
Abstract—The RoboCup Small Size League (SSL) is a
challenging environment for computer vision applications.
Ball and robots move at speeds up to 2 m/s and the need of
tracking them precisely requires the implementation of a
high performance vision system.
We will present the vision system developed in the ITAM
Small Size Team (Eagle Knights) explaining the main
algorithms and technical decisions made in the
implementation. We pay special attention to the details
necessary to give new teams a head start in their own
implementation based on knowledge gained in two years of
experience in SSL.

I. INTRODUCTION

RoboCup[1] is an international joint project to promote AI,
robotics and related field. In the Small Size League, two teams
of five robots up to 18 cm in diameter play soccer on a 4 by
5.4 m carpeted soccer field.

The typical architecture of a team in the Small Size League
(SSL) has four main components: the vision system, the AI
system, five robots and the referee box.
The vision system digitally process two video signals from the
cameras mounted on top of the field. It computes the position
of the ball and robots on the field, including orientation of the
robots in its own team transmitting the information back to the
AI system.
The AI system receives the information and makes strategic
decisions. The actions of the team are based in a set of roles
(goalkeeper, defense, forward) that exhibit behaviors according
to the current state of the game. To avoid collision with robots
of the opposite team an obstacle avoidance module is used. The
decisions are converted to commands that are sent back to the
robots via a wireless link. The robots execute these commands
and produce mechanical actions as ordered by the AI system.
This cycle is repeated 60 times per second. Finally the referee
can communicate additional decisions (infraction, goal scored,

start of the game,etc.) sending a set of predefined commands to
the AI system through a serial link. Figure 1 shows a schematic
of the architecture.

 Fig 1. Typical architecture of a SSL team

The vision system is the only source of feedback in the whole
architecture, if the data given by the vision system is wrong the
overall performance of the team will be severely affected.
That’s why the vision system should be robust enough to
compensate for any possible mistakes.

The main object characteristics used by the vision system are
the colors defined in the rules [2] of the SSL. The ball is a
standard orange golf ball. The robots of one team must have on
top of them a 50 mm blue colored circle while the other team
must have a yellow patch.

The main tasks of the vision system are:
1. Capture video from the cameras mounted on top of the

field in real time.

Real Time Vision System for a Small Size
League Team

 Luis A. Martinez-Gomez Alfredo Weitzenfeld
luis@mcculloch.itam.mx alfredo@itam.mx

Comp Eng Dept, ITAM
Rio Hondo 1, San Angel Tizapan
Mexico City, MEXICO, 01000

2. Recognize the set of colors assigned in the rules to the
objects of interest in the field (robots and ball).

3. Identify and compute the orientation and position of the
robots in the team

4. Compute the position of the robots of the opposite team.
5. Transmit the information back to the AI system.
6. Adapt to different light conditions (color calibration

procedure).

II. SYSTEM DESIGN

The system is modular to allow future updates and
improvements. It has several modules, each module it’s a
functional block with a specific task. Figure 2 shows the vision
system architecture.

1. CAPTURE MODULE. Assign a physical capture device

to the cameras, the type of connection (IEEE1394, S-
Video, Composite, etc), the resolution of the image, and
the frame rate.

2. PREPROCESSING MODULE. Modify the quality of the
image, such as brightness, contrast, gamma, etc.

3. OBJECT CALIBRATION MODULE. This module is a
tool to establish the thresholds of each component
according to the space color for every object of interest
(robots and ball).

4. SEGMENTATION MODULE. Separate each pixel of the
images into object classes. The module consist of two
segmenters, each one using the thresholds values assigned
to the camera for every object of interest.

5. BLOB BUILDER MODULE. Connects the segmented
pixels into blobs. Before reaching this module the image
is composed of separate pixels; when a blob is
constructed useful information is computed such as the
area, centroid, bounding box, etc. A joint list of blobs for
the two cameras is generated for each color.

