0 so we
know approximately its 2D position in the current frame
I . This is illustrated on Fig. 5. In the matching process
the search region is centered around the expected position
and its size is small (20 × 12 pixels). After this matching
is done, we have a set of 2D points in image I matched
with 2D points in image Ik which are themselves linked
to a 3D point obtained during the reconstruction process.
With these 3D/2D matches a better pose is computed us-
ing Grunert’s method through RANSAC to reject outliers.
This gives us the camera matrix P1 for I . Then the pose
is refined using the iterative method proposed by Araújo
et al. (1998) with some modifications in order to deal
with outliers. This is a minimization of the reprojection
error for all the points using Newton’s method. At each
iteration we solve the linear system Jδ = e in order to
compute a vector of corrections δ to be subtracted from
the pose parameters. e is the error vector formed with the
reprojection error of each point in x and y. J is the Jaco-
bian matrix of the error. In our implementation, the points
used in the minimization process are computed at each
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Figure 4. Matching interest points between the reference key frame learned with snow (left) and the current video frame without snow (right).

3D points

Reference frame

Current frame

Learning path

Target path

Figure 5. Computing an expected position for the landmarks in the current frame.

iteration. We keep only the points whose reprojection er-
ror is less than 2 pixels. As the pose converges towards
the optimal pose, some inliers can become outliers and
conversely. Usually, less than five iterations are enough.

It would be relatively easy to introduce a motion model
of the vehicle or odometry measurements in this frame-
work. For each new frame, we consider that the pose
of the camera is the same as the previous pose in or-
der to match features. Incorporating odometry would
allow to have a better initial estimate of the camera
pose. We have not done that in order to keep the pos-
sibility to use the localization algorithm with hand held
cameras.

At this point we have a real-time algorithm that is able
to compute the pose of the camera. We always keep track
of the camera pose with 6 degrees of freedom, even if the
control law works in a ground plane. It allows us to track
interest points even if the ground is irregular.

3.2. Robot Localization

Since the localization algorithm is based only on vi-
sion the coordinate system has its center at the optical

center of the first camera in the reference sequence, with
one axis along the optical axis. Moreover, there is no
scale information. In order to control the robot, we need
to provide a position for the robot in a metric coordi-
nate system. We achieve that by entering manually the
length of the path to set the scale factor. The position
of the camera on the robot has been measured so we
can enter directly the rigid transformation between the
camera and the robot. Once the camera pose has been
computed, we compute the robot position and orienta-
tion with 3 degrees of freedom only because the robot
can be controlled only along three dimensions (transla-
tion on the ground plane and rotation around the verti-
cal axis). To do that, we assume that the ground is lo-
cally planar and horizontal at the current position of the
robot.

4. Computing the Localization Uncertainty

Knowing the uncertainty of the robot localization com-
puted for the current frame has some important applica-
tions. It allows data fusion with other localization sensors
(such as an odometer). It could also be used for temporal
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filtering of the localization result if vision is the only
sensor.

Uncertainty in the localization can come from several
sources. The main one comes from the uncertainty in the
position of interest points. Interest points can be detected
with an accuracy on the order of one pixel. In the structure
from motion algorithm, this causes uncertainty in the 3D
positions of the cameras and the points. When computing
the localization of the camera, the result is affected by the
uncertainty of the landmarks positions in 3D space and
by the uncertainty on the positions of the interest points
detected in the current frame. This is the only source of
uncertainty we considered in our computation. So the
first step is to compute the uncertainty in the 3D recon-
struction which is detailed in Section 4.2, and we use
that to compute the uncertainty for the localization result
in Section 4.1. In both cases, we have a minimization
problem and the covariance matrix is obtained from the
inverse or the pseudo-inverse of the hessian (Hartley and
Zisserman, 2000). Propagating the uncertainties through-
out the reconstruction and the localization process is pos-
sible but very time consuming. Since we want to be able
to compute the localization uncertainty in real-time, we
had to make some trade-offs between speed and accu-
racy. Therefore, some sources of uncertainty were not
taken into account in our computation. These include the
inaccuracy of the internal parameters of the camera for
the vision part, and for the robot localization part, un-
certainty in the measurement of the transformation be-
tween the camera coordinate system and the robot coor-
dinate system (we assumed a rigid transformation here,
but in reality it is not rigid because of the suspension
system).

4.1. Uncertainty in the Localization

Let’s assume that the uncertainties of the 3D points have
been computed (the method used to compute them will be
detailed in Section 4.2). We want to compute the covari-
ance matrix Covcam associated to the pose of the camera
computed from n 3D/2D correspondences. The projec-
tion of point X j is detected in the current frame at the
2D position m j . The reprojection error for point X j is
e j = π (C X j ) − m j where π (C X j ) denotes the projec-
tion of point X j with the camera parameters C computed
for the current frame. We assume that e j follows the nor-
mal distribution N (0, � j ). The vector made with the 3D
points visible in the current frame is X = (. . . , X j , . . . )T .
This vector follows a normal distribution with mean
X0 = (. . . , X0

j , . . . )T given by the bundle adjustment
and covariance matrix Cov3d (which will be computed
in Section 4.2). Computing the maximum likelihood es-
timation of the camera pose means finding the best val-
ues for (C, X1, . . . , Xn) so that ‖G(C, X1, . . . , Xn)‖2 is

minimum, with:

‖G(C, X1, . . . , Xn)‖2

=
n∑

j=1

eT
j �−1

j e j +
⎛⎝ . . .

X j − X0
j

. . .

