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Abstract. We present a real-time method for detecting deformable surfaces, with no need whatsoever for a priori pose
knowledge.

Our method starts from a set of wide baseline point matches between an undeformed image of the object and the
image in which it is to be detected. The matches are used not only to detect but also to compute a precise mapping from
one to the other. The algorithm is robust to large deformations, lighting changes, motion blur, and occlusions. It runs at
10 frames per second on a 2.8 GHz PC. We demonstrate its applicability by using it to realistically modify the texture
of a deforming surface and to handle complex illumination effects.

Combining deformable meshes with a well designed robust estimator is key to dealing with the large number of
parameters involved in modeling deformable surfaces and rejecting erroneous matches for error rates of more than 90%,
which is considerably more than what is required in practice.
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1. Introduction

Rigid object detection and tracking have been extensively
studied and effective, robust, and real-time solutions pro-
posed (Lepetit and Fua, 2005; Lepetit et al., 2005; Lowe,
2004; Rosten and Drummond, 2005). The two are of
course complementary since trackers require initializa-
tion and, no matter how good they may be, will sometimes
lose track, for example, because of severe occlusions.
Non-rigid object tracking has also been convincingly
demonstrated, for example in the case of animated faces
(Baker et al., 2004; Cootes et al., 2001; DeCarlo and
Metaxas, 1998) or even more generic and deformable ob-
jects (Bartoli and Zisserman, 2004; Sclaroff and Isidoro,
2003). However, the automated detection of such de-
formable objects still lags behind and existing methods
(Belongie et al., 2002; Ferrari et al., 2004) are far less
convincing for real-time applications. They tend to be
computationally intensive and are usually geared more
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towards recognition or segmentation than providing the
kind of fast initialization that a tracker needs to recover
from potential failures.

In this paper, we propose a method that fits this re-
quirement by allowing fast and robust detection and reg-
istration of an object that can be subjected to very large
non-affine deformations such as those of Figs. 1 and 2. It
relies on wide-baseline matching of 2-D feature points,
which makes it resistant to partial occlusions and clut-
tered backgrounds: Even if some features are missing, the
object can still be detected as long as enough are found
and matched. Spurious matches are removed by enforc-
ing smoothness constraints on the deformation, which
is done very quickly in our approach. We then demon-
strate its applicability by using it to realistically modify
the texture of a deforming surface and to handle complex
illumination effects.

More specifically, at the heart of our approach is a
very fast wide-baseline point matching technique that
allows us to establish correspondences between key-
points extracted from a training image of the undeformed
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Figure 1. In order to achieve surface detection, we use a model image (a). Then, our method computes a function mapping the model to an input
image (b). To illustrate this mapping, we find the contours of the model using a simple gradient operator and we use them as a validation texture (c)
which is overlaid on the input image using the recovered transformation (d). Additional results are obtained in different conditions (e to i). Note that
in all cases, including the one where the T-shirt is replaced by a cup (j), the white outlines project almost exactly at the right place, thus indicating
a correct registration and shape estimation. The registration process, including image acquisition, takes about 100 ms and does not require any
initialization or a priori pose information.

Figure 2. Comparing three different keypoint matching algorithms. (a) Model image and validation texture shown in white. Results using: (b)
Real-time classification trees, (c) shape context descriptor reimplementation, and (d) SIFT.

object to those that can be found when the object de-
forms (Lepetit et al., 2005). Given such correspon-
dences, if the target object were rigid, detecting it and
estimating its pose could be implemented using a ro-
bust estimator such as RANSAC (Fischler and Bolles,
1981). However, for a deformable object, the problem
becomes far more complex because not only pose but
also a large number of deformation parameters must be
estimated.

This paper’s main contribution is a robust optimization
scheme designed to work in high dimensional spaces with
data very polluted by outliers, overcoming RANSAC lim-
itation for non-rigid surface detection. A well designed
robust estimator, along with a deformable 2-D mesh, is
key to dealing with this large number of parameters. The
keypoints positions are expressed as weighted sums of
the mesh vertices in the model image and change as the
mesh is deformed. Fitting then amounts to minimizing a
criterion that is the sum of two terms. The first is a ro-
bust estimate of the squared distances of the keypoints in
the model image to that of the corresponding ones in the
input image. The second is a quadratic deformation en-

ergy (Fua, 1997). As was the case for the original snakes
(Kass et al., 1988), this quadratic term allows the use of a
semi-implicit minimization scheme that converges even
when the initial estimate is very far from the solution,
which, in our context, is what happens when the object
is severely deformed. When combined with an appropri-
ately defined robust estimator for the keypoint distances
and optimization schedule, this approach to minimization
allows detection in under 100 milliseconds on a 2.8 GHz
desktop while being robust to large deformations, severe
occlusions, and changes in lighting. In fact, we have ver-
ified that our method keeps on working with more than
90% of point matches being erroneous, which is key to
robustness because no real-time matching technique can
be expected to work perfectly well in the presence of clut-
ter, orientation changes, shadows, or specularities. We do
not know of any other technique able to produce similar
results.

