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Objectives

1.

To propose a new stereo matching method using the
population-based Markov Chain MonteCarlo (Pop-
MCMC), which belongs to the sampling-based methods.

Comparison of performance of POP-MCMC with other
methods such as SA, SWC, and BP.
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The goal of stereo matching is to determine
disparities (the displacement between the

positions of the two points, Z).
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Recall Stereo Matching Algorithm
It can be classified into two approaches.

1. Local Approach:

Disparities are determined by comparing the intensity values in local
windows by some measures such as SAD, SSD, and Birchfield-Tomasi

measure.

Although they are fast, they have ditficulties in obtaining an accurate
disparity map due to some intrinsic difficulties including the noise and

choosing appropriate window size problems. — Better to use global approach

2. Global Approach:

Exchanging data between multiple samples.

Apply the smoothness constraint that reflects the smoothly varying

surface assumption .




Problems of Previous Works

Originally, Monte-Carlo (MC) method is used since it’s the most
primitive sampling based method (it generates samples from a given
target distribution or to integrate functions in high dimensional space

for energy minimization to solve the stereo matching problem).

But there is a problem to apply to vision applications as an optimizer,

which takes infinitely long time.

Thus, to resolve these problems, Markov Chain Monte Carlo (MCMC)

methods had been tried (a new sample is drawn from the previous

sample with a local transition probability, based on the Markov chain).

But there is also a problem since most MCMC methods allow only local
moves in a large solution space, it still takes very long time to reach the

global optimum.




Problems of Previous Works

To overcome the limitations of MCMC methods as an optimizer,

Swendsen-Wang Cuts, SWC, was proposed.

Advantages over the previous methods are :

® Bigger local moves are possible than in previous methods while maintaining the
detailed balance.

® SWC uses Simulated Annealing (SA) to find the global optimum.

Although SWC allows bigger local moves, a very slow annealing
process is needed to approach the global optimum with probability 1.
This is an apparent drawback of SWC.

Therefore, we need a faster annealing process for real vision
applications. However, fast annealing does not always guarantee the

global optimum and the samples are often trapped in local optima.




The goal of Pop-MCMC
1. To overcome the drawbacks of SWC for stereo matching

problem

2. To obtain a lower energy state faster than other sampling
methods such as SWC (Optimization).

Done by
® Perform Global move (two or more samples are drawn at the same
time and samples can exchange information with each other) so the
mixing rate of drawn samples becomes faster (for optimization, faster
mixing rate means shorter time for the samples to approach the

global optimum).




Proposed Concepts

It uses multiple chains in parallel and produces multiple samples
at a time. It enables global moves by exchanging data between

samples, leads to faster mixing rate.

To apply to the stereo matching problem, we design two effective
2-D mutation and crossover (Genetic Algorithm) moves among

multiple chains to explore a high dimensional state space
efficiently.




Proposed Concepts

Pop-MCMC generates multiple chains in parallel with ditferent
temperatures, and exchanges information among them to accelerate

the mixing rate (the Parallel Tempering , PT)

PT aims to overcome the problems of single process MCMC using a
Metropolis-Hastings update, which has low mixing rate. The basic
idea of PT is to simulate multiple replicas of the original system in
parallel at a series of different temperatures, and swap the

configurations with a Metropolis—Hastings criterion.




Proposed Concepts

e The target distribution of the ith chain is ®®X == XT,
¢ The idea of PT is illustrated below

interaction




Proposed Algorithm

1.

Segment—Based Stereo Energy Model : to improve the accuracy
of the disparity map. It also reduces running time since the
number of nodes is much smaller than pixel-based model. And,

mean-shift algorithm is used for the segmentation.

Pop-MCMC : to apply to Stereo Matching to find disparities for

creating high dimensional state space efficiently.




Segment-Based Stereo Energy Model

1. Each segment is defined asanode: vV  and each node is

assigned a label X, € {1,2,...,L} (# of possible labels is L)
2. Neighboring nodes ‘s’ and ‘t’ are connected with edges : (s, 1} e E

3. Constructing a graph G = (V,E)
4. The energy function is defined by

EX)=) Csga(f)+ D B dlfs # 1),

velV {s.tyeN
where
® X = current state of every segment
° f = An estimated plane for each segment

o Cere(f.) = A matching cost
sec(ty) & Csgal fu) = Z Clx, v, fulx, ¥)).

Q (x,v)el
A,




Segment-Based Stereo Energy Model

Bs,t = A penalty for different neighboring nodes of s and t
18.5,: =V 'BL[S- f)- 'S[S-. i,

where
. C(x,y,t,(x,y)) = The Birchfield-Tomasi cost
. BL(s,t) = The shared border length
*  S(s,t) = The mean color similarity defined by

- ! Rv, — Ry,| +|Gv, — Gv,| +|By, — B !
b(.ﬂ',f}:;(]—nﬁ"(lk| Vs VI|+| Vsﬁiﬁ V;|+| Va V;l)) —l_E"

where
o Ry, Gy,, and By, are ave. intensity values of segment Vs (bet. 0 - 255)

o Mean color similarity value is between 2 and 1 (when 2 neighboring

segments have similar intensities, it is closer to 1)

By varying V' we can control the relative effect of matching and
smoothness cost.