⎞⎠T

Cov−1
3d

⎛⎝ . . .

X j − X0
j

. . .

⎞⎠
(1)

In this expression, we assume that the n + 1 random vec-
tors e1, . . . , en, X are independent. Obviously, we have:

G(C, X1, . . . , Xn)

= (
eT

1 �
− 1

2

1 , . . . , eT
n �

− 1
2

n , (X − X0)T Cov
− 1

2

3d

)T
(2)

Computing �
− 1

2

j and Cov
− 1

2

3d is possible because � j

and Cov3d are real symetric definite positive matrices.
The right member of Eq. (2) is a random variable with
the normal distribution N (0, I5n). Once the minimum is
found, The result on the backward tranport of covari-
ance given in Hartley and Zisserman (2000) gives us the
covariance matrix (J T

G JG)−1 with JG the Jacobian ma-
trix of G. However, even by exploiting the sparseness of
the matrices, doing a full minimization with these equa-
tions would be too slow for the real-time localization.
So, as we have seen in Section 3, the pose is computed
by simply minimizing G̃(C)2 = ∑n

j=1 eT
j �−1

j e j . Sev-
eral iterations can be done in a few milliseconds when
using this approximation. The more complex formula-
tion of Eq. (1) is used only for the covariance matrix
computation because it needs to be done only once per
frame.

Computing JG gives a sparse matrix :

JG =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 B1 0 . . . 0

A2 0 B2

. . . 0
...

...
. . .

. . . 0
An 0 0 0 Bn

0 . . . . . . . . . . . .

0 . . . . . . Ci, j . . .
... . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3)

with A j = �
− 1

2

j
∂e j

∂C a 2 × 6 matrix, B j = ∂e j

∂ X j
a 2 × 3

matrix, Ci, j a 3 × 3 matrix. Cov
− 1

2

3d is a 3n × 3n matrix
defined by blocks Ci, j .

The covariance matrix Covcam associated to the current
camera pose is the 6 × 6 upper left block of (J T

G JG)−1.
Computing J T

G JG gives:

J T
G JG =

(
U W

W T V

)
(4)
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with U a 6 × 6 block, W a 6 × 3n block and V a 3n × 3n
matrix:

U = AT A = AT
1 A1 + AT

2 A2 + · · · + AT
n An (5)

W = (
AT

1 B1 AT
2 B2 . . . AT

n Bn
)

(6)

V =

⎛⎜⎜⎜⎜⎝
BT

1 B1 0 0 0

0 BT
2 B2 0 0

0 0
. . . 0

0 0 0 BT
n Bn

⎞⎟⎟⎟⎟⎠ + Cov−1
3d (7)

Finally, the covariance matrix associated with the cam-
era pose is:

Covcam = (U − W V −1W T )−1 (8)

In the general case, V is not a sparse matrix and the
computation of W V −1W T can take a lot of time. In or-
der to be able to compute the localization uncertainty in
real-time, an additional hypothesis should be done. If we
assume that the positions of the 3D points are independent
random variables, then Cov3d becomes a block-diagonal
matrix and matrix V can be rewritten :

V =

⎛⎜⎝BT
1 B1 + CT

1,1C1,1 0 0

0
. . . 0

0 0 BT
n Bn + CT

n,nCn,n

⎞⎟⎠
(9)

With this assumption Covcam can be computed very
quickly. Additionally, the computation of the covariance
matrix of the 3D points can also be simplified because
we need to compute only the blocks on the diagonal. Sec-
tion 4.2 details the computation of the covariance matrix
of the 3D points, then Section 4.3 compares the various
methods that can be used.

4.2. Uncertainty in the 3D Reconstruction

Note that the reconstruction of the reference sequence is
obtained by minimizing the sum of squared reprojection
errors using bundle adjustment. We obtain a maximum
likelihood estimation (MLE) of 3D points and extrin-
sic camera parameters assuming that the reprojection er-
rors obeys independent and identical zero mean Gaussian
distributions. This perturbation of errors propagates to a
Gaussian perturbation of the estimated parameters, such
that the covariance matrix may be estimated (Hartley and
Zisserman, 2000). Thus, for each key-frame of the ref-
erence sequence, we estimate the covariance matrix of
the 3D points seen by the key-frame (named Cov3d in
the previous paragraph) as a 3n × 3n diagonal block of

the full covariance matrix relating all the points and all
the cameras.

We use the general method of gauge constraints to
fix the reconstruction coordinate system and choose our
covariance matrix (Triggs et al., 2000). Among other
choices, the symmetric constraint on the reference cam-
era location (e.g. Lhuillier et al., 2006) is chosen since it
usually spreads evenly and minimizes the uncertainties
on all reference cameras. Many details about a practical
computation of points and cameras covariances for com-
plex reconstructions like ours are given in Lhuillier et al.
(2006).

