
Int J Comput Vis (2008) 80: 45–57
DOI 10.1007/s11263-007-0118-0

Object Class Recognition and Localization Using Sparse Features
with Limited Receptive Fields

Jim Mutch · David G. Lowe

Received: 28 February 2007 / Accepted: 17 December 2007 / Published online: 19 January 2008
© Springer Science+Business Media, LLC 2008

Abstract We investigate the role of sparsity and localized
features in a biologically-inspired model of visual object
classification. As in the model of Serre, Wolf, and Poggio,
we first apply Gabor filters at all positions and scales; fea-
ture complexity and position/scale invariance are then built
up by alternating template matching and max pooling oper-
ations. We refine the approach in several biologically plau-
sible ways. Sparsity is increased by constraining the number
of feature inputs, lateral inhibition, and feature selection. We
also demonstrate the value of retaining some position and
scale information above the intermediate feature level. Our
final model is competitive with current computer vision al-
gorithms on several standard datasets, including the Caltech
101 object categories and the UIUC car localization task.
The results further the case for biologically-motivated ap-
proaches to object classification.

Keywords Object class recognition · Ventral visual
pathway · Sparsity · Localized features

This paper updates and extends an earlier presentation (Mutch and
Lowe 2006) of this research in CVPR 2006.
J. Mutch’s research described in this paper was carried out at the
University of British Columbia.

J. Mutch (�)
Department of Brain and Cognitive Sciences, Massachusetts
Institute of Technology, Cambridge, MA, USA
e-mail: jmutch@mit.edu

D.G. Lowe
Department of Computer Science, University of British
Columbia, Vancouver, BC, Canada
e-mail: lowe@cs.ubc.ca

1 Introduction

The problem of recognizing multiple object classes in nat-
ural images has proven to be a difficult challenge for com-
puter vision. Given the vastly superior performance of hu-
man vision on this task, it is reasonable to look to biology
for inspiration. Recent work by Serre et al. (2005) used a
computational model based on our knowledge of visual cor-
tex to obtain promising results on some of the standard clas-
sification datasets. Our paper builds on their approach by
incorporating some additional biologically-motivated prop-
erties, specifically, sparsity and localized intermediate-level
features. We show that these modifications further improve
classification performance, strengthening our understanding
of the computational constraints facing both biological and
computer vision systems.

Within machine learning, it has been found that in-
creasing the sparsity of basis functions (Figueiredo 2003;
Krishnapuram et al. 2005) (equivalent to reducing the ca-
pacity of the classifier) plays an important role in improv-
ing generalization performance. Similarly, within computa-
tional neuroscience, it has been found that adding a spar-
sity constraint is critical for learning biologically plausible
models from the statistics of natural images (Olshausen and
Field 1996). In our object classification model, one way we
have found to increase sparsity is to use a lateral inhibition
step that eliminates weaker responses that disagree with the
locally dominant ones. We further enhance this approach
by matching only the dominant orientation at each posi-
tion within a feature rather than comparing all orientation
responses. We also increase sparsity during final classifica-
tion by discarding features with low weights and using only
those that are found most effective. We show that each of
these changes provides a significant boost in generalization
performance.

mailto:jmutch@mit.edu
mailto:lowe@cs.ubc.ca

46 Int J Comput Vis (2008) 80: 45–57

While some current successful methods for object classi-
fication learn and apply quite precise geometric constraints
on feature locations (Fergus et al. 2003; Bouchard and
Triggs 2005), others ignore geometry and use a “bag of
features” approach that ignores the locations of individual
features (Csurka et al. 2005; Opelt et al. 2006). Interme-
diate approaches retain some coarsely-coded location in-
formation (Agarwal et al. 2004) or record the locations of
features relative to the object center (Leibe et al. 2004;
Berg et al. 2005). According to models of object recognition
in cortex (Riesenhuber and Poggio 1999), the brain uses a
hierarchical approach, in which simple, low-level features
having high position and scale specificity are pooled and
combined into more complex, higher-level features having
greater location invariance. At higher levels, spatial struc-
ture becomes implicitly encoded into the features them-
selves, which may overlap, while explicit spatial informa-
tion is coded more coarsely. The question becomes one of
identifying the level at which features have become complex
enough that explicit spatial information can be discarded.
We investigate retaining some degree of position and scale
sensitivity up to the level of object detection, and show that
this provides a significant improvement in final classifica-
tion performance.

We test these improvements on the large Caltech dataset
of images from 101 object categories (Fei-Fei et al. 2004).
Our results show that there are significant improvements to
classification performance from each of the changes. Further
tests on the UIUC car database (Agarwal et al. 2004) and the
Graz-02 datasets (Opelt et al. 2006) demonstrate that the re-
sulting system can also perform well on object localization.
Our results further strengthen the case for incorporating con-
cepts from biological vision into the design of computer vi-
sion systems.

2 Models

The model1 presented in this paper is a partial implementa-
tion of the “standard model” of object recognition in cortex
(as summarized by Riesenhuber and Poggio 1999), which
focuses on the object recognition capabilities of the ven-
tral visual pathway in an “immediate recognition” mode,
independent of attention or other top-down effects. The
rapid performance of the human visual system in this mode
(Potter 1975; Thorpe et al. 1996) implies mainly feedfor-
ward processing. While full human-level classification per-
formance is almost certain to require feedback, the feedfor-
ward case is the easiest to model and thus represents an ap-
propriate starting point. Within this immediate recognition

1Source code and related documentation for our model may be down-
loaded at http://www.mit.edu/∼jmutch/fhlib.html.

framework, recognition of object classes from different 3D
viewpoints is thought to be based on the learning of multiple
2D representations, rather than a single 3D representation
(Poggio and Edelman 1990).