In the remainder of the paper, we first review briefly
the existing literature and present an overview of our
algorithm. We then discuss its most critical steps and our
results.
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2. Related Work

Many approaches to registering a model on an image
have been proposed. Some feature-based algorithms first
establish correspondences and then find the best transfor-
mation explaining them, while eliminating outliers. Oth-
ers simultaneously solve for both correspondence and
registration, without the need for correspondences and
with or without using feature characterization. Finally,
some techniques do not even rely on features. We re-
view them briefly below and discuss why they have not
yet been shown to be suitable for real-time detection of
deformable objects.

2.1. Feature-Based Methods

These approaches rely on establishing correspondences
between image-features of the target object in one or more
images and those that can be found in an input image in
which it is to be detected. These correspondences are then
used to estimate the transformations.

Establishing Correspondences. Our method relies on
establishing wide-baseline correspondences between a
training image and an input one. To be useful, corre-
spondences have to be insensitive to light and viewpoint
changes, as well as to some amount of non-rigid defor-
mation.

Among the many matching techniques that exist, we
tested three: SIFT Lowe (2004), shape context descrip-
tors (Belongie et al., 2002) and our own classification
based method (Lepetit et al., 2005).

Even if these algorithms differ in speed, correspon-
dences number and quality, the tests presented in Section
5 show that our algorithm’s effectiveness is independent
from the specific technique used to establish the point
correspondences. However, only the classification based
technique has proved fast enough for our purpose, real-
time detection without loss of accuracy. The technique
recently presented in Ling and Jacobs (2005) could fit
our needs since it is deformation invariant.

From Correspondences to Detection. Whatever the
matching technique used, the correspondences can then
be used to detect the object in several different ways.

The simplest is to eliminate outliers and find a globally
consistent interpretation using a robust estimator. Hav-
ing each local match vote for a global transformation is
the approach used by the Hough transform and its many
variations. This is effective for rigid objects but imprac-
tical for deformable ones because it would require far
too many degrees of freedom to represent all possible
transformations into a vote accumulator. The same can
be said of the popular RANSAC algorithm (Fischler and

Bolles, 1981): With 25% of outliers and 100 degrees of
freedom, 1012 samples are required to guarantee with
90% probability that at least one sample does not contain
outliers (Hartley and Zisserman, 2000).

An alternative strategy is to proceed iteratively.
TPS-RPM (thin plate spline - robust point matching,
Chui and Rangarajan (2003)) and EM-ICP (expecta-
tion maximization—iterative closest point, Dewaele et al.
(2004) and Granger and Pennec (2002)) are two well-
known representatives of the family of algorithms that
simultaneously solve for both correspondence and trans-
formation using an iterative process. At each step, the
current transformation estimate is first used to establish
correspondences and assign weights to them, and, then,
is refined using those correspondences. These methods
use an entropy term—be it called temperature parame-
ter, scale or blurring factor, or variance—that is progres-
sively reduced. It controls the assignment of weights to
the correspondences and has an important role in insur-
ing convergence towards a desirable solution. As will be
discussed in more detail in Section 3.2, our algorithm fol-
lows a similar strategy but makes use of local character-
ization to reduce the correspondence problem difficulty
and to achieve real-time performance.

In Belongie et al. (2002), a method designed to com-
pute a distance between shapes is presented. Shape
context descriptors provide correspondences which are
established one to one using bipartite graph matching.
Although this method copes with some outliers and
slightly different numbers of feature detected on both
shapes, it is not designed to extract objects from a clut-
tered background or to handle scale changes.

Image exploration (Ferrari et al., 2004) is another strat-
egy that hooks on a first set of correspondences and then
gradually explores the surrounding area, trying to estab-
lish more matches. It can handle deformable objects but
this complex process is slow and takes several minutes
on a 1.4 GHz computer.

2.2. Direct Methods

For objects such as faces whose deformations are well
understood and can be modeled in terms of a relatively
small number of deformation parameters, fitting directly
to the image data without using features is an attractive
alternative to using correspondences because it allows
the use of global constraints to guide the search. This has
been successfully demonstrated in the context of non-
rigid tracking (Baker et al., 2004; Cootes et al., 2001;
DeCarlo and Metaxas, 1998; Sclaroff and Isidoro, 2003)
but typically requires a good initialization because the
criteria being minimized tend to have many local minima.