A simplification of this method can also be used if we
make the additional assumption that there is no uncer-
tainty for the cameras in the 3D reconstruction. In this
case, the covariance matrix for each point can be com-
puted independently. We consider a point X j seen by n
cameras Ci , i ∈ {1, . . . , n}. We want to compute its co-
variance matrix C j, j . We assume that the n reprojection
errors of this point denoted ei in image i follow indepen-
dent and normal distributionsN (0, �i ). Furthermore, we
assume that �i = σ 2 I2, with σ 2 an unknown parameter.
Thus, the probability density function of the statistical
model is:

f (X j , σ
2) = 1

(2πσ 2)n
e−

∑
i ‖ei ‖2

2σ2 (10)

The MLE of X j and σ 2 are X̂ j minimizing X j �→∑
i ‖ei‖2 and σ̂ 2 =

∑
i ‖ei ‖2

2n . We replace the MLE of

σ 2 by the unbiased estimator σ̂ 2 =
∑

i ‖ei ‖2

2n−3
, with 2n the

number of observations, and 3 the number of degrees
of freedom of X j . This gives us �i = σ̂ 2 I2. Finally,
we obtain the estimation of C j, j by the inverse of J T

F JF

where JF is the jacobian matrix of the vector error F with

F = (eT
1 �

− 1
2

1 , . . . , eT
n �

− 1
2

n )T .
Figure 6 shows the confidence ellipsoids computed

with this method for the points visible in one key frame of
the loop sequence (see Fig. 20). Because of the forward
motion of the camera, most ellipsoids have a major axis
much longer than the minor axis.

4.3. Comparison

In order to choose between all the possible trade-offs we
made a comparison of four methods based on different
assumptions:

• In method 1, Covcam is computed with the full matrix
Cov3d .

• In method 2, Cov3d is computed with the general
method, but only the diagonal blocks are used in the
computation of Covcam .
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Figure 6. 99% confidence ellipsoids computed for the points visible in one frame (view from the top).

• In method 3, Cov3d is computed with the assumption
that the camera have no uncertainty in the reconstruc-
tion process.

• In method 4, we simply ignore the uncertainty of the
3D positions of the points and the only source of un-
certainty comes from the positions of the 2D points in
the current frame.

Method 1 takes too much time to be used in a real-
time system, but we included it in this comparison to
know if using the non diagonal blocks of Cov3d was
mandatory. We computed the length of the major semi-
axis of the 90% confidence ellipsoid associated to the
camera positions for all four methods. The result is
shown on Fig. 7 for a few frames of the video used in
Section 6.6.

As we could expect, taking into account the uncer-
tainty of the 3D points increases the size of the ellip-
soids. Taking into account the uncertainty of the cam-
eras in the reconstruction has the same effect. However,
the difference between method 1 and method 2 is small,
and since method 2 can be used in real-time, it seems
that it is a good method for computing localization un-
certainty. Computation time is the same for methods 2
and 3, the difference lies in the complexity of the imple-
mentation for computing the diagonal elements of Cov3d .
With the simplification made in method 3, the size of the
confidence ellipsoid is slightly underestimated, but the
result is still much closer to the one obtained with the
full computation than with method 4. A comparison be-
tween the size of the confidence ellipsoid and the local-
ization error measured with the RTK GPS is also done in
Section 6.6.3.

5. Experimental Vehicle and Control Law

This part is presented only for the completeness of the
paper. It refers to a work made by another team of the
laboratory (see Thuilot et al. (2004) for more details).

5.1. Vehicle Modeling

The experimental vehicle is called the Cycab. With its
small dimensions (length: 1.90 m, width: 1.20 m), it can
transport simultaneously two passengers. This vehicle is
entirely under computer control. For the experimenta-
tions detailed in this paper, only the front wheels are
steered, so the mobility is the same as a common car.

A classical kinematic model, the tricycle model, where
the two actual front wheels are merged as a unique virtual
wheel is used (see Fig. 8). The vehicle configuration can
be described without ambiguity by a 3 dimensional state
vector composed of s, curvilinear coordinate along the
reference path of the projection of vehicle rear axle center,
and of y and θ̃ , vehicle lateral and angular deviations
with respect to this path. On the other hand, the control
vector is defined by the vehicle linear velocity and the
front wheel steering angle, denoted respectively v and δ.
Vehicle model is then given (see e.g. de Wit (1996)) by:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ṡ = v
cos θ̃

1 − yc(s)

ẏ = v sin θ̃

˙̃θ = v

(
tan δ

l
− c(s) cos θ̃

1 − y c(s)

) (11)



246 Royer et al.

0 5 10 15 20 25 30 35
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Frame number

M
a
jo

r 
s
e
m

ia
x
is

 (
m

e
te

rs
)

method 1
method 2
method 3
method 4

Figure 7. Major semiaxis (in meters) of the 90% confidence ellipsoid with four computation methods for a few frames localized with reference to

a given key-frame. Frame to frame variations are mostly due to changes of the 3D-2D correspondences.

Figure 8. Tricycle model description.

where l is the vehicle wheelbase and c(s) denotes the ref-
erence path curvature at coordinate s. It is assumed that:
y �= 1

c(s)
(i.e. the vehicle is not on the reference path cur-

vature center) and θ̃ �= π
2

[π ]. In practical situations, if the
vehicle is well initialized, such difficulties never arise.

5.2. Control Law

The control objective is to bring and maintain state vari-
ables y and θ̃ to 0, relying uniquely on control variable
δ (v is considered as a possibly varying free parame-
ter). The whole vehicle state vector (s, y, θ̃ ) is avail-
able with a satisfactory accuracy by comparing vehicle

absolute position and heading, provided by the vision
algorithm, with the reference path. Via invertible state
and control transformations, the nonlinear vehicle model
(11) can be converted, in an exact way, into the so-
called chained form (see Samson, 1995). (a1, a2, a3) =
(s, y, (1 − yc(s)) tan θ̃ ) is the chained state vector and
M = (m1, m2)T = ϒ(v, δ)T is the chained control vec-
tor. From this, a large part of linear systems theory can be
used (but, since the transformations are exact, it is not re-
quired that the vehicle state is in a specific configuration,
contrarily to tangent linearization techniques). More pre-
cisely, it can be noticed that path following (i.e. control
of a2 and a3) can be achieved by designing only m2 as a
linear proportional derivative controller. The expression
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of the actual control variable δ can then be obtained by
inverting the chained control transformation. Computa-
tions, detailed in Thuilot et al. (2004), lead to:

δ(y, θ̃ ) = arctan

(
l

[
cos3 θ̃

(1 − c(s) y)2

(
d c(s)

d s
y tan θ̃

− Kd (1 − c(s) y) tan θ̃ − K p y

+ c(s) (1 − c(s) y) tan2 θ̃

)
+ c(s) cos θ̃

1 − c(s) y

])
(12)

with K p, Kd > 0 the proportional derivative gains.