2.1 Previous Models

Our model builds on that of Serre et al. (2005), which in
turn extends the “HMAX” model of Riesenhuber and Pog-
gio (1999). These are the latest of a group of models which
can be said to implement parts of the standard model, includ-
ing neocognitrons (Fukushima 1980) and convolutional net-
works (LeCun et al. 1998). All start with an image layer of
grayscale pixels and successively compute higher layers, al-
ternating “S” and “C” layers (named by analogy with the V1
simple and complex cells discovered by Hubel and Wiesel
1959).

• Simple (“S”) layers apply local filters that compute
higher-order features by combining different types of
units in the previous layer.

• Complex (“C”) layers increase invariance by pooling
units of the same type in the previous layer over limited
ranges. At the same time, the number of units is reduced
by subsampling.

Recent models have moved towards greater quantitative
fidelity to the ventral stream. HMAX was designed to ac-
count for the tuning and invariance properties (Logothetis
et al. 1995) of neurons in IT cortex. Rather than attempting
to learn its bottom-level (“S1”) features, HMAX uses hard-
wired filters designed to emulate V1 simple cells. Subse-
quent “C” layers are computed using a hard max, in which a
C unit’s output is the maximum value of its afferent S units.
This increases feature invariance while maintaining speci-
ficity. HMAX is also explicitly multiscale: its bottom-level
filters are computed at all scales, and subsequent C units
pool over both position and scale.

Serre et al. (2005) introduced learning of intermediate-
level shared features, made additional quantitative adjust-
ments, and added a final SVM classifier to make the model
useful for classification.

2.2 Our Base Model

We start with a “base” model which is similar to (Serre et
al. 2005) and performs about as well. Nevertheless, it is an
independent implementation, and we give its complete de-
scription here. Its differences from (Serre et al. 2005) will be
listed briefly at the end of this section. Larger changes, rep-
resenting the main contribution of this paper, are described
in Sect. 2.3.

The overall form of the model (shown in Fig. 1) is very
simple. Images are reduced to feature vectors, which are

Int J Comput Vis (2008) 80: 45–57 47

Fig. 1 Overall form of our model. Images are reduced to feature vec-
tors which are then classified by an SVM

then classified by an SVM. The dictionary of features is
shared across all categories—all images “live” in the same
feature space. The main focus of our work is on the feature
computation stage.

Features are computed hierarchically in five layers: an
initial image layer and four subsequent layers, each built
from the previous by alternating template matching and max
pooling operations. This process is illustrated in Fig. 2, and
the following subsections describe each layer.

Note that features in all layers are computed at all posi-
tions and scales—interest point detectors are not used.

Image Layer We convert the image to grayscale and scale
the shorter edge to 140 pixels while maintaining the aspect
ratio. Next we create an image pyramid of 10 scales, each a
factor of 21/4 smaller than the last (using bicubic interpola-
tion).

Gabor Filter (S1) Layer The S1 layer is computed from
the image layer by centering 2D Gabor filters with a full
range of orientations at each possible position and scale.
Our base model follows (Serre et al. 2005) and uses 4 ori-
entations. While the image layer is a 3D pyramid of pixels,
the S1 layer is a 4D structure, having the same 3D pyramid
shape, but with multiple oriented units at each position and
scale (see Fig. 2). Each unit represents the activation of a
particular Gabor filter centered at that position/scale. This
layer corresponds to V1 simple cells.

The Gabor filters are 11 × 11 in size, and are described
by:

G(x,y) = exp

(
− (X2 + γ 2Y 2)

2σ 2

)
cos

(
2π

λ
X

)
(1)

where X = x cos θ − y sin θ and Y = x sin θ + y cos θ . x and
y vary between −5 and 5, and θ varies between 0 and π .
The parameters γ (aspect ratio), σ (effective width), and λ

(wavelength) are all taken from (Serre et al. 2005) and are
set to 0.3, 4.5, and 5.6 respectively. Finally, the components
of each filter are normalized so that their mean is 0 and the
sum of their squares is 1. We use the same size filters for all
scales (applying them to scaled versions of the image).

Fig. 2 Feature computation in the base model. Each layer has units
covering three spatial dimensions (x/y/scale), and at each 3D location,
an additional dimension of feature type. The image layer has only one
type (pixels), layers S1 and C1 have 4 types, and the upper layers have
d (many) types per location. Each layer is computed from the previous
by applying template matching or max pooling filters. Image size can
vary and is shown for illustration

48 Int J Comput Vis (2008) 80: 45–57

It should be noted that the filters produced by these para-
meters are quite clipped; in particular, the long axis of the
Gabor filter does not diminish to zero before the bound-
ary of the 11 × 11 array is reached. However, experiments
showed that larger arrays failed to improve classification
performance, and they were more expensive to compute.

The response of a patch of pixels X to a particular S1
filter G is given by:

R(X,G) =
∣∣∣∣
∑

XiGi√∑
X2

i

∣∣∣∣. (2)

Local Invariance (C1) Layer This layer pools nearby S1
units (of the same orientation) to create position and scale
invariance over larger local regions, and as a result can also
subsample S1 to reduce the number of units. For each ori-
entation, the S1 pyramid is convolved with a 3D max filter,
10 × 10 units across in position2 and 2 units deep in scale.
A C1 unit’s value is simply the value of the maximum S1
unit (of that orientation) that falls within the max filter. To
achieve subsampling, the max filter is moved around the S1
pyramid in steps of 5 in position (but only 1 in scale), giving
a sampling overlap factor of 2 in both position and scale.
Due to the pyramidal structure of S1, we are able to use
the same size filter for all scales. The resulting C1 layer is
smaller in spatial extent and has the same number of feature
types (orientations) as S1; see Fig. 2. This layer provides a
model for V1 complex cells.

Intermediate Feature (S2) Layer At every position and
scale in the C1 layer, we perform template matches between
the patch of C1 units centered at that position/scale and each
of d prototype patches. These prototype patches represent
the intermediate-level features of the model.

The prototypes themselves are randomly sampled from
the C1 layers of the training images in an initial feature-
learning stage. (For the Caltech 101 dataset, we use d =
4,075 for comparison with (Serre et al. 2005).) Prototype
patches are like fuzzy templates, consisting of a grid of sim-
pler features that are all slightly position and scale invariant.