These methods are complementary to the one proposed
here: They exploit more of the texture and therefore tend
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to be more accurate. However, they require the initial esti-
mate such as the one our algorithm can provide. There are
in fact relatively few others that can do this for deformable
objects. One of them has been proposed in Gumerov et al.
(2004) but requires that the whole outline be detected,
which severely limits its scope. Another is the tracking
of Lin and Liu (2006) that exploits the repeating proper-
ties of a near regular texture to discover new texture tiles
in new frames.

Finally, the recent work presented in White and Forsyth
(2006) is related to ours in two ways. First, it registers
a texture composed of a few colors, typically 3 or 4, by
comparing color histograms. Then, it modifies the tex-
ture on the deformed surface, while handling illumination
changes. This approach to retexturing differs from ours
in that we avoid limiting the number of colors present
on the surface by introducing some irradiance smooth-
ing, which yields real-time performance on both color or
gray level images.

3. Non-rigid Surface Detection

To detect a potentially deformable object, we rely on
establishing correspondences between a model image
in which the deformations are small and an input im-
age in which they may be large. To this end, we use
the fast wide-baseline matching algorithm (Lepetit et al.,
2005) discussed in Section 2.1. Given a set C of cor-
respondences between the two images, many of which
might be erroneous, our problem can be formally stated
as follows: We are looking for the transformation TS

mapping the undeformed model surface M into the de-
formed target one TS (M) and for the subset G ⊂ C
of correct matches such that the sum of the squared

)c()b()a(
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Figure 3. 2D mesh models. (a) Vertex neighborhood in an undeformed hexagonal mesh. (b) Two deformations that are not penalized. (c) Two
penalized deformations. Deformations resulting from perspective projection resemble those in (b) and are therefore much less severely penalized than
those resulting from erroneous matches.

distances between corresponding points in G is min-
imized while the deformations remain as smooth as
possible.

3.1. 2-D Surface Meshes

We represent our model M as a triangulated 2-D mesh
of hexagonally connected vertices such as the one shown
in Fig. 2. The position of a vertex v j is specified by its
image coordinates (x j , y j ). The overall shape is therefore
controlled by a state vector S that is the vector of all x
and y coordinates. Given S and the barycentric coordi-
nates Bi (p) of image point p that belongs to a specific
facet (v1, v2, v3) of the undeformed mesh, we define the
mapping

TS(p) =
3∑

i=1

Bi (p)

[
xi

yi

]
, (1)

where xi and yi are vertex coordinates of the deformed
mesh.

The mesh deforms to minimize the objective function

ε(S) = λDεD(S) + εC (S), (2)

where εC is a data term that takes point correspondences
into account, εD is a deformation energy that should be
rotationally invariant and tend to preserve the regularity
of the mesh, and λD is a constant.

We take εD(S) to be an approximation of the sum over
the surface of the square second derivatives of the x and
y coordinates. More specifically, let E be the set of ver-
tex index triplets (i, j, k) such that (vi , v j , vk) form two
connected and colinear edges, as illustrated by Fig. 3(a).
Since the undeformed mesh M has equidistant vertices,
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we have

∀(i, j, k) ∈ E : vi − v j = v j − vk, (3)

and therefore write

εD(S)= 1

2

∑
(i, j,k)∈E

(−xi + 2x j − xk)2+(−yi + 2y j − yk)2.

(4)

εD(S) approximates the squared directional curvature of
the surface as long as the vertices remain roughly equidis-
tant and its value grows with the length difference of every
two colinear connected edges.

This regularization term serves a dual purpose. First it
convexifies the energy landscape and improves the con-
vergence properties of the optimization procedure. Sec-
ond, in the presence of erroneous correspondences, some
amount of smoothing is required to prevent the mesh from
overfitting the data, and wrinkling the surface excessively.
As illustrated by Fig. 3(b) and (c), εD is appropriate for
this purpose because it allows rigid motions but penal-
izes shape deformations. Of course, both those produced
by perspective distortions and by the actual surface de-
formation tend to increase εD . However, this increase is
insignificant when compared to those that spurious defor-
mations resulting from erroneous matches could produce.

Equation (4) can be rewritten in matrix form as

εD(S) = 1

2
(X T K ′T K ′ X + Y T K ′T K ′Y ), (5)

where K ′ is a matrix containing one row per triplet in E
and one column per mesh vertex. The row corresponding
to triplet (i, j, k) is filled with zeroes except for locations
i , j and k that contain −1, 2, and −1, respectively. By
replacing K = K ′T K ′ in Eq. (5), we have:

εD(S) = 1/2(X T KX + Y T KY). (6)

To minimize ε(S), we use the semi-implicit scheme so
successfully introduced in the original snake paper (Kass
et al., 1988): We are looking for a minimum of the energy
and therefore for solutions of

0 = ∂ε

∂ X
= ∂εC

∂ X
+ KX,

(7)
0 = ∂ε

∂Y
= ∂εC

∂Y
+ KY.