6. Experimental Results

6.1. Methods for Performance Evaluation

6.1.1. Using GPS Data as the Ground Truth. Most of
the results presented in this paper, show the accuracy of
the system by comparing the results of the algorithms
with the data recorded by a Real Time Kinematic (RTK)
GPS mounted on the Cycab. But comparing data obtained
by two different sensors is not completely straightfor-
ward. This paragraph explains how results from the vi-
sion algorithms are compared to GPS measurements.

Two operations are needed so that both data sets can
be compared. First the GPS sensor is not mounted on
the vehicle at the same place as the camera. The GPS
receiver is located above the mid-point between the rear
wheels of the car, while the camera is in front of the ve-
hicle (1.15 meters in front of the GPS sensor). So the two
sensors don’t have the same trajectory. From the GPS
positions, we computed a “virtual” GPS which indicates
what a GPS would record if it was mounted on the Cycab
at the same place as the camera. In addition, the 3D re-
construction is done in an arbitrary euclidian coordinate
system, whereas the GPS positions are given in another
coordinate system. So the whole 3D reconstruction has
to be transformed using a global rotation, translation and
scale change. The approach described by Faugeras and
Herbert (1986) is used to compute this global transforma-
tion. After this transformation has been made, the cam-
era and GPS positions are available in the same metric
coordinate system. This process is done for the 3D recon-
struction of the reference video sequence. After that, the
localization algorithm gives directly the camera positions
in the same metric coordinate system.

The GPS sensor we use is a Real Time Kinematics
Differential GPS (Thalès Sagitta model). It is accurate
to 1 cm (standard deviation) in an horizontal plane when
enough satellites are available. The accuracy on a vertical
axis is only 20 cm on our hardware platform. So we dis-
card the vertical readings and all the localization errors

reported in this article are measured in an horizontal plane
only. In any case, vertical errors could be interesting for
a flying robot but not for our application.

6.1.2. Reconstruction and Localization Error. We
want to distinguish between the error that is attributed to
the reconstruction process and the error coming from the
localization algorithm. So we define two errors to mea-
sure the reconstruction and the localization accuracy. The
reconstruction error is the average distance between the
camera positions computed in the structure from motion
algorithm and the true positions given by the RTK GPS
(after the two trajectories have been expressed in the same
coordinate system). This error is mostly caused by a slow
drift of the reconstruction process. It increases with the
length and complexity of the trajectory. That means the
3D model we build is not perfectly matched to the real
3D world.

The definition of the localization error is a bit more
complex. To understand why, suppose the robot is exactly
on the reference path and the localization algorithm indi-
cates that the robot is on the reference path. In this case,
the localization error should be zero, and controlling the
robot so that this error is kept zero would result in the
robot following the reference path. But if we computed
directly the difference between the 3D position given by
the localization algorithm and the position given by the
GPS, we would get the reconstruction error which is not
zero in most cases. In fact, in our application, a global
localization is not necessary, only a relative position with
respect to the reference trajectory is needed.

We define the localization error in order to measure the
error we make in computing this relative localization with
the vision algorithm. First we compute the lateral devia-
tion between the current robot position G1 and the closest
robot position G0 on the reference trajectory. This is il-
lustrated on Fig. 9. The robot position is always defined
by the position of the middle point of the rear axle of the
vehicle. This position is directly given by the RTK GPS.
When working with vision it must be computed from the
camera position and orientation. The 3D reconstruction
used as the reference has already been transformed so that
it is in the same metric coordinate system as the GPS data.
We start with the localization of the camera C1 given by
the localization part of the vision algorithm. From C1

we compute the corresponding GPS position G1 (it is
possible because we measured the positions of the GPS
receiver and the camera on the vehicle). Then we find the
closest GPS position in the reference trajectory: we call it
G0. At point G0 of the reference trajectory, we compute
the tangent

−→
T and normal

−→
N to the trajectory. The lat-

eral deviation computed with vision is yv = −−−→
G0G1 · −→

N .
The lateral deviation is computed from the GPS mea-
surements as well and we get yg (in this case we have
directly G0 and G1). yg and yv are the same physical
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Figure 9. Computing the lateral deviation from the reference trajec-

tory.

distance measured with two different sensors. Then the
localization error is defined as ε = yv − yg .

6.2. 3D Reconstruction Results

The problem we want to solve is robot localization.
Our goal is not to build the best reconstruction of the
environment. In fact, we are convinced that an accurate
reconstruction is not absolutely necessary for robot nav-
igation, especially if the robot stays on the learning path.
The map should be accurate on a small scale (less than
about 50 meters) but long term drift is acceptable. We will
discuss this point in more detail when we examine the
case of closed trajectories. Nevertheless, it is interesting
to see how accurate our reconstruction is, and to make
sure it is accurate on a small scale. The results presented
in this section concern only the reconstruction of the
camera motion. The accuracy of the structure was not
measured.