During the feature learning stage, sampling is performed
by centering a patch of size 4×4, 8×8, 12×12, or 16×16
(× 1 scale) at a random position and scale in the C1 layer of
a random training image. The values of all C1 units within
the patch are read out and stored as a prototype. For a 4 × 4
patch, this means 16 different positions, but for each posi-
tion, there are units representing each of 4 orientations (see
the “dense” prototype in Fig. 3). Thus a 4 × 4 patch actually
contains 4 × 4 × 4 = 64 C1 unit values.

2Note that the max filter is itself a pyramid, so its size is 10 × 10 only
at the lowest scale.

Preliminary tests seemed to confirm that multiple feature
sizes worked somewhat better than any single size. Since we
learn the prototype patches randomly from images contain-
ing background clutter, some will not actually represent the
object of interest; others may simply not be useful for the
classification task. The weighting of features is left for the
later SVM step. It should be noted that while each S2 proto-
type is learned by sampling from a specific image of a single
category, the resulting dictionary of features is shared, i.e.,
all features are used by all categories.

During normal operation (after feature learning), each of
these prototypes can be seen as just another filter which is
run over C1. We generate an S2 pyramid with roughly the
same number of positions/scales as C1, but having d types of
units at each position/scale, each representing the response
of the corresponding C1 patch to a specific prototype patch;
see Fig. 2. The S2 layer is intended to correspond to cortical
area V4 or posterior IT.

The response of a patch of C1 units X to a particular S2
feature/prototype P , of size n × n, is given by a Gaussian
radial basis function:

R(X,P) = exp

(
−‖X − P ‖2

2σ 2α

)
. (3)

Both X and P have dimensionality n × n × 4, where n ∈
{4,8,12,16}. As in (Serre et al. 2005), the standard devia-
tion σ is set to 1 in all experiments.

The parameter α is a normalizing factor for different
patch sizes. For larger patches n ∈ {8,12,16} we are com-
puting distances in a higher dimensional space; for the dis-
tance to be small, there are more dimensions that have to
match. We reduce the weight of these extra dimensions by
using α = (n/4)2, which is the ratio of the dimension of P

to the dimension of the smallest patch size.

Global Invariance (C2) Layer Finally we create a d-
dimensional vector, each element of which is the maximum
response (anywhere in the image) to one of the model’s d

prototype patches. At this point, all position and scale infor-
mation has been removed, i.e., we have a “bag of features”.

SVM Classifier The C2 vectors are classified using an all-
pairs linear SVM.3 Data is “sphered” before classification:
the mean and variance of each dimension are normalized
to zero and one respectively.4 Test images are assigned to
categories using the majority-voting method.

3We use the Statistical Pattern Recognition Toolbox for MATLAB, ver-
sion 2.04 (Franc and Hlavac 2004).
4Suggested by T. Serre (personal communication).

Int J Comput Vis (2008) 80: 45–57 49

Fig. 3 Dense vs. sparse S2 features. Dense S2 features in the base
model are sensitive to all orientations of C1 units at each position.
Sparse features are sensitive only to a particular orientation at each
position. A 4 × 4 S2 feature for a 4-orientation model is shown here.
Stronger C1 unit responses are shown as darker

Differences from Serre et al. Our base model, as described
above, performs about as well as that of Serre et al. (2005).
However, in Serre et al. (2005):

• image height is always scaled to 140,
• a pyramid approach is not used (different sized filters are

applied to the full-scale image),
• the S1 parameters σ and λ change from scale to scale,
• S1 filters differ in size additively,
• C1 subsampling ranges do not overlap in scale, and
• S2 has no α parameter.

2.3 Improvements

In this section we describe several changes which introduce
sparsity and localized intermediate-level features into the
model; these changes represent the main contributions of the
paper. Testing results for each modification are provided in
Sect. 3.

Sparsify S2 Inputs In the base model, an S2 unit computes
its response using all the possible inputs in its correspond-
ing C1 patch. Specifically, at each position in the patch, it is
looking at the response to every orientation of Gabor filter
and comparing it to its prototype. Real neurons, however,
are likely to be more selective among potential inputs. To
increase sparsity among an S2 unit’s inputs, we reduce the
number of inputs to an S2 feature to one per C1 position.
In the feature learning phase, we remember the identity and
magnitude of the dominant orientation (maximally respond-
ing C1 unit) at each of the n × n positions in the patch. This
is illustrated in Fig. 3; the resulting 4 × 4 prototype patch
now contains only 16 C1 unit values, not 64. When com-
puting responses to such “sparsified” S2 features, (3) is still
used, but with a lower dimensionality: for each position in
the patch, the S2 feature only cares about the value of the
C1 unit representing its preferred orientation for that posi-
tion. This makes the S2 unit less sensitive to local clutter,
improving generalization.

In conjunction with this we increase the number of Ga-
bor filter orientations in S1 and C1 from 4 to 12. Since we’re

Fig. 4 Inhibition in S1/C1. The weaker units (i.e., orientations) at each
position are suppressed. A 4 × 4 patch of units (at a single scale)
is shown here for a 4-orientation model. Stronger unit responses are
shown as darker

now looking at particular orientations, rather than combina-
tions of responses to all orientations, it becomes more im-
portant to represent orientation accurately. Cells in visual
cortex also have much finer gradations of orientation than
π/4 (Hubel and Wiesel 1959).

Inhibit S1/C1 Outputs Our second modification is
similar—we again ignore non-dominant orientations, but
here we focus not on pruning S2 feature inputs but on sup-
pressing S1 and C1 unit outputs. In cortex, lateral inhibition
refers to units suppressing their less-active neighbors. We
adopt a simple version of this between S1/C1 units encod-
ing different orientations at the same position and scale. Es-
sentially these units are competing to describe the dominant
orientation at their location.