6. ACTIVATION/DESACTIVATION MODULE. Enables
or disables the use of a particular robot. Sometimes a
team can play with less robots so this information is
useful to avoid unnecessary searching processes.

7. RECOGNITION MODULE. Selects the regions that
adjust better to the objects searched. It has a selection
criteria for every kind of object. For the ball we select the
orange blob that is nearest to an area of 85 pixels (with
an image resolution of 640x480). For the robots of the
opposite team the selection criteria consists in selecting
the blobs of the corresponding color of the central patch
with an area nearest to 115 pixels (the area of the patch is
bigger than the ball). The number of blobs selected are
determined in the Activation/ Desactivation module. For
the team the procedure is similar to the one used for the
robots of the opposite team, but additional to the central
patch, a search for extra patches is necessary. The extra
patches are employed for identification and orientation
computation.

8. GEOMETRIC CALIBRATION MODULE. This module
computes the internal and external parameters of the
cameras using the Tsai method [3]. This parameters are
used to correct the distortion produced by the lenses of the
camera.

9. LOCALIZATION MODULE. Computes the position of
all objects in the field. It uses the camera parameters
obtained in the Geometric Calibration module to undistort

the image. Also computes the orientation of robots in the
team.

10. GRAPHIC DISPLAY MODULE. It’s responsible for
displaying video images in the screen and for generating
basic drawing functions such as lines, circles, etc. in the
video image.

11. TRANSMISSION MODULE. A UDP network link is
setup for the communication between the vision system
an the AI system. The module builds a structure
appropriate for data transmission. In practice the vision
system can perform communication with two or more
hosts allowing for distributed AI system processing if
necessary.

Some modules such as the capture and graphic display
modules rely on the operating system chosen for the
implementation because they are tightly coupled with the
hardware. We choose Windows 2000 because it is a well
known operating system used by many as the primary
programming platform. Nevertheless the algorithms of the rest
of the modules can be programmed in any platform. In the
next section we present the main algorithms of the vision
system.

III. MAIN ALGORITHMS

So far we have explained the modules in the vision system but
haven’t explain the details of the algorithms used for video
processing. This section gives a general overview with
references given to further detailed explanation.

A. SEGMENTATION ALGORITHM

The most important step in video processing is assigning to
each pixel in the image a class (object) that belongs to. This is
equivalent to subdivide the image into the parts or objects that
constitutes it [4]. The goal of the segmentation algorithm is to
make this classification in real time. We use a method proposed
in [5] that can be best described as a constant thresholding in a
projected color space. The approach involves the use of
thresholds in a three dimensional color space, such as RGB,
YUV or HSI. We chose YUV because is more robust to
changes in light intensity and is supported by most of the video
capture cards.
Each class (object of interest defined by a color) is specified as
a set of six thresholds values: two for every color space
component. That is the maximum and minimum values for the
range of each component in the color space.
The classification operation evaluates if a pixel belongs to a
class or not, thus it is important to pay special attention to its
implementation because this operation will be repeated for
every pixel in the image; so with a 640x480 resolution the
operation is done 307,200 times.
One naïve approach to evaluate if a pixel with values Y,U,V
belongs to a class is:

if((Y >= Ymin)
 AND (Y <= Ymax)
 AND (U >= Umin)
 AND (U <= Umax)
 AND (V >= Vmin)
 AND (V <= Vmax))
 Pixel_color = color_class;

Unfortunately this approach is quite inefficient because needs
up to 6 conditional branches to determine membership of the
pixel to the color class.