Figure 10. A few images from outdoor1.

Four sequences called outdoor1 through outdoor4

were recorded by driving manually the vehicle on a 80 m
long trajectory. The four sequences were made approxi-
mately on the same trajectory ( with at most a 1 m lateral
deviation), the same day. The lens used was a standard
wide angle lens with a field of view of roughly 60◦. We
computed a 3D reconstruction from each of the four se-
quences. Depending on the sequence, the automatic key
frame selection gave between 113 and 121 key frames.
And at the end of the reconstruction there were between
14323 and 15689 3D points. A few images extracted
from outdoor1 are shown on Fig. 10. The positions of
the key frames computed from this sequence are shown
on Fig. 11 (as seen from the top) along with the trajectory
recorded by the GPS. The reconstruction error for each
of the sequences was 25, 40, 34 and 24 cm for a 80 m
long trajectory with two large turns. This error is mostly
caused by a slow drift of the reconstruction process.

6.3. Localization Accuracy

6.3.1. Positional Accuracy. The localization accuracy
was computed from the same sequences outdoor1

through outdoor4 we used in Section 6.2. Each sequence
was used in turn as the reference sequence. We computed
a localization for outdoori using outdoor j as the refer-
ence sequence for each j ∈ {1, 2, 3, 4} and i �= j . So we
made twelve experiments.

The localization error was computed with the method
explained in Section 6.1.2. From this we can compute
the standard deviation of ε for a whole trajectory : we
call this the average localization error. We computed the
average localization error for each of the twelve experi-
ments : the smallest was 1.4 cm, the largest was 2.2 cm
and the mean over the twelve videos was 1.9 cm. Fig. 13
shows the lateral deviation and localization error for one
experiment with a 1.9 cm average localization error. The
error measured in this experiment is very close to the GPS
accuracy (1 cm of standard deviation in the best condi-
tions). So the noise in the GPS measurements contributes
to the localization error given in this paragraph.
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Figure 11. Position of the key frames (circles) with reference to the trajectory recorded by the RTK GPS (continuous line). Units in meters.
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Figure 12. Lateral deviation measured with the RTK GPS yg (blue) or with vision yv (red). The two curves are nearly the same.

6.3.2. Rotational Accuracy. In order to evaluate the ro-
tational accuracy, we made an indoor experiment bec-
ause the GPS can’t give accurate angular measurements.
The camera was mounted on a rotating platform, with
the optical center on the rotational axis. The angle of the
platform can be read with about ±0.1◦ accuracy. We com-
pared the orientation α provided by the localization part
of the vision algorithm to the angle α0 given by the plat-
form. For this experiment (and the following ones till the
end of the article), we used a fish eye lens providing a 130◦

field of view (in the diagonal) and we made a measure-
ment for each angle from α0 = −94◦ to α0 = 94◦ with

a 2◦ increment. The reference trajectory was a straight
line (1 m long) oriented along the optical axis (which
was in the 0◦ direction). The result of this experiment ap-
pears on Fig. 14. The algorithm was not able to provide
a reliable pose of the camera when the angle reached 95◦

because there were not enough point correspondences.
The angular accuracy measured with this setup is about
±0.1◦, which is about the same as what can be read on
the platform. The algorithm provides a useful angular in-
formation for a deviation up to 94◦ on either side with
this camera. Of course, with such an angular deviation
from the reference frame, the part of the image which
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Figure 13. Localization error ε.
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Figure 15. Images taken at −90◦, −60◦, −30◦, 30◦, 60◦ and 90◦ orientation, with interest points correctly matched.

can be used is very small, and the localization becomes
impossible if there is an occultation in this area. Images
captured at different orientations are shown on Fig. 15.

6.4. Autonomous Navigation

We also made some experiments where we tested the
whole system. A reference video sequence was recorded
and a 3D reconstruction was computed from it. Then the
robot had to follow the same path in autonomous naviga-
tion. We recorded GPS measurements at the same time
we recorded the learning video sequence. Then we also
recorded GPS measurements in autonomous navigation.

The learning path was 127 meters long. It was chosen
so that there are both straight lines and tight turns, and
because the buildings are sometimes far (less visual fea-
tures) and sometimes closer. Vehicle speed was chosen
constant and equal to 2 km/h. The result of the struc-
ture from motion algorithm is displayed on Fig. 16 as
seen from the top. There were 182 key frames and 16295
points correctly reconstructed.

The reference video sequence was recorded on a
cloudy day. The first two navigation experiments were
made a few days later with a cloudy weather too. But the
second set of two was made on a clear day with the sun
low in the sky and sometimes in the field of view of the
camera. A few images from the video recorded during
the last navigation experiment as well as the correspond-
ing key frame are displayed on Fig. 17. The last image
outlines the necessity of having a wide field of view and
local visual features all over the frame. It shows the inter-
est points which are used in the localization. The center
of the image is completely overexposed because the sun
is in front of the camera, but the building on the left can
still be used for computing the camera pose.

For comparison purposes, a fifth experiment has also
been performed, relying on the RTK GPS sensor (instead

of the vision algorithms) to provide the vehicle state vec-
tor which is used in the control law. Lateral deviations
from the reference path recorded during 3 of these ex-
periments are displayed with the same scale on Fig. 18.
Letters enable to identify each part of the trajectory, with
respect to the letters shown on Fig. 16.