We define a global parameter h, the inhibition level,
which can be set between 0 and 1 and represents the frac-
tion of the response range that gets suppressed. At each lo-
cation, we compute the minimum and maximum responses,
Rmin and Rmax , over all orientations. Any unit having R <

Rmin + h(Rmax − Rmin) has its response set to zero. This is
illustrated in Fig. 4.

As a result, if a given S2 unit is looking for a response
to a vertical filter (for example) in a certain position, but
there is a significantly stronger horizontal edge in that rough
position, the S2 unit will be penalized.

Limit Position/Scale Invariance in C2 Above the S2 level,
the base model becomes a “bag of features” (Csurka et al.
2005), disregarding all geometry. The C2 layer simply takes
the maximum response to each S2 feature over all positions
and scales. This gives complete position and scale invari-
ance, but S2 features are still too simple to eliminate bind-
ing problems: we are still vulnerable to false positives due
to chance co-occurrence of features from different objects
and/or background clutter.

We wanted to investigate the option of retaining some
geometric information above the S2 level. In fact, neurons
in V4 and IT do not exhibit full invariance and are known to
have receptive fields limited to only a portion of the visual
field and range of scales (Rolls and Deco 2001). To model

50 Int J Comput Vis (2008) 80: 45–57

Fig. 5 Limiting the position/scale invariance of C2 units. The solid
boxes represent S2 features sampled from this training image. In test
images, we will limit the search for the maximum response to each S2
feature to the positions represented by the corresponding dashed box.
Scale invariance is similarly limited (although not shown here)

this, we simply restrict the region of the visual field in which
a given S2 feature can be found, relative to its location in
the image from which it was originally sampled, to ±tp%
of image size and ±ts scales, where tp and ts are global
parameters. This is illustrated in Fig. 5.

This approach assumes the system is “attending” close
to the center of the object. This is appropriate for datasets
such as the Caltech 101, in which most objects of interest
are central and dominant. For the more general detection of
objects within complex scenes, as in the UIUC car database,
we augment it with a search for peak responses over object
location using a sliding window.

Select Features that are Highly Weighted by the SVM Our
S2 features are prototype patches randomly selected from
training images. Many will be from the background, and
others will have varying degrees of usefulness for the classi-
fication task. We wanted to find out how many features were
actually needed, and whether cutting out less-useful features
would improve performance, as we might expect from ma-
chine learning results on the value of sparsity.

We use a simple feature selection technique based on
SVM normals (Mladenic et al. 2004). In fitting separating
hyperplanes, the SVM is essentially doing feature weight-
ing. Our all-pairs m-class linear SVM consists of m(m −
1)/2 binary SVMs. Each fits a separating hyperplane be-
tween two sets of points in d dimensions, in which points
represent images and each dimension is the response to a dif-
ferent S2 feature. The d components of the (unit length) nor-
mal vector to this hyperplane can be interpreted as feature
weights; the higher the kth component (in absolute value),
the more important feature k is in separating the two classes.

Table 1 Published classification results for the Caltech 101 dataset.
Results for our model are the average of 8 independent runs using all
available test images. Scores shown are the average of the per-category
classification rates

Model 15 training 30 training

images/cat. images/cat.

Our model (base) 33 41

Serre et al. (2005) 35 42

Holub et al. (2005) 37 43

Berg et al. (2005) 45

Grauman and Darrell (2006) 50 58

Our model (final) 51 56

Lazebnik et al. (2006) 56 65

Zhang et al. (2006) 59 66

To perform feature selection, we simply drop features
with low weight. Since the same features are shared by all
the binary SVMs, we do this based on a feature’s average
weight over all binary SVMs. Starting with a pool of 12,000
features, we conduct a multi-round “tournament”. In each
round, the SVM is trained, then at most5 half the features
are dropped. The number of rounds depends on the desired
final number of features d . (For performance reasons, earlier
rounds are carried out using multiple SVMs, each contain-
ing at most 3,000 features.)

Our experiments show that dropping features (effectively
forcing their weights to zero rather than those assigned by
the SVM) improves classification performance, and the re-
sulting model is more economical to compute.

3 Multiclass Experiments (Caltech 101)

The Caltech 101 dataset contains 9,197 images comprising
101 different object categories, plus a background category,
collected via Google image search by Fei-Fei et al. (2004).
Most objects are centered and in the foreground, making it
an excellent test of basic classification with a large number
of categories. (The Caltech 101 has become the unofficial
standard benchmark for this task.) Some sample images can
be seen in Figs. 8 and 9.

First we ran our base model (described in Sect. 2.2) on the
full 102-category dataset. The results are shown in Table 1
and are comparable to those of (Serre et al. 2005).

Classification scores for our model are averaged over 8
runs. For each run we:

1. choose 15 or 30 training images at random from each
category, placing remaining images in the test set,

5Depending on the desired number of features it may be necessary to
drop less than half per round.

Int J Comput Vis (2008) 80: 45–57 51

Fig. 6 The results of parameter tuning for successive enhancements
to the base model using the Caltech 101 dataset. Tests were run inde-
pendently on two disjoint groups of 50 categories each. The horizontal
lines in the leftmost graph show the performance of the base model
(dense features, 4 orientations) on the two groups. Tuning is cumula-

tive: the parameter value chosen in each graph is marked by a solid di-
amond on the x-axis. The results for this parameter value become the
starting points (shown as solid data points) for the next graph. Each
data point is the average of 8 independent runs, using 15 training im-
ages and up to 100 test images per category

2. learn features at random positions and scales from the
training images (an equal number from each image),

3. build C2 vectors for the training set,
4. train the SVM (performing feature selection if that option

is turned on),
5. build C2 vectors for the test set and classify the test im-

ages.