Since K is positive but not definite, given initial vectors
X0 and Y0, this can be solved by introducing a viscosity
parameter α and iteratively solving at each time step the

two coupled equations

KXt + α(Xt − Xt−1) + ∂εC

∂ X

∣∣∣∣
X=Xt−1Y=Yt−1

= 0,

KYt + α(Yt − Yt−1) + ∂εC

∂Y

∣∣∣∣
X=Xt−1,Y=Yt−1

= 0,

which implies

(K + α I )Xt = αXt−1 − ∂εC

∂ X

∣∣∣∣
X=Xt−1,Y=Yt−1

,

(K + α I )Yt = αYt−1 − ∂εC

∂Y

∣∣∣∣
X=Xt−1,Y=Yt−1

.

Because K is sparse and regular, solving these linear
equations using LU decomposition is fast and upon con-
vergence Xt ≈ Xt−1 and Yt ≈ Yt−1. This iterative
scheme therefore quickly yields a solution of Eq. (8),
even when starting with completely random guesses for
X0 and Y0 as will be shown in Section 4.

3.2. Correspondence Energy

Minimizing εC , the data term of Eq. (2), tends to deform
the mesh so that it matches the target object in the input
image. This is achieved as follows.

Let C be a set of correspondences between the model
and the input image. Its elements are of the form c =
{c0, c1} ∈ C , where c0 represents the 2-D coordinates of
a feature point in the model image and c1 the coordinates
of its match in the input image. For the sake of gener-
ality, we allow potential matches between a point in the
first image and multiple points in the second, so that the
corresponding c0 may appear in several elements of C .
We write

εC = −
∑
c∈C

wcρ (‖c1 − TS (c0)‖ , r ) , (8)

where ρ is a robust estimator whose radius of confidence
is r and wc ∈ [0, 1] a weight associated to each corre-
spondence. In our experience the choice of ρ is critical
to ensure the elimination of outliers and convergence to-
wards the desired minimum while the choice of the wc

has much less impact, as will be discussed in Section 4.1.
We take the robust estimator to be

ρ (δ, r ) =
{

3(r2−δ2)
4r3 δ < r

0 otherwise
. (9)

As shown in Fig. 4, its shape is that of a quadratic
ridge that gets narrower and taller when r decreases. In
other words, r acts as a confidence measure. When it is
large, most correspondences, potentially including poor
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Figure 4. The ρ function of Eq. (9) is quadratic for distances smaller than the radius of confidence, elsewhere it is zero.

ones, fall within this broad ridge of confidence and are
given some weight. As r diminishes, ρ becomes more
peaked and selective. This formulation has the following
advantages:

• The quadratic behavior of ρ within the ridge of con-
fidence yields a relatively convex εC that is easy to
minimize.

• ρ is normalized so that
∫ ∞
−∞ ρ(x, r )dx = 1 ∀r > 0,

which means that the εC term computed with any r val-
ues remain commensurate to the λDεD term of Eq. (2).
Therefore, we do not need to adjust either the λD pa-
rameter or the wc weights of Eq. (8). This is in contrast
to methods such as SoftAssign (Chui and Rangarajan,
2003; Wills and Belongie, 2004) in which the surface
rigidity must be progressively reduced according to a
schedule that is not necessarily easy to synchronize
with the annealing of r and may change from case to
case.

• ρ has finite support so that correspondences that fall
outside the radius of confidence are completely ignored
and can be tagged as invalid.

These properties of the ρ estimator are what make the
straightforward approach to optimization described
below so effective.

3.3. Optimization Schedule

Minimizing ε therefore results in a mesh that moves to-
wards the desired solution but whose progression can be
blocked by outliers. To overcome this, we introduce a
simple optimization schedule in which the initial radius

of confidence r0 = 1000 is progressively reduced at a
constant rate η = 0.5: rt = ηrt−1. For each value of r ,
we minimize ε and use the result as the initial state for
the next minimization.

As discussed in Section 3.1, at each iteration of
our semi-implicit optimization scheme, we evaluate the
derivatives of εC . In this context, the fact that ρ has deriva-
tives whose magnitude is inversely proportional to r is
very beneficial: At the beginning when r is large, the
gradients of εD are comparatively larger than those of
εC , thus preventing erroneous matches from crumpling
the surface while allowing correct and consistent ones to
produce the right global deformation. As the optimiza-
tion progresses and r decreases, the ρ derivatives and
consequently the gradients of εC become larger. The tri-
angulation starts bending as appropriate and the influence
of the outliers progressively decreases.