It can be observed that the vision algorithms detailed
in this paper appear as a very attractive alternative to
RTK GPS sensor, since they can provide with roughly
the same guidance accuracy. It can also be noticed that
these vision algorithms are reliable with respect to out-
door applications since they appear robust to weather
conditions: guidance accuracy is not significantly altered
in as harsh conditions as the sunny ones. More precisely,
guidance performances during straight lines and curves
following are investigated separately on Tables 1 and 2.
Table 1 reports the mean value of the lateral deviation
(|y|) during straight lines part of the trajectory, denoted
B and D. In the most favorable situation (cloudy weather),
vision algorithms meet the performances obtained with
the RTK GPS sensor. In the worst case (sunny weather),
performances are slightly damaged, but are still very sat-
isfactory. Table 2 displays the extremum values of y
recorded during curved parts of the trajectory, denoted
C and E. Once more, it can be observed that guidance
performances are roughly similar.

For these experiments, guidance accuracy seems to be
limited by the ability of the control law to keep the robot
on the trajectory. This explains the similarity between
the two vision based lateral deviations (“Cloudy 2” and
“Sunny 1” on Fig. 18). The difference between the RTK
GPS and vision based control may be explained because
vehicle heading is not computed in the same way with
both sensors. This is especially visible in curves. When
relying on the RTK GPS sensor, vehicle heading is in-
ferred from velocities measurements (obtained by dif-
ferentiating successive position data) under non-slipping
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Figure 16. 3D reconstruction computed from the reference video sequence (top view). Black squares are the position of the key frames. The

landmarks appear as dots. Letters indicate different parts of the trajectory.

Figure 17. Three frames taken during the autonomous navigation (bottom) and the corresponding key frames (top).
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Figure 18. Lateral deviation from the reference trajectory.

assumptions, smoothed via a Kalman filter. The filter in-
troduces a delay and the result may not be as accurate as
the orientation computed with vision.

6.5. Navigation on a Closed Loop

The case of a closed loop is very interesting because it is a
good way to visualize the influence of the reconstruction
error on robot navigation. Of course, it would be possible

Figure 19. 3D Reconstruction for the loop sequence.

Table 1. Mean of the lateral deviation in straight lines.

Sunny 1 Sunny 2 Cloudy 1 Cloudy 2 GPS

B 3.5 cm 4.8 cm 3.4 cm 2.8 cm 2.7 cm

D 2.4 cm 1.9 cm 1.8 cm 2.3 cm 1.8 cm

Table 2. Maximum and minimum deviation in curves.

Sunny 1 Sunny 2 Cloudy 1 Cloudy 2 GPS

C max 22.0 cm 26.8 cm 20.1 cm 20.4 cm 37.9 cm

C min −20.2 cm −25.4 cm −22.2 cm −21.1 cm −14.3 cm

E max 29.1 cm 35.4 cm 30.0 cm 29.2 cm 13.9 cm

E min −16.5 cm −19.7 cm −16.5 cm −16.1 cm −16.3 cm

to treat specifically the case of closed loops by searching
point correspondences between the last image of the se-
quence and the first one in order to reduce reconstruction
error. But that’s not our purpose. We want to use closed
loops as a way to illustrate what happens in the presence
of reconstruction error. An example of a closed loop tra-
jectory appears on Fig. 19 with a few images from the
video sequence on Fig. 20. The position of the first and
last cameras should be the same. But because of some
drift in the reconstruction process, the reconstruction of
the loop is not exactly closed (the gap measures 1.5 m).
In that case, some points are reconstructed twice : once
when they are seen at the beginning of the sequence and
once when they are seen at the end of the loop. In spite
of this reconstruction error, the robot could navigate con-
tinuously on this trajectory (for several loops), without a
hint of jerky motion at the seam.
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Figure 20. Some frames from the loop sequence.
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Figure 21. Lateral deviation computed at the beginning or at the end of a loop.

To understand why, we have to recall which variables
are used in the control law. Along with the curvature of
the path, the two other variables are the lateral devia-
tion from the reference path yv and the angular devia-
tion. Figure 21 helps to understand what happens. The
localization is computed with reference to the points
cloud visible at one moment by the camera (the points
which appear on only one key frame). The absolute local-
ization is not used for the computation of the lateral and
angular deviations. What is important is the localization
in a local reference frame whose center is the position of
the robot at the key frame. On Fig. 21, this local reference
frame is drawn for the beginning of the loop (I1,

−→
T1 ,

−→
N1)

and for the end of the loop (IN ,
−→
TN ,

−→
NN ), where

−→
T and−→

N are the unit vectors tangent and normal to the refer-
ence trajectory. The change from the end of a loop to the
beginning of the next one corresponds to a change of the
local reference frame which affects simultaneously the
reference trajectory, the current localization, and the 3D
points currently visible. In this case, the lateral deviation
yv has no discontinuity. The same is true for the angular
deviation.

This characteristic suggests that it should be possi-
ble to link several short trajectories (of about 100 m) to
provide the robot with enough information to travel for
several kilometers. A global bundle adjustment would be
too costly for trajectories of several kilometers, but we

see here that a global optimization of this scale should
not be necessary. Good accuracy on the small scale (50 m
to 100 m) is enough.

6.6. Navigation on a Path Different from the Learning
Path

6.6.1. Experiment. From a practical point of view, ex-
actly following the path that was recorded can cause some
problems. Ideally, if there is an obstacle on the trajectory,
the robot should be able to go around it. That’s were the
expense of computing the 3D structure of the environ-
ment pays off. Knowing the 3D position of the interest
points allows the robot to localize itself outside the learn-
ing path and to navigate in the neighborhood of this path.
We made an experiment to see how much the robot could
depart from the learning trajectory.