Next we successively turned on the improvements de-
scribed in Sect. 2.3. Each has one or two free parameters.
Our goal was to find parameter values that could be used for
any dataset, so we wanted to guard against the possibility
of tuning parameters to unknown properties specific to the
Caltech 101. This large dataset has enough variety to make
this unlikely; nevertheless, we ran these tests independently
on two disjoint subsets of the categories and chose parame-
ter values that fell in the middle of the good range for both
groups (see Fig. 6). The fact that such values were easy to
find increases our confidence in the generality of the chosen
values. The two groups were constructed as follows:

1. remove the easy faces and background categories,
2. sort the remaining 100 categories by number of images,

then
3. place odd numbered categories into group A and even

into group B.

The complete parameter space is too large to search ex-
haustively, hence we chose an order and optimized each
parameter separately before moving to the next. First we
turned on S2 input sparsification and found a good number
of orientations, then we fixed that number and moved on to
find a good inhibition level, etc. This process is illustrated
in Figs. 6 and 7. The last parameter, number of features,
was optimized for all 102 categories as a single group. Since
models with fewer features can be computed more quickly,
we chose the smallest number of features that still gave re-
sults close to the best.

Fig. 7 Results for the final model on all 102 categories using vari-
ous numbers of features, selected from a pool of 12,000 features. The
horizontal line represents the performance of the same model but with
4,075 randomly selected features and no feature selection. Each data
point is the average of 4 runs with 15 training images and up to 100
test images per category

The parameter values ultimately chosen were 12 orien-
tations, h = 0.5, tp = ±5%, ts = ±1 scale, 1500 features.
Classification scores for the final model, which incorporates
these parameters, are shown in Table 1 along with those
from other published studies. Our final results for 15 and
30 training images, using all 102 categories, are 51% and
56%.6

Table 2 shows the contribution to performance of each
successive modification, using all 102 categories.

Figure 8 contains some examples of categories for which
the system performed well, while Fig. 9 illustrates some dif-

6When originally submitted for publication, these scores exceeded
all previously published results for this dataset. Concurrent work by
Lazebnik et al. (2006) and Zhang et al. (2006) scored higher. These
approaches focus on improved SVM kernels, as does that of Grauman
and Darrell (2006). A possible future project could involve replacing
our simple classifier with one based on these ideas.

52 Int J Comput Vis (2008) 80: 45–57

Table 2 The contribution of our successive modifications to the over-
all classification score, using all 102 categories. Each score is the aver-
age of 8 independent runs using all available test images. Scores shown
are the average of the per-category classification rates

Model version 15 training 30 training

images/cat. images/cat.

Base 33 41

+ sparse S2 inputs 35 (+ 2) 45 (+ 4)

+ inhibited S1/C1 outputs 40 (+ 5) 49 (+ 4)

+ limited C2 invariance 48 (+ 8) 54 (+ 5)

+ feature selection 51 (+ 3) 56 (+ 2)

Fig. 8 Examples of Caltech 101 categories on which our system per-
formed well

Fig. 9 Examples of Caltech 101 categories which our system found
more difficult

ficult categories. In general, the harder categories are those
having greater shape variability due to greater intra-category
variation and nonrigidity. Interestingly, the frequency of oc-
currence of background clutter in a category’s images does
not seem to be a significant factor. Note that performance
is worst on the “background” category. This is not surpris-
ing, as our system does not currently have a special case for
“none of the above”. Background is treated as just another
category, and the system attempts to learn it from at most 30
exemplars.

Table 3 shows the ten most common classification errors.
Notably, most of these errors are not outrageous by human
standards. The most common confusions are schooner vs.
ketch (indistinguishable by non-expert humans) and lotus vs.
water lily (similar flowers).

3.1 The Selected Features

Figure 10 shows the proportion of S2 features of each size
(4×4, 8×8, etc.) that survived the feature selection process
for the final model. Among these surviving features, the

Table 3 The ten most common errors on the Caltech 101 dataset, for
the final model using 30 training images per category, averaged over
8 runs. Only categories having at least 30 remaining test images are
included here

Category Most common error Frequency (%)

schooner ketch 19.32

lotus water lilly 18.75

ketch schooner 17.11

scorpion ant 8.80

elephant brontosaurus 8.46

crab crocodile 7.85

crayfish lobster 7.50

ibis emu 7.50

lamp flamingo 6.85

llama kangaroo 6.51

Fig. 10 Percentage of each size of feature remaining after feature se-
lection, using the final number of features (1500), averaged over 8 runs

4 × 4 size dominates, suggesting that this size generally
yields the most informative features for this task (Ullman
et al. 2002).

Because S2 features are not directly made up of pixels,
but rather C1 units, it is not possible to uniquely show what
they “look like”. However, it is possible to find the image
patches in the test set to which a given feature responds most
strongly. Figures 16 and 17 (end of paper) show two features
from a particular run on the Caltech 101 dataset. According
to the selection criteria, these features were ranked #1 and
#101, respectively.

For most features, the highest-responding patches do not
all come from one object category, although there are often
a few commonly recurring categories. S2 features are still
rather weak classifiers on their own.

4 Localization Experiments (UIUC cars)

We ran our final model on the UIUC car dataset (Agarwal et
al. 2004). These experiments served two purposes.

• Our introduction of limited C2 invariance (Sect. 2.3) sac-
rificed full invariance to object position and scale within
the image; we wanted to see if we could recover it and at
the same time perform object localization.

Int J Comput Vis (2008) 80: 45–57 53

Table 4 Our results (recall at equal-error rates) for the UIUC car
dataset along with those of previous studies. Scores for our model
are the average of 8 independent runs. Scoring methods were those
of (Agarwal et al. 2004)

Model Single-scale Multiscale

Agarwal et al. (2004) 76.5 39.6

Leibe et al. (2004) 97.5

Fritz et al. (2005) 87.8

Our model (final) 99.94 90.6

• We wanted to demonstrate that the model, and the para-
meters learned during the tuning process, could perform
well on another dataset.

The UIUC car dataset consists of small (100 × 40) train-
ing images of cars and background, and larger test images
in which there is at least one car to be found. There are two
sets of test images: a single-scale set in which the cars to be
detected are roughly the same size (100×40 pixels) as those
in the training images, and a multi-scale set.