The algorithm employed uses a boolean valued
decomposition for the operation. The
decomposition is stored in arrays, one array for
every color component in the color space with one
array element for each value of the color
component. With this approach the membership of a
pixel to a class can be evaluated using a bitwise
AND operation of the elements of each array
indicated by the values of the pixel:

pixel_in_class = Yarray[Y]
 AND Uarray[U]

 AND Varray[V];

The resulting value in pixel_in_class indicates if the pixel
belongs to the class or not. The next example helps to illustrate
this approach.
The color space is discretized in 10 levels for each component.
Then a color “O” might be represented assigning the next
values for every element in the arrays:

Yarray[] = {0,1,1,1,1,1,1,1,1,1}
Uarray[] = {0,0,0,0,0,0,0,1,1,1}
Varray[] = {0,0,0,0,0,0,0,1,1,1}

To verify if a pixel with values (1,8,9) belongs to the color
class “O” we need to evaluate the expression Yarray[1] AND
Uarray[8] AND Varray[9] resulting in 1 indicating that the
pixel belongs to the color class.

The bitwise AND operation used is significantly more efficient
than the naïve approach, beside, parallelism in the integer AND
operation can be exploited to evaluate the membership of the
pixel to several color classes at the same time. Lets say that
another color “B” can be represented assigning the next values
to the arrays:

Yarray[] = {0,1,1,1,1,1,1,1,1,1}
Uarray[] = {1,1,1,0,0,0,0,0,0,0}
Varray[] = {0,0,0,1,1,1,0,0,0,0}

Instead of using another set of arrays we can combine them
using each bit position in the elements of the array to represent
a color. Combining the colors “O” and “B” we get:

Yarray[] = {00,11,11,11,11,11,11,11,11,11}
Uarray[] = {01,01,01,00,00,00,00,10,10,10}
Varray[] = {00,00,00,01,01,01,00,10,10,10}

The high order bit represents color “O” while the second bit
represents de color “B”. We can check whether the pixel with
values (1,8,9) belongs to one of the two classes by evaluating
the same expression Yarray[1] AND Uarray[8] AND
Varray[9].The result is 10 indicating that it belongs to color
“O” but not to “B” color. With a 32 bit integer a maximum of
32 colors classes can be segmented in the same operation.

The proposed method relies strongly in selecting appropriate
thresholds values for each color of interest in order to obtain a
good segmentation. This is probably the most critical step for
any vision system based in colors. Our calibration module
allows to change dynamically every threshold value while
watching the effect of the change in real time. This approach
has shown to be a fast method to select values, but is not very
reliable when similar colors need to be calibrated , for example
with bright blue and cyan, or dark pink and orange. An
approach not implemented in our vision system that can be
employed to avoid this problem is to compute an histogram and
select the corresponding thresholds more accurately.

B. BLOB GENERATION ALGORITHM

After segmentation, the next step is to connect the segmented
pixels into regions or blobs. This process can be expensive and
can impact in real time performance. The selected method was
proposed in [7] and is divided in two steps.

The first step is to compute a RLE of the segmented image. A
RLE (Run Length Encoding) is a well known compression
algorithm without loss [6]. The basic idea is to take sequences
of repeated data and replace them with the data and their
quantity.
In computer vision applications changes in adjacent pixels are
uncommon and thus a RLE can reduce significantly the amount
of data processed in the next step; beside there is also the
practical benefit that the blob generation algorithm will only
need to look for vertical connectivity, because the horizontal
components are merged in the computation of the RLE. Every
run generates a data structure that contains all the information
of the pixels and a pointer used to connect them with other
runs.

The objective of the merging procedure is to connect all the
runs that belongs to a region. The idea is that every run of a
region points to the region’s run parent. Initially we have a
disjoint forest of runs, every run points to itself. The merging
procedure looks into adjacent rows and merge runs that are of
the same color and overlap under four connectedness. Every
run points towards a region’s global parent, if overlapping
occurs then a second pass is needed to merge the overlapped
runs. The process is shown in Figure 3.

Figure 3. Merging process example

Relevant information such as the area, centroid, bounding box
and perimeter are computed in the last step. This information is
stored in a region data structure. Lists of regions for each color
are generated at the end of the method.