The algorithm stops when r reaches a value close
to the expected precision of the matches expressed in
pixels, typically one or two. Such a deterministic algo-
rithm is guaranteed to converge but the result might be
wrong, for example because the target object is com-
pletely occluded. To decide whether or not to believe
the result, we simply count the number of correspon-
dences that fall within the ridge of confidence of our ρ

estimator. As will be shown in Section 4, this criterion
is surprisingly effective at distinguishing successes from
failures.

4. Synthetic Experiments

In this section, we use synthetic data to illustrate
the effectiveness of our implementation choices. More
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Figure 5. Image and meshes used for our synthetic experiments. (a) Original image. (b) Reference mesh computed using hand-picked correspon-
dences. (c) A random initial configuration.

specifically we show that our algorithm is insensitive to
parameter choices, insensitive to initial conditions, and
effective at rejecting false matches.

Figure 5 depicts our approach to creating synthetic
data for these experiments. We fed our algorithm with
manually established correspondences between a model
image in which the sheet of paper is flat, and the image
of Fig. 5(a) until we obtained the 600-vertex deformed
mesh of Fig. 5(b), which projects correctly over its whole
surface. We treat this mesh as our reference, which can
be viewed as the ideal result that can be expected from
our algorithm. In the remainder of this section we will use
different sets of correspondences, randomized initial con-
ditions, and modified parameter settings. They produce
different results that can then be compared to our refer-
ence. Proceeding in this manner ensures that the devia-
tions we measure are strictly related to what we are trying
to measure, as opposed to pose dependent problems.

4.1. Measuring Success

We define three objective success criteria:

C1 90% of the mesh vertices are within 2 pixels of those
in the reference mesh.

C2 50% of the mesh vertices are within 2 pixels of those
in the reference mesh.
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Figure 6. Probability of success according to the three criteria of Section 4.1 as a function of the number of valid input matches, on the horizontal
axis, and the outlier rate, on the vertical axis. White indicates values close to one and black close to zero.

C3 At least 90% of the valid correspondences given as
input are correctly labeled as such by the robust esti-
mator, as discussed in Section 3.2.

Given that the test image is of dimension 1024×768, C1

and C2 rate the algorithm’s accuracy and C3 its ability to
discriminate valid correspondences from spurious ones.
The 90% figure in C1 eliminates cases where a substantial
part of the mesh is incorrectly reconstructed, even though
the algorithm may have done a good job on the rest, a case
that C2 labels as correct.

To test our algorithm, we ran it about one hundred
thousand times with random initial conditions, such as
the one of Fig. 5(c) that is very far from the solution,
and using synthetic sets of correspondences containing
varying numbers of valid matches and percentages of
erroneous ones.

Accuracy and Robustness. Figure 6 depicts the success
rates according to the C1, C2, and C3 criteria introduced
above as a function of the number of valid correspon-
dences and of the outlier rate. In each plot, the color de-
picts the percentage of results that meet the corresponding
criterion. The black wiggly lines represent level lines in
this probability landscape. Note that in all three plots,
they are nearly vertical for outlier rates up to 90%, thus
indicating that the performance does not significantly de-
grade before then. Given that C1 is much more stringent
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than C2, it is natural that it requires more valid matches to
achieve the required level of precision. To recover 50%
mesh vertices location, 40 matches are enough and 120
for 90%. This is very encouraging considering that the
mesh has 600 vertices, which would imply 1200 degrees
of freedom in the absence of regularization constraints.
C3 is the less demanding of the three criteria and requires
less than 15 to 20 valid correspondences. However, suc-
cess in terms of C3 does not guarantee accuracy for large
outlier rates because, even though the algorithm still finds
most of the inliers, it starts mistakenly tagging outliers as
valid matches, which degrades the precision.

Self Diagnostic. So far, we have compared our results
against a manually obtained reference mesh. In practice,
the algorithm has to self-diagnose its own successes and
failures in the absence of any such reference. As a sub-
stitute, we use the absolute number of matches that are
tagged as valid by the ρ estimator of Eq. (9) as a mea-
sure of success. In other words, our algorithm declares a
successful detection when the number of valid matches
is above a given threshold. In Fig. 7, we plot the cor-
responding ROC curves according to C1, C2, and C3.
These curves indicate an excellent correlation between
“objective” success, as measured by comparison to a ref-
erence result, and “subjective” success, as measured by
the number of matches tagged as valid.