Other than the number of features, all parameters were
unchanged. The number of features was arbitrarily set to
500 and immediately yielded excellent results. We did not
attempt to optimize system speed by reducing this number
as we did in the multiclass experiments. As before, the fea-
tures were selected from a group of randomly-sampled fea-
tures eight times larger, 4000 in this case, and the selec-
tion process comprised 3 rounds. Features were compared
in groups of at most 1000. See Sect. 2.3 for details.

We trained the model using 500 positive and 500 negative
training images; features were sampled from these same im-
ages.

For localization in these larger test images we added a
sliding window. As in Agarwal et al. (2004), the sliding win-
dow moves in steps of 5 pixels horizontally and 2 vertically.
In the multiscale case this is done at every scale using these
same step sizes. At larger scales there are fewer pixels, each
representing more of the image, hence there are fewer win-
dow positions at larger scales.

Duplicate detections were consolidated using the neigh-
borhood suppression algorithm from (Agarwal et al. 2004).
We increase the width of a “neighborhood” from 71 to 111
pixels to avoid merging adjacent cars.

Our results are shown in Table 4 along with those of other
studies. Our recall at equal-error rates (recall = precision) is
99.94% for the single-scale test set and 90.6% for the multi-
scale set, averaged over 8 runs. Scores were computed using
the scoring programs provided with the UIUC data.

In our single-scale tests, 7 of 8 runs scored a perfect
100%—all 200 cars in 170 images were detected with no
false positives. To be considered correct, the detected posi-
tion must lie inside an ellipse centered at the true position,

Fig. 11 Some correct detections from one run on the single-scale
UIUC car dataset

Fig. 12 The only 2 errors (1 missed detection, 1 false positive) made
in 8 runs on the single-scale UIUC car dataset

having horizontal and vertical axes of 25 and 10 pixels re-
spectively. Repeated detections of the same object count as
false positives. Figure 12 shows the only errors from the 8th
run; Fig. 11 shows some correct single-scale detections.

For the multiscale tests, the scoring criteria include a
scale tolerance (from Agarwal et al. 2004). Figures 13
and 14 show some correct detections and some errors on the
multiscale set. Table 5 contains a breakdown of the types
of errors made. Even in the multiscale case, outright false
positives and missed detections are uncommon. Most of the
errors are due to the following two reasons.

1. Two cars are detected correctly, but their bounding boxes
overlap. This is more common in the multiscale case; see
for example Fig. 14, bottom left. The neighborhood sup-
pression algorithm eliminates one of them. Careful re-
design of the suppression method could likely eliminate
this type of error.

2. For certain instances of cars, the peak response, i.e., the
highest-responding placement of the bounding box, oc-
curs at a scale somewhat larger or smaller than that of the
best bounding box. This is considered a missed detection
(and a false positive) by the scoring algorithm (Agarwal
et al. 2004).

5 Localization Experiments (Graz-02)

Our final tests were conducted on the more difficult images
of the Graz-02 (Opelt et al. 2006) dataset; some example

54 Int J Comput Vis (2008) 80: 45–57

Fig. 13 Some correct detections from one run on the multiscale UIUC
car dataset

Fig. 14 Examples of the kinds of errors made for one run on the mul-
tiscale UIUC car dataset. Top left: a simple false positive. Top right: a
simple false negative. Bottom left: the second car is suppressed due to
overlapping bounding boxes. Bottom right: the car is detected but the
scale is slightly off

Table 5 Frequency of error types for one run on the multiscale UIUC
car dataset

Source of error Number of test images

Simple false positive 1

Simple false negative 1

Suppression due to overlap 6

Detection at wrong scale 6

images may be seen in Fig. 15. Like the UIUC car dataset,
Graz-02 was designed for the binary, single-category-vs.-
background task, and the objects of interest are not necessar-
ily central or dominant. It differs from the UIUC car dataset
in the following ways.

1. There are three different positive categories: bikes, cars,
and people. Nevertheless, the standard task is to distin-
guish one of these categories from the background cate-
gory at a time, i.e., bikes vs. background, cars vs. back-
ground, and people vs. background.

2. The images are more difficult. There is a great deal of
pose variation. Objects may be partially occluded and of-
ten appear in overlapping clusters.

3. While ground-truth location data is provided, it is gener-
ally not used for training, and there is no separate set of
smaller training images.

4. The standard task is only to determine whether a test im-
age contains an instance of the positive category or not.
Its location within the image does not need to be reported.

Points (3) and (4) above make direct comparison with
other studies difficult. Other work on this dataset has used
pure bag-of-features models designed for the presence-or-
absence task. Because we use localized features, we require
training images in which the object is central and dominant,
hence we do make use of ground-truth data in the training
phase. And because we use a sliding window to identify ob-
jects in larger scenes, we end up solving the harder task
of localization and then simply taking the peak response,
throwing the location information away in order to compare
to previous results.

Our positive training set was built from 50 randomly-
selected square subimages containing a single object each.7

Each such subimage was left-right reflected, resulting in a
total of 100 positive examples. The negative training set con-
sisted of 500 randomly-selected “background” subimages,
equal in size to the average bounding box of the positive
examples. Some training subimages can be seen in Fig. 15.
The images from which the training subimages came were
set aside, i.e., they were unavailable for testing. We learned
a dictionary of 1,000 features (selected in 3 rounds from
8,000); all other parameters were again unchanged.

Given the many differences in task definition and the
training sets, our results cannot be considered directly com-
parable to others. We used less training data (50 images
compared to 300), but had the benefit of using ground-
truth localization for training. With these caveats, our whole-
image classification results were 80.5% for bikes, 70.1% for
cars, and 81.7% for people. This is quite similar to the results
of Opelt et al. (2006), who obtained 77.8% for bikes, 70.5%
for cars, and 81.2% for people. Recently, better results have
been obtained by Moosmann et al. (2006) for two of the cat-
egories (84.4% for bikes, 79.9% for cars), in part through the
use of color information. Our reason for including these ex-
periments is to test the application of our approach to more
difficult problems with wide variation in viewpoint and ob-
ject location, but a full comparison to other methods will
require development of new data sets.