Segment-Based Stereo Energy Model

5. For each pixel, we calculate the initial disparity by using SAD and WTA,
using these initial disparities, we fit a plane for each segment. Thus, the

eq. of a plane in 3D—space 1S as
dix,vi=c1x +c2v 43,
where

° x and y are the coordinates of a pixel

* d(x,y) is its disparity




Segment-Based Stereo Energy Model

6.  Construct the algebraic equation for each segment
Alcy, o2, 3 ]T =B,
where
o The ith row of the matrix A is the coordinates [x,,y;,1] of the ith pixel
®  The ith row of the matrix B is the disparity d(x;,y;) of that pixel
7. We can find c1,c2,c3 from a least squares solution of above eq.
8. Outlier disparities are initially detected and removed by a disparity
crosschecking method.
9.

Once we find the plane parameters, we can further identify more outlier

disparities that are not close to the fitted plane.

/




Segment-Based Stereo Energy Model

10.

11.

12.

13.

14.
15.

16.

For those outlier disparities pixels, we re-estimate the correct disparities

by confining the search range to be small near the fitted plane.

The least squares method is repeated to update parameters c1,c2,c3

based on the modified disparities.

Next, above plane fitting process is repeated for each segment and newly

found planes are added to a list.
After that, each segment is assigned to a plane in the list that has lowest
C.

SEG value.

Then, we group the segments assigned to the same plane.

And, for each group, the above plane fitting is repeated to improve the

plane accuracy.

At last, we’ll have the final list of the planes to use.




Pop-MCMC

1. Given a target probability distribution T{X) X exp{—E{X)}.

2. Aim is to find the state X where the probability is
maximized.

3. In Pop-MCMC, we draw multiple samples from multiple

chains at the same time with respect to the following

distributions.

l ! Ei}is;}
T

(X)) =m(Xp) T ocexp

where

° T, is the temperature of ith chain

4. Each sample from each chain is chromosome, which
interacts with each other helps perform global moves.

o




4 N

¢ U = random number between 0-1
[nitialization
(] = 1
. _ / Q,, = mutation rate
u-{0,1]
Note:
L 4
® By varying Qm, we can control
M
v the rates between the global move
P ¥ (crossover) and local move
Mutation Crossover (mutation) .
s * If alarge number of chains are
Exchange used, Qm is usually set to a small
| value for faster convergence.
Fig. 2 The overall flow chart of the proposed Pop-MCMC algorithm
applied to stereo matching
o The three moves are repeatedly performed and samples are generated at each iteration.
o Proper Qm can be chosen due to the given problem, model, or number of chains. For ex, if a

° large number of chains are used, Qm is usually set to a small "value for faster convergence.
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Mutation Move

n th sample

i th chain




Mutation Move
® If the labels of two neighboring nodes s and t are different,

the edge connecting two nodes is removed.

® If the labels are the same, we determine whether the edge is
retained or not with the probability q..

® If there exists external field, we consider it in designing the

probability q..

|_ Kr' . ,.5'[_';,. )

ge=1—exp| —

fe P Cepaifyy) _|_1‘-"5E-::ifug? +2
Nivp Mivad

where
o v, and v, represent neighboring nodes
®  N(v) = number of the pixels in the node (segment) v,
o K; = a weighting factor for the chosen ith chain.

-




Mutation Move
® This process is repeated for all edge e =5, t € E.

* Next, nodes connected by remaining edges are considered as a

cluster. Thus, one cluster Vo is randomly selected.




Mutation Move
o The new label [’ for the selected cluster Vo is proposed as

> vev, CseG(fu=1')
EL‘EVD N(U:’.

+1— I (' = ﬁ..z)”.

(vi,v2)eN, v eV, v2é Vo

q"| Vo, X;) = cxp[—

where
o !l is the newly proposed label for Vo.

® X.is the current state of selected ith chain.




Mutation Move
* Based on Metropolis-Hastings, The acceptance probability is

a = min(l, yu)
SN T XD T S Y)
| ( { E(Xi) — E(Y)) }
=min | |, exp T

q(Vo | YiqU | Vo, Yi) )
g Vol Xog'| Vo, Xi) )

where
® Y, = the proposed state of the ith chain
* Q(Vo | X,) = the probability for selecting cluster Vo when current

e state is Xi.




J th chain

Exchange Move

n th sample

i th chain

n+1 th sample




Exchange Move

® We choose two chains and propose to exchange the

chromosomes of two chains.

® The proposal is accepted or not by the Metropolis—Hastings

rule.
a = min(1, y.)
= min (I ; ?fi()':j)ﬂ’j ()ffl))
i (Xi)m i (X;)
| I
= min (I . cxp[{E[X;) — E(X;)} - (f_ ?j)])
where

® X. and T, are the current state and temperature of the ith chain.




Crossover Move

n th sample n+1 th sample

i th chan

Vo

J th chain

o




Crossover Move

® Select 2 chains randomly and construct a cluster Vo similar to
Mutation Move except
I.  q.is constant, not adaptively determined with the matching costs or
the intensities of the input image.