C. IDENTIFICATION ALGORITHM

Once the lists of regions are generated the recognition process
begins. As mentioned before, to recognize the ball we simply
take the region of orange color whose area is nearest to 85
pixels (ball area with a 640x480 resolution). To do this we

order the list with Quicksort [8] using not the area of the region
but instead the absolute value of the difference between the
region’s area and 85. The first element of the ordered list is the
ball.

To recognize robots of the opposite team we follow a similar
procedure, but now the order criteria is the difference between
the region’s area and 115 pixels. We take the first n elements
of the ordered list, where n is set by the user in the
activation/desactivation module.

To recognize our robots we first select candidates following the
same procedure as the robots of the opposite team. Then every
candidate is further examined searching for additional patches
used in the robots for individual identification. Every team
decides which pattern of patches to use; we decided to use a
butterfly pattern [9]. We search the additional patches in a
window around the central patch (candidate). If we found less
than four additional patches the candidate is discarded, if we
find more we select the four regions whose area is nearest to
115 pixel. Once we have four patches in the window area
around the central patch the next step is to order them in a
counter clockwise direction to obtain the color encoded ID of
the robot. Every robot has a unique ID encoded in the
additional patches, one color (green) is interpreted as a cero and
the other color (pink) as a one. So if we have a patch pattern of
green, green, pink and green we interpret it as 0010 or a
decimal 2.

To order the additional patches in counter clockwise direction
we first compute a simple close path [10]. A simple close path
is found when a set of points are connected without crossing the
paths between the points. Figure 4 shows an example of a
simple closed path.

Figure 4. Simple closed path

The first step to produce the path is to find the lowest point and
take it as anchor, then the angles of the line segments between
all the points and the anchor are computed. The points are
ordered form smaller to greater angle. Figure 5 shows the
anchor point A, points Pi, line segments and angles computed.

Figure 5. Simple close path computation

Once the patches are ordered the distance between the points
are computed, the pair of points whose distance is greater
correspond to the frontal patches and the ID can be decoded.

D. LOCALIZATION AND ORIENTATION ALGORITHM

When the ball or the robots have been recognize their position
must be calculated. The first step is to compensate for the
distortion introduced by the camera lenses. The geometric
calibration module calculates the camera internal and external
parameters. To undistort the centroid of the region we use the
Tsai [3] equations:

[] ()[]
[] ()[]22

22
4

2
2

1

22
21

4
2

2
1

22

22

yrpxyprkrkyyy

xrpxyprkrkxxx

+++++=

+++++=
(

(

 where:

21,kk are the radial distortion coefficients,

21 , pp are the tangential distortion coefficients,

()yx, are the coordinate without distortion,

()yx ((, are the coordinate with distortion and
222 yxr += .

With the undistorted coordinates of the object the next step is
to calculate their position in the field. We use five known
reference points in the field (the corners of the first or second
half of the field depending on the camera and the center of the
field). With these reference points we calculate the true
position of the object in the field computing the differences
between the reference points and the undistorted point.

To calculate the orientation of our robots we undistort the
coordinates of the centroid of the frontal patches and compute
the midpoint of the line segment between these two points,
then the angle formed by the midpoint is calculated and the
central patch is computed, this angle is the orientation of the
robot.

IV. SYSTEM IMPLEMENTATION

The vision system was implemented in a regular PC: Pentium
4, 2.00 GHz, 512 MB of RAM with two off-the- shelf video

capture cards (based in the popular BT878 chipset) under
Windows 2000. We use two low cost handycams and Svideo
cables. The programming environment was VC++ 6.0.

We implement DirectShow[10] components that do all video
processing. DirectShow is the Microsoft architecture for video
and audio. It allows access to all the streaming media
capabilities installed in the PC and provides an API for
programmers to develop custom filters.
We took the decision to use this software tool for two main
reasons, first, DirectShow is a free programming API that
allows to isolate the hardware installed in the PC from the
vision system, making the system hardware universal (any
video capture card should work with the vision system);
second, the modular nature of DirectShow components
integrate easily with the system design.