One limitation of the current approach, however, is
that we only implemented a global success measure: The
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Figure 7. Self diagnostic ROC curves. We accept a detection result based on the number of matches tagged as valid by our robust estimator. We
plot one curve for each one of the three criteria of Section 4.1. For each one, as the threshold for accepting a result is lowered, both the false-positive
rate, on the x-axis, and the true-positive rate, on the y-axis, increase.

surface is either completely found or not at all. An inter-
esting extension would be to measure partial success, for
example in cases where the surface is partly occluded, by
checking sub-areas as opposed to the whole surface.

Disambiguating Multiple Matches. Recall from
Section 3.2 that a point from the model image can have
several potential matches in the input image. One can
simply rely on the progressively decreasing r radius
of confidence of the ρ estimator to disambiguate those
cases. Alternatively one could use a more sophisticated
weighting scheme, an option we explore here by setting
the wc weights of Eq. (8) in one of the five following
ways:

1. wc = 1 for all correspondences,
2. wc = 1 for the closest match, and zero to all others as

in ICP,
3. as in EM-ICP (Granger and Pennec, 2002), with σ =

r
3

:

wc = exp(−‖c1 − TS(c0)‖2/2σ 2)∑
d∈C,do=co

exp(−‖d1 − TS(d0)‖2/2σ 2)
,

4. a variation of EM-ICP in which the Gaussian is re-
placed by ρ:

wc = ρ(‖c1 − TS(c0)‖, r )∑
d∈C,d0=c0

ρ(‖d1 − TS(d0)‖, r )
,
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Figure 8. Comparing weighting schemes. Success rate as a function of erroneous correspondences percentage, for each one of the five schemes
described in Section 4.1.

5. a weight computed by normalizing rows and columns
of the correspondence matrix, as in SoftAssign (Chui
and Rangarajan, 2003).

Figure 8 summarizes the result of this experiment.
We used 150 valid matches and a variable number
of spurious matches. We plot success rates according
to the C1 criterion as a function of the percentage of
outliers. Note that these curves correspond to a vertical
slice of Fig. 6(C1) and are very close to each other.
For our specific purpose, but obviously not in a more
general context, their respective performance are almost
indistinguishable, but not their computational cost. In
our real-time implementation, we therefore use the
simplest one and set all wc to one.

4.2. Parameters and Initial Conditions

We now turn to the influence of our parameter choices
and of the initial conditions. We show that they influence
the speed at which the algorithm converges much more
than its final result.

Regularization Weight. In the ε(S) total energy of
Eq. (2), the relative influence of the regularization and ob-
servation terms is controlled by the λD parameter. It rep-
resents surface stiffness: The larger it is, the more defor-
mations are penalized. If it is too large, legitimate bending
might be prevented. If it is too small, the mesh may wrin-
kle excessively and treat some spurious correspondence

as valid. In Fig. 9, we again use a fixed number of valid
matches and plot success rates according to the C1 crite-
rion as a function of the percentage of outliers and of the
λD value used to perform the computation. For outlier
rates below 60%, and even up to 80%, λD can be chosen
in a very wide range without significantly affecting the
results. As the outlier rate increases, larger λD values ap-
pear to give better results. It is to emphasize these large
values of λD that we chose to plot 1

λD
on the vertical axis

of the graph.

Deterministic Radius Reduction. In our algorithm, the
confidence radius r of Eq. (9) is decreased by a factor η

after each minimization. Even though this deterministic
approach might seem simplistic, we prefer it because, in
practice, it is very hard to evaluate a new radius from cur-
rently valid matches. For example, a similar problem is
solved in Rosten and Drummond (2005) using an expec-
tation minimization (EM) approach and the authors have
to “give a kick downwards” to their blurring factor when
EM converges too early. Here we show that value of η

has relatively little impact on the optimizer’s behavior.
To this end, we randomly chose one particular set

of correspondences and ran the optimizer several times
using η values ranging 0.3 and 0.8. In Fig. 10(a), for
each trial, we plot the number of individual Levenberg-
Marquardt steps performed to minimize the total-energy
of Eq. (2) for each successive value of r . Note how similar
the curves are. The total number of Levenberg-Marquardt
steps required to locate the surface does not change much.
If the radius decreases slowly, the optimizer will use more
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Figure 10. Number of individual Levenberg-Marquardt steps to achieve convergence. (a) For several values of η, number of steps required to
minimize the total-energy of Eq. (2) for each successive value of r . (b) Similar plot for nine initial states, chosen to be increasingly far from the
reference mesh.

radius values but will require fewer iterations at each. If
the radius decreases faster, the situation is reversed but
the global outcome is similar.

Sensitivity to Initial Conditions. Because our algo-
rithm appears to be very effective at avoiding local min-
ima, the choice of initial condition has little bearing on
success or failure. It does however have an influence on
the time required to achieve convergence.