2. When calculate q_, no need to check whether the labels of the nodes

are the same or not, so Vo can have nodes with different labels.

® Compared with the mutation move (requires the identifying and
LI A I IR S Y Ll S [ H
ICIIIUVIIIé l)l OCCEHHCEDS Ul dll UIC CU%CD COI111C Llllg LLIC 110UcCS wWilll

different labels), the selecting scheme and calculation of the

acceptance probability of Vo in the crossover move is much simpler.

® Enables high efficiency in computation, and freedom in constructing

of Vo helps to achieve faster convergence,

/




Crossover Move

® The acceptance probability

a =min(1, y.)
= min (l mi(Yi)mi(Y;) _ q(X;, X;|Y;, YJ'))
(X (XG) (Y, Y51XG X))

. ( H;‘(‘Fs)ﬂji‘l’j))
=min | 1, - -
i (X)) (X))

=min|{ l,exp T T; 1




Algorithm 1 Proposed Pop-MCMC algorithm

{Imitialize)
Initialize the population X ., by Winner-Takes-All manner with data cost.
Set the temperatures 7y = 17 = -+ = Ty.
repeat
if U ~[0,1] =0, then
fori =1to N do
(Mutation)
Select a random node v in ith chain.
Draw a cluster from a node v with SWC-2,
Propose a new label for the cluster and determine whether accept it or not with Metropolis-Hastings rule.
end for
clse
fori =1to L%J do
(Crossover)
Select two random chains and a random node v.
Draw a cluster from node v with modified SWC-2.
Determine whether swap the cluster or not with Metropolis-Hastings rule.
end for
end if
fori=N—-1tw1do
{Exchange)
Perform the exchange move onto i th and 1 4+ [th chains with Metropolis-Hastings rule.
end for
until The algorithm converges.




Experimental Results

Implemented the proposed algorithm on a 2.8GHz Pentium
IV PC platform.

Comparing the performance with other conventional

methods as SWC-2, SA, BP, and Graph Cuts.

[llustrate the effects of each move, temperature parameter,
the number of chains.

Tested the algorithrn on several benchmark images in the
Middlebury datasets (http:/ /vision. middlebury.edu/stereo)

Using a segment based energy model for testing.

Repeat 10 times on each test stereo image pair, then AVE.
and SD of the resulting energies were used to compare.




Fig. 6 Test stereo images: {a)—{d) reference images, (e)—(h) ground truth disparty maps. (a, ) Tsukuba, (b, f) Venus, (¢, g) Teddy, and (d. h)

Cones
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Table 1 The error rates for each test image (hitp:/vision. middlebury edu/sterec). For the sampling-based methods, we denote the average and

standard deviation for ten trials. nonoce, all, and disc represent the error rate within non-occluded region. the whole image, and the vicinity of
discontinuity, respectively

Method Tsukuba Venus Teddy Cones
nonace  all disc nonoce  all disc nonoce  all dise nonoce  all disc
Pop-MCMC 335 3.88 103 0.22 (.35 2.89 12.0 17.9 21.7 13.3 192 237
(042 (E042)  (£092)  (£0.01y  (E0.02)  (HOATy  (E0.50) (X069 (E£0.63)  (£037)  (£054)  (H0.5T)
SW(C 3.60 4.28 104 0.9 1.1 557 11.6 17.8 222 13.5 203 234
(124 (E1.23y  (£1.21) (02T (£0.26) (R0 11y (R0.72) (£086)  (£099)  (£0.72)  (£0.9T7) (H0.76)
S84 3.5 4.00 9.58 0.94 1.34 767 14.8 214 24.3 15.6 22.9 251
(H0.28) (0.3 (048 (£0.06) (0210 (TR 061y (2059 (£0.79 (£0.69  (£0.78) (2043
BF 312 3.76 1.5 0.21 0.34 281 10.5 6.5 204 129 19.2 233
g-expansion 412 4.73 12.2 021 0.34 281 109 124 19.1 12.5 156 231
- f-swap 2.56 3.09 9.15 021 0.34 281 105 12.0 9.7 13.0 19.0 236

L y
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Fig. 8 Results of the proposed
algorithm: the disparity maps of
(@) Tsukuba, (b)) Venus,

i) Teddy. and {d) Cones
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Fig. 100 The performance of the Pop-MCMC for different combinations of moves: {a) Energy curves, (b) boxplots of the final states
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Limitations

® When objects are piecewise planar, the results are quite good.
However, for the cases of Teddy and Cones that include objects

with curved surfaces, the performance seems not satisfactory.

® For a front-parallel plane, a non-segment based energy model can
be better than the segment-based energy model due to the smaller

number of labels.

® Since occlude or visibility was not considered in our stereo model,

the error rates at the vicinity of discontinuity were relatively large.




Conclusions

The proposed algorithm gives

1. Much faster convergence rate than conventional sampling—

based methods including SA (Simulated Annealing) and SWC
(Swendsen-Wang Cuts).

2. Consistently lower energy solutions than BP (Belief

Propagation).




Thanks a lot for your attention