7This may have the side-effect of removing some of the easier images
(those containing easily-separable single objects) from the test set.

Int J Comput Vis (2008) 80: 45–57 55

Fig. 15 Some subimages used to train our Graz-02 “bikes” classifier

6 Discussion and Future Work

In this study we have shown that a biologically-based model
can compete with other state-of-the-art approaches to ob-
ject classification, strengthening the case for investigating
biologically-motivated approaches to this problem. Even
with our enhancements, the model is still relatively simple.

The system implemented here is not real-time; it takes
several seconds to process and classify an image on a 2 GHz
Intel Pentium server. Hardware advances will reduce this to
immediate recognition speeds within a few years. Biologi-
cally motivated algorithms also have the advantage of being
susceptible to massive parallelization. Localization in larger
images takes longer; in both cases the bulk of the time is
spent building feature vectors.

We have found increasing sparsity to be a fruitful ap-
proach to improving generalization performance. Our meth-
ods for increasing sparsity have all been motivated by ap-
proaches that appear to be incorporated in biological vision,
although we have made no attempt to model biological data
in full detail. Given that both biological and computer vi-
sion systems face the same computational constraints arising
from the data, we would expect computer vision research to
benefit from the use of similar basis functions for describ-
ing images. Our experiments show that both lateral inhi-
bition and the use of sparsified intermediate-level features
contribute to generalization performance.

We have also examined the issue of feature localization
in biologically based models. While very precise geometric

Fig. 16 The 40 best image patches for feature #1, from one run of
the final model on the Caltech 101 dataset. The four images at the top
show the best-matching locations for the feature within the context of
full images. To save space, for the next 36 matches we display only the
matched patch

constraints may not be useful for broad object categories,
there is still a substantial loss of useful information in com-
pletely ignoring feature location as in bag-of-features mod-
els. We have shown a considerable increase in performance
by using intermediate features that are localized to small re-
gions of an image relative to an object coordinate frame.
When an object may appear at any position or scale in a
cluttered image, it is necessary to search over potential ref-
erence frames to combine appropriately localized features.
In biological vision this attentional search appears to be
driven by a complex range of saliency measures (Rolls and
Deco 2001). For our computer implementation, we can sim-
ply search over a densely sampled set of possible reference
frames and evaluate each one. This has the advantage of not

56 Int J Comput Vis (2008) 80: 45–57

Fig. 17 The 40 best image patches for feature #101 (using the same
display format as Fig. 16)

only improving classification performance but also provid-
ing quite accurate localization of each object. The strong
performance shown on the UIUC car localization task in-
dicates the potential for further work in this area.

Most of the performance improvements for our model
were due to the feature computation stage. Other recent mul-
ticlass studies (Lazebnik et al. 2006; Zhang et al. 2006) have
done well using a more complex SVM classifier stage. From
a pure performance point of view, the most immediately
fruitful direction might be to try to combine these ideas into
a single system. However, as we do not wish to stray too far
from what is clearly a valuable source of inspiration, we lean
towards future enhancements that are biologically realistic.
We would like to be able to transform images into a feature
space in which a simple classifier is good enough (DiCarlo
and Cox 2007). Even our existing classifier is not entirely

plausible, as an all-pairs model does not scale well as the
number of classes increases.

Another biologically implausible aspect of the current
model is that it ignores the bandwidth limitations of single
cells. On the timescale of immediate recognition, an actual
neuron will have time to fire only a couple of spikes. Thus, it
is more accurate to think of a single model unit as represent-
ing the synchronous activity of a population of cells having
similar tuning (Knoblich et al. 2007).

The initial, feedforward mode of classification is the ob-
vious first step towards emulating object classification in
humans. A more recent model by Serre et al. (2005)—
having a slightly deeper feature hierarchy that better corre-
sponds to known connectivity between areas in the ventral
stream—has been able to match human performance levels
for the classic animal/non-animal rapid classification task
of Thorpe et al. (1996); however, large multiclass experi-
ments have not yet been carried out. One might expect a
deeper hierarchy having higher-order features or units ex-
plicitly tuned to different 2D views of an object to perform
better on the more difficult datasets involving wide variation
in pose.

Our work so far has focused mainly on the sparse struc-
ture of features. However, the process of learning these fea-
tures from data in the current model is still quite crude—
features are simply sampled at random and then discarded
later if they do not prove useful. It is also unclear how
well this method would extend to a model having a deeper
hierarchy of features. More sophisticated methods will al-
most certainly be required. Previous hierarchical models
(the neocognitron, Fukushima 1980, and convolutional net-
works, LeCun et al. 1998) have investigated a number of
bottom-up and top-down methods. Epshtein and Ullman
(2005) provide a principled, top-down approach for build-
ing feature hierarchies based on recursive decomposition of
features into maximally informative sub-features. However,
this technique would need to be extended to the multiclass,
shared-feature case, and to the case in which the higher-level
features are not pixel patches. It is likely that future work
will incorporate elements of both bottom-up and top-down
selection and learning of features.

Ultimately, the feedforward model should become the
core of a larger system incorporating feedback, attention,
and other top-down influences.

Acknowledgements We thank the reviewers for several helpful
comments. Funding for this research was provided by the Natural Sci-
ences and Engineering Research Council of Canada (NSERC), the
Canadian Institute for Advanced Research (CIAR), and the University
of British Columbia’s University Graduate Fellowship program.

References

Agarwal, S., Awan, A., & Roth, D. (2004). Learning to detect objects
in images via a sparse, part-based representation. IEEE Trans-

Int J Comput Vis (2008) 80: 45–57 57

actions on Pattern Analysis and Machine Intelligence, 26(11),
1475–1490.

Berg, A. C., Berg, T. L., & Malik, J. (2005). Shape matching and object
recognition using low distortion correspondence. In CVPR, June
2005.