First, a learning video sequence was recorded on a
70 meters long trajectory. From this video sequence, a
map was computed. A few images from the learning
video sequence are shown on Fig. 22. This sequence was
reconstructed with 102 key frames and 9579 points. For
this experiment we defined a new trajectory (target tra-
jectory), slightly different from the learning trajectory.
The robot had to follow the target trajectory while using
the learning trajectory and video sequence to localize it-
self. The experiment was conducted two weeks after the
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Figure 22. Images extracted from the learning video sequence.

Figure 23. 3D reconstruction of the learning trajectory (black squares) and target trajectory (broad green line) viewed from the top.

learning trajectory was recorded. Figure 23 shows the 3D
reconstruction of the learning sequence (black squares)
and the target trajectory that was defined in a graphic ed-
itor (broad green line). The target trajectory was defined
so that it reproduces what would happen if the robot had
to avoid two obstacles. The target path departs from the
learning path on the right at the beginning and then on
the left a few meters later. The maximum lateral devia-
tion from the learning trajectory is about 3 meters. The
angular deviation is at most 20◦. We parked a vehicle
on the learning trajectory to add some occultations (see
Fig. 24) to simulate the images the robot would use if it
had to avoid a real obstacle. Some pedestrians were also
passing by, occulting some parts of the image from time
to time. The target trajectory was simply defined with the
mouse in a graphical editor. Defining a new trajectory
doesn’t require expensive computations so this could be
done online if necessary. For example, we could use a
sensor (radar, sonar or laser range finder) to detect ob-
stacles in front of the robot. If an obstacle was detected
and localized by this sensor in the robot’s coordinate sys-
tem, it would be possible to modify the trajectory in 3D
space in the same coordinate system without stopping the
vehicle.

6.6.2. Localization and Navigation Results. Let’s ex-
amine the path that was really followed by the robot dur-
ing this experiment. We will call it the result path. It was
accurately recorded by the RTK GPS sensor. The robot
nearly followed the target path. This is visible on Fig. 25.
The blue curve shows the lateral deviation of the target
path with reference to the learning path. The red curve
is the lateral deviation of the result path with reference
to the learning path. The red curve was obtained by us-
ing the GPS measurements. The lateral deviation from
the learning path directly computed from the result of
the localization algorithm is displayed on the top row of
Fig. 26. At this time, we don’t use any filters to smooth
the result of the localization algorithm. The result path
deviates slightly from the target path in the turns. That is
probably because we defined the target path in a graph-
ical editor without knowing if the robot could steer fast
enough to really follow the path. The lateral deviation
computed with the vision algorithm matches the GPS
measurements well in those parts of the trajectory.

The localization is more noisy when the robot departs
from the learning trajectory but the localization is still ac-
curate enough to drive the robot. We recorded the ground
truth with the GPS so were are able to measure the error
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Figure 24. Interest points correctly matched between the reference key frame and the current image. Left: when the robot is nearly on the learning

path. Right: when the lateral deviation is maximal. The reference frame is on top.

Figure 25. Lateral deviation of the target trajectory (blue), and lateral deviation measured by the GPS during the navigation experiment (red).
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Figure 26. Lateral deviation computed by the vision algorithm (top), Lateral deviation error (middle) and number of interest points correctly matched

(bottom).

that was made by the localization algorithm when com-
puting the lateral deviation from the target path. This error
appears on the middle of Fig. 26. When the robot is on the
learning path, the error is less than 2 centimeters (the same
accuracy as our GPS). When the robot is farther from the
learning path, this error increases to more than 10 cen-
timeters. The reason lies in the number of points matched.
Figure 24 shows the interest points that were correctly
matched between the current frame and the reference
frame for two robot positions during the navigation ex-
periment. We can see that the algorithm matches less
points when the robot is far from the learning path. This
is also visible at the bottom of Fig. 26 which displays the
number of points used in the localization process for the
whole experiment. When the robot is on the learning path,
more than 200 points are matched. This number drops to
100 when the robot is 3 meters away. What is also im-
portant to notice is that the points close to the camera are
lost first, and those points are those which provide the
best positional accuracy. Points at infinity on the other
hand can only give some rotational information. Table 3
shows how localization accuracy is related to the number

Table 3. Number of points matched and localization error.

Zone A B C

Time limits 20−70 s 70−115 s 115−170 s

Average number of points 119 220 110

Localization error 8 cm 1 cm 8 cm

of points matched. The graph of Fig. 26 was divided in
three parts. Zones A and C correspond to parts where
the robot was far from the learning trajectory and zone B
correspond to a part where the robot was on the reference
trajectory. For each zone, the average number of points
matched was computed as well as the standard deviation
of the error of the vision algorithm.

The robot can depart from the learning trajectory up to
a limit which depends on the number of points that can
be matched between the reference video sequence and
the current image. Points can be lost because they may
be seen from a different point of view and the correlation
score is not high enough to make a valid match. This is
the case if the lateral deviation is large. When angular
deviation is important, points are lost because they go
out of the field of view of the camera. Nothing can be
done to correct that except going to an omnidirectional
camera. On the other hand, we could take into account
the difference in point of view by using wide baseline
matching techniques or by predicting the appearance of
the landmarks based on the camera position.