To demonstrate this, we again randomly picked a set
of correspondences and ran the optimizer several times
using nine different initial conditions, chosen to be in-
creasingly far from the reference mesh. The algorithm

yielded the same result in all cases and Fig. 10(b) depicts
the number of individual Levenberg-Marquardt steps per-
formed for each successive value of r during each run.
Starting close to the solution saves iterations for large
values of r but not for small ones. Nevertheless, this be-
havior could obviously be exploited in a tracking context
where a good initial estimate is usually available.

5. Results

We now turn to real images and video sequences. We
first demonstrate that our approach leads to a real-time
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Figure 11. Deforming a piece of foam. (a) Model image and validation texture. (b) to (e) detection results.

robust implementation. We then show that it can be
incorporated into an Augmented Reality application
that accounts not only for geometry but also illumina-
tion, thus producing very convincing illusions, still in
real-time.

5.1. Real Time Detection

The method has been tested in conjunction with three dif-
ferent feature point recognizers: The publicly available
SIFT implementation (Lowe, 2004), a reimplementation
of shape context characterization (Belongie et al., 2002),
and a classification-based method (Lepetit et al., 2005).
SIFT provide fewer but more accurate matches than shape
contexts. The classification-based approach produces
correspondences comparable to SIFT but does it faster.
Because our technique is robust, the results are almost
indistinguishable whatever the matching method used,
as shown in Fig. 2. However, because the classification-
based method is much faster than the others, it is only
when using it that we obtain true real-time performance.
In this example, the algorithm runs at 10 frames per
second on a 2.3 GHz laptop. Furthermore, because the
point matcher is relatively insensitive to light changes
and motion blur, they do not hinder the registration
process.

Since we work in each frame individually, we can find
objects as soon as they become visible and our method is
robust to both perspective distortion and severe deforma-
tions. In the example of Fig. 1, the ICCV logo on the shirt
is detected very quickly and well before its deformation
has become roughly planar. Similarly, the logo is equally
well detected when worn by different people or seen on
the ICCV mug. Figure 11 depicts similar speed and robust-
ness to deformations when detecting a piece of foam. For
well textured objects, we get no false positives and only
false negatives when the deformations or occlusions are
so severe that the target object is almost impossible to
make out. Of course, the performance degrades in the
absence of texture and this is one of the issues we will
address in future work.

5.2. Realistic Augmented Reality

So far, we have shown that we could compute fast and
accurately the 2-D deformation of a surface. In an Aug-
mented Reality application such as the one depicted by
Fig. 12, this is what is needed to modify in real-time the
appearance of that surface. However, to achieve a con-
vincing illusion, it is important not only to model geomet-
ric deformations but also lighting changes. To this end,
we have developed a dynamic approach to estimating the
amount of light that reaches individual image pixels by
comparing their colors to those of the model image. This
lets us either erase patterns from the original images and
replace them by blank but correctly shaded areas, which
we think of as Diminished Reality, or to replace them by
virtual ones that convincingly blend-in because they are
properly lighted.

The Lambertian Case. In practice, if we wish to build a
versatile system that can be demonstrated in uncontrolled
environments, we cannot make strong assumptions about
light sources that are present when acquiring the input
video. There can be many and their respective intensities
and spectral properties are unknown, which can result in
complex shading, shadowing, and color effects. To avoid
the latter, we work independently on the red, green, and
blue bands of color images.

However, it is easy to control the acquisition of the ref-
erence image. With no loss of generality, we can therefore
assume that it has been acquired when the surface was
both undeformed and lighted uniformly, which means
that every surface point receives the same amount of light
in the color band we are working with.

Under this assumption, let pr and pi be the projections
of the same surface point p in the reference and input im-
age respectively, and let Ap be the corresponding surface
albedo. In the Lambertian case, the contributions of all
the light sources seen at pr and pi add linearly. We can
therefore write

Ir,p = Lr Ap, (10)

Ii,p = Li,p Ap, (11)
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Figure 12. (a) The reference image of the target surface with the model mesh overlaid. (b) An input image. (c) The mesh is correctly deformed
and registered to the input image. (d) The original pattern has been erased and replaced by a blank but correctly shaded image. (e) A virtual pattern
replaces the original one. It is correctly deformed but not yet relighted. (f) The virtual pattern is deformed and relighted.

where Ir,p and Ii,p are the pixel intensities in the reference
and input image respectively, Li,p the total irradiance in
the input image at pi , and Lr the total irradiance in the
reference image assumed to be the same at all surface
points. In general, the values of Ir,p and Ii,p are different
due to changes in both normal orientations and lighting
conditions. However, the geometric registration we have
established between the two images tells us that they cor-
respond to the same physical point, which we exploit as
follows.