Every step of the processing is done in a COM object called
filter. A filter perform some operation in the streaming media.
The application needs to construct a graph of filters (chain of
filters) to achieve the processing.

We use OpenCV[11] to make the camera calibration
procedure. The OpenCV camera calibration filter uses a chess
pattern to automatically extract the camera’s parameters, this
filter is integrated in the application graph when necessary.

The complete source code of the vision system can be found in
the Robotics Lab web site (http://robotica.itam.mx).

V. RESULTS

The vision system has been used in two international
competitions: RoboCup American Open 2003 and USOpen
2004, where our team Eagle Knights had won 3rd and 2nd place
respectively.
The system works at 58.96 fps with two video signals at a
resolution of 640x480.
Table 1 shows the results in different tests done to the vision
system.

Test name Error
Ball not found or misidentified 0.12%
Opposite robot not found or misidentified 0.08%
Team robot not found 0.13%
Team robot misidentified 0.02%
Position 0.01%
Robot orientation 2%

Table 1. Results in tests.

VI. CONCLUSIONS

We have presented the design, algorithms and implementation
of our vision system pointing out the areas that we believe are

critical for understanding the general structure of the system
presenting the architecture of the system and giving a brief
description of their functionality. Our mayor emphasis has
been in the main algorithms because they constitute the core
of the system. The segmentation algorithm is optimized for
real time performance and have been probed in our team and
many others with great success. The blob generation algorithm
is simple but yet strong avoiding the use of recursive
functions that can eat memory resources. The identification
algorithm is fast and reliable and could be use with other patch
patterns with some modifications. We gave a general idea of
the software tools used for the implementation giving
references for a deeper study and releasing the source code of
our system.

VII. REFERENCES

[1] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa.

Robocup: The robot world cup initiative. In Proceedings of the IJCAI-95
Workshop on Entertainment and AI/ALife, 1995.

[2] Verret, Ball, Kiat Ng. Laws of the F180 League - Release 3.00a.
http://www.itee.uq.edu.au/~wyeth/F180%20Rules/index.htm.

[3] Tsai, R.Y. A versatile camera calibration technique for high accuracy
3D machine vision using off-the-shell TV cameras and lenses. IEEE
Journal of robotics and Automation, 1987.

[4] González, Woods. Digital Image Processing. Adison-Wesley
Publishing Company, 1993.

[5] Bruce, Balch, Veloso. Fast an inexpensive color image segmentation
for interactive robots. Proceedings of the 2000 IEEE/RSJ International
Conference on Intelligent Robots and Systems.

[6] Held, Gilbert. Data Compression: Techniques and Applications,
Hardware and Software Considerations. John Wiley & Sons, 1987.

[7] Bruce, J. Realtime Machine Vision Perception and Prediction.
Undergraduate thesis. Carnegie Mellon University, 2000.
http://www-2.cs.cmu.edu/~jbruce/cmvision/papers/JBThesis00.pdf

[8] Hoare, C.A.R. Communications of the ACM. ACM Press, 1961.
http://portal.acm.org/citation.cfm?id=366644&dl=ACM&coll=portal

[9] James Bruce and Manuela Veloso. Fast and Accurate Vision-Based
Pattern Detection and Identification. In Proceedings of ICRA'03, the 2003
IEEE International Conference on Robotics and Automation, Taiwan,
May 2003.

[10] MSDN Library. Introduction to DirectShow. DirectShow SDK
Documentation, 2004.
http://msdn.microsoft.com/library/default.asp?urt=/library/en-
us/directx9_c/directX/htm/directshow.asp

[11] Intel Corporation. Open Source Computer Vision Library, Reference
Manual. Intel Corporation, 2001.
http://www.cs.unc.edu/Research/stc/FAQs/OpenCV/OpenCVReferenceM
anual.pdf