6.6.3. Validation of the Localization Uncertainty. The
aim of this analysis is to make sure that the size of the con-
fidence ellipsoids varies in the same way as the localiza-
tion errors measured with the RTK GPS. The experiment
presented in Section 6.6 gives us an opportunity to make
an experimental validation of the computation of the lo-
calization uncertainty. In the experiments described in
paragraph 6.3.1, the confidence ellipsoids were too small
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Figure 27. Comparison between the major semiaxis of the 90% confidence ellipsoid computed with the vision algorithm (black) and localization

error measured with the RTK GPS (grey). Vertical scale in meters.

compared to the accuracy of the RTK GPS to have some
meaningful results.

For each video frame taken during the autonomous
navigation, we computed the length a of the major semi-
axis of the 90% confidence ellipsoid with methods 2, 3
and 4 as explained in Section 4. Method 1 was not in-
cluded in this comparison because it is not a real-time
method. The localization error ε was also computed by
using the RTK GPS measurements in a way slightly
different from what is explained in Section 6.1.2. In
Section 6.1.2, the measurements from both sensors were
brought in the same coordinate system and the position
of the cycab was computed. Then the localization error
was measured along the normal to the trajectory. Here,
the same computations are done to bring the data sets
from both sensors in the same coordinate system, but
the localization error is the distance between the position
computed with vision and the position computed with the
GPS. It includes the error along the normal and the error
along the tangent to the trajectory. Figure 28 shows the
localization error ε compared to the length a2 of the major
semiaxis of the 90% confidence ellipsoid computed with
method 2. The major semiaxis computed with method 2 is
roughly of the same size as the localization error and that
both quantities vary in the same way. This experiment
shows that method 2 is a valid method for computing the
localization uncertainty.

A comparison can be made between the three meth-
ods used to compute the localization uncertainty.
Figure 28 shows for each method the histogram of log2( a

ε
)

for every frame in the video sequence. If we assume zero
uncertainty on the cameras in the 3D reconstruction (in
method 3), the length of the major semiaxis is nearly half
of the length computed with method 2. Ignoring the un-
certainty on the 3D points (in method 4) conducts to an
even larger underestimation of the size of the ellipsoid.

6.7. Computation Times

The computation times given here were measured on a
3 GHz Pentium 4 processor with an image size of 512 ×
384 pixels. The code of the interest point detection and
matching uses the SSE2 instruction set. Off line map
building for a sequence with 100 key frames such as the
one on Fig. 23 takes about 15 min. For a larger sequence
such as the one on Fig. 3 with approximately 300 key
frames, map building is done in 60 min. Most of the time
is spent in the bundle adjustment. The localization runs
at 15 frames per second (which is also the frame rate
of our camera). The computation time can be roughly
divided as: 35 ms for interest points detection, 15 ms for
matching, 10 ms for the pose computation and 5 ms for
the uncertainty computation.

6.8. Database Management

The memory needed to store the 3D model of the environ-
ment is very reasonable because we don’t need to keep
the whole key frames. We need to keep only image data
around the interest points to compute the ZNCC as well
as the 2D and 3D coordinates of the points. With about
150 bytes per interest point and about 500 interest point
per key frame, each key frame takes less than 100 Kb of
memory. Since the model is built with one key frame per
meter on average, storing a 1 kilometer long trajectory
needs about 100 Mb. Computers can handle this amount
of data without difficulty.

From a practical point of view, keeping the model of
the environment up to date is needed even if localization
is possible with some modifications of the environment
(see Royer et al. (2005c) or Fig. 24 for example). We
have made a lot of experiments during the past two years
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Figure 28. Histogram of log2( a
ε

) for methods 2, 3 and 4.

in different places. We found that once a model is built,
it can be used during a few weeks or more depending of
the season and the kind of place. Buildings don’t change
much, but trees can change quickly in spring and fall. We
have not developed a method to update the model yet,
but we have some ideas about how to do that. During au-
tonomous navigation, the pose of the camera is computed
and the interest points are detected for each frame. We
can store this data every time the camera is near a key
frame so that at the end of a navigation experiment we
have all the necessary information to update the database.
Then we could match the interest points in the sequence
recorded and compute the 3D position of the points. A
bundle adjustment could be used to refine the structure.
New points could be added to the model, and points
which have not been used since a long time could be
removed.

7. Conclusion

We have presented a sensing device which enables a
robotic vehicle to follow a trajectory obtained from a
human guided experience, relying uniquely on monocu-
lar vision. When following the same path, the localiza-
tion accuracy is approximately 2 cm, nearly the same
as a RTK GPS sensor. The vision system also provides
with an orientation accurate to 0.1◦. In practice, both sen-
sors allow the robot to navigate autonomously with the

same accuracy. When the robot departs from the learning
path, the performance of the vision algorithm is some-
what degraded but still satisfactory in the case of obsta-
cle avoidance for example. These two sensing devices
appear complementary: autonomous navigation in urban
environments cannot satisfactorily be addressed by RTK
GPS sensors since tall buildings can disturb satellite re-
ceiving. These buildings however offer a lot of visual
features which can be used to feed vision algorithms.

The main difficulty with the vision algorithm is to keep
a map of the environment up to date. Even if the experi-
ments presented in this paper have shown that the local-
ization algorithm is robust to some changes, it may not be
enough for an ever changing environment. For example
in a city, cars parked along the side of the road change
from day to day, trees evolve according to the season,
some buildings are destroyed while others are built or
modified. So our goal is to have a method to update the
map automatically in order to take these modifications
into account.
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