Let us consider a white surface area with albedo Aw

at location w on the surface. If the target surface has no
white part, it is always possible to put a white object next
to it while taking the reference image. We can measure
on the reference image the pixel intensity Ir,w where this
white location w is projected and write

Ir,w = Lr Aw, (12)

where Lr is the irradiance of Eq. (10).
Using this white normalization Ir,w, we can compute a

new image, looking similar to the input one, except that
the surface albedo is changed to Aw. In the input image,
if there was no texture, the corresponding image intensity
should be

Ix,p = Li,p Aw = Aw Lr
Ii,p

Ir,p
= Ir,w

Ii,p

Ir,p
. (13)

Note that Ix,p is expressed exclusively in terms of image
intensities, which are readily available, as opposed to
albedoes or surface normals that are not.

Replacing the intensities Ii,p of all the pixels on the
object surface by Ix,p yields images such as the one of
Fig. 12(d) where the original texture has been replaced

by a blank but correctly shaded surface. To draw a shaded
new texture, as in Fig. 12(f), we simply multiply texture
values with their corresponding white Ix,p.

Note that, because we perform the computation locally,
it remains valid no matter how many sources there are and
what their specific characteristics may be. The only thing
that has to be true is that the contribution of the individual
light sources to the pixel intensity are all modulated by the
same diffuse albedo and do not depend on the viewpoint.

In practice, we compute the lighting factor only at mesh
vertices, averaging pixels values of both model and in-
put images over an hexagonal area surrounding it. The
resulting Ix,p values are then interpolated over triangles
by OpenGL.

In some cases, Ix,p is difficult to estimate reliably on
large single-colored areas. In the example of Fig. 13(a),
recovering the Ix,p blue component over the red area is
hard because sensor inaccuracy on remaining blue light is
amplified by a big factor. However, the visual impression
given by Fig. 13(b) is still that the original painting has
been erased and replaced.

Specularities and Saturation. The assumptions used to
derive formula 13 are clearly violated for specular ma-
terials. However, as illustrated by Fig. 14, this does not
have severe consequences even in the presence of strong
specularities and the illusion remains convincing.

This is because, when there is a specularity, the image
intensity increases and the Ii,p

Ir,p
ratio of Eq. (13) becomes

large. As a result, the Ix,p intensity that is used to draw the
synthetic patterns also increases, which is perceptually
correct since it yields intensity maxima at specularities’
locations. In other words, the absolute value of Ix,p may
not be correct but its magnitude relative to its neighbors
remains consistent with the presence of a specularity. And
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Figure 13. (a) original image. (b) The ISMAR logo replaces the shirt print. Recovering white is hard in this image since the model has large
single-colored areas, making light evaluation difficult.

Figure 14. Handling specularities. (a) Input image with strong specularities. The main one is produced by a lamp, while the two smaller ones can
be attributed to light coming through window. To produce this result, the paper has been covered by a transparent plastic sheet. (b) The picture has
been erased from the surface but the specularities still appear to be at the right places. (c) The ISMAR logo has been inserted.

since the human eye is much more sensitive to relative
values than to absolute ones, this suffices.

In practice, specular peaks often saturate the camera
sensor, thus making the estimation of Ii,p unreliable. We
detect such cases by simple thresholding and we handle
saturation by setting Ix,p to its maximal possible value.
Since color computation is applied independently on the
red, green and blue channels, one channel can saturate
while the other do not. As a result, not only specular peaks

but also saturated areas in the input image are correctly
transcribed into the synthetic ones.

6. Conclusion

We have demonstrated a very fast and robust approach
to detecting deformable surfaces. It is robust to large
deformations, changes in lighting, and motion blur and
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runs at 8–10 frames per second on a 2.3 GHz laptop. It
takes advantage of wide-baseline matching, deformable
mesh and robust estimation techniques in such a way that
the resulting algorithm has very few parameters that do
not require any fine tuning. As a result, it was easy to
incorporate it into a real-time Augmented Reality system
that produces convincing illusions even when the illumi-
nation is complex.

The current computations are performed using 2-D
meshes but the formalism presented in this paper nat-
urally extend to 3-D, with only a very limited additional
computational burden. This should be key to handling
even more severe self-occlusions than the ones shown
in this paper and, also, to incorporate physical knowl-
edge about the deformation modes of the surface if they
are known. This should help us handle less textured ob-
jects than the ones we have worked with so far, that is
objects for which fewer interest points can be detected
and matched. An alternative way to deal with relatively
bland surfaces would be to broaden the definition of in-
terest points to include those that can be found along
contours, as opposed to corners, and could also be con-
sidered within our framework. We intend to pursue both
avenues of research in future work.
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