Bouchard, G., & Triggs, B. (2005). Hierarchical part-based visual ob-
ject categorization. In CVPR, June 2005.

Csurka, G., Dance, C., Willamowski, J., Fan, L., & Bray, C. (2005).
Visual categorization with bags of keypoints. In ECCV inter-
national workshop on statistical learning in computer vision,
Prague, 2004.

DiCarlo, J., & Cox, D. (2007). Untangling invariant object recognition.
Trends in Cognitive Science, 11, 333–341.

Epshtein, B., & Ullman, S. (2005). Feature hierarchies for object clas-
sification. In ICCV, Beijing.

Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning generative vi-
sual models from few training examples: an incremental Bayesian
approach tested on 101 object categories. In CVPR workshop on
generative-model based vision.

Fergus, R., Perona, P., & Zisserman, A. (2003). Object class recogni-
tion by unsupervised scale-invariant learning. In CVPR.

Figueiredo, M. (2003). Adaptive sparseness for supervised learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence
25(9), 1150–1159.

Franc, V., & Hlavac, V. (2004). Statistical pattern recognition toolbox
for Matlab, version 2.04.

Fritz, M., Leibe, B., Caputo, B., & Schiele, B. (2005). Integrating rep-
resentative and discriminative models for object category detec-
tion. In ICCV (pp. 1363–1370), Beijing, China, October 2005.

Fukushima, K. (1980). Neocognitron: a self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift
in position. Biological Cybernetics, 36(4), 193–202.

Grauman, K., & Darrell, T. (2006). Pyramid match kernels: discrimi-
native classification with sets of image features (Technical Report
MIT-CSAIL-TR-2006-020), March 2006.

Holub, A., Welling, M., & Perona, P. (2005). Exploiting unlabeled data
for hybrid object classification. In NIPS workshop on inter-class
transfer, Whistler, BC, December 2005.

Hubel, D., & Wiesel, T. (1959). Receptive fields of single neurones in
the cat’s striate cortex. Journal of Physiology, 148, 574–591.

Knoblich, U., Bouvrie, J., & Poggio, T. (2007). Biophysical models of
neural computation: max and tuning circuits (Technical Report
CBCL paper), April 2007.

Krishnapuram, B., Carin, L., Figueiredo, M., & Hartemink, A. (2005).
Sparse multinomial logistic regression: fast algorithms and gen-
eralization bounds. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(6), 957–968.

Lazebnik, S., Schmid, C., & Ponce, J. (2006) Beyond bags of fea-
tures: Spatial pyramid. matching for recognizing natural scene
categories. In CVPR, June 2006.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of
the IEEE, 86(11), 2278–2324.

Leibe, B., Leonardis, A., & Schiele, B. (2004). Combined object
categorization and segmentation with an implicit shape model.
In ECCV workshop on statistical learning in computer vision
(pp. 17–32), Prague, Czech Republic, May 2004.

Logothetis, N., Pauls, J., & Poggio, T. (1995). Shape representation
in the inferior temporal cortex of monkeys. Current Biology, 5,
552–563.

Mladenic, D., Brank, J., Grobelnik, M., & Milic-Frayling, N. (2004).
Feature selection using linear classifier weights: interaction with
classification models. In The 27th annual international ACM SI-
GIR conference (SIGIR 2004) (pp. 234–241), Sheffield, UK, July
2004.

Moosmann, F., Triggs, B., & Jurie, F. (2006). Randomized clustering
forests for building fast and discriminative visual vocabularies. In
Neural information processing systems (NIPS), November 2006.

Mutch, J., & Lowe, D. G. (2006). Multiclass object recognition with
sparse, localized features. In CVPR (pp. 11–18), New York, June
2006.

Olshausen, B., & Field, D. (1996). Emergence of simple-cell recep-
tive field properties by learning a sparse code for natural images.
Nature, 381, 607–609.

Opelt, A., Pinz, A., Fussenegger, M., & Auer, P. (2006). Generic object
recognition with boosting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(3).

Poggio, T., & Edelman, S. (1990). A network that learns to recognize
three-dimensional objects. Nature, 343, 263–266.

Potter, M. (1975). Meaning in visual search. Science, 187, 965–966.
Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object

recognition in cortex. Nature Neuroscience, 2(11), 1019–1025.
Rolls, E. T., & Deco, G. (2001). The computational neuroscience of

vision. Oxford: Oxford University Press.
Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., & Pog-

gio, T. (2005). A theory of object recognition: computations and
circuits in the feedforward path of the ventral stream in pri-
mate visual cortex (Technical Report CBCL Paper #259/AI Memo
#2005-036). Massachusetts Institute of Technology, Cambridge,
MA, October 2005.

Serre, T., Wolf, L., & Poggio, T. Object recognition with features in-
spired by visual cortex. In CVPR, San Diego, June 2005.

Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the
human visual system. Nature, 381, 520–522.

Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of in-
termediate complexity and their use in classification. Nature Neu-
roscience, 5(7), 682–687.

Zhang, H., Berg, A., Maire, M., & Malik, J. (2006). Svm-knn: discrim-
inative nearest neighbor classification for visual category recogni-
tion. In CVPR, June 2006.

	Object Class Recognition and Localization Using Sparse Features with Limited Receptive Fields
	Abstract
	Introduction
	Models
	Previous Models
	Our Base Model
	Image Layer
	Gabor Filter (S1) Layer
	Local Invariance (C1) Layer
	Intermediate Feature (S2) Layer
	Global Invariance (C2) Layer
	SVM Classifier
	Differences from Serre et al.

	Improvements
	Sparsify S2 Inputs
	Inhibit S1/C1 Outputs
	Limit Position/Scale Invariance in C2
	Select Features that are Highly Weighted by the SVM

	Multiclass Experiments (Caltech 101)
	The Selected Features

	Localization Experiments (UIUC cars)
	Localization Experiments (Graz-02)
	Discussion and Future Work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

