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Correspondence

Unsupervised Texture Segmentation
Using Markov Random Field Models

B.S. Manjunath and R. Chellappa

Abstract—We consider the problem of unsupervised segmentation of
textured images. The only explicit assumption made is that the intensity
data can be modeled by a Gauss Markov random field (GMRF). The
image is divided into number of nonoverlapping regions and the GMRF
parameters are computed from each of these regions. A simple clustering
method is used to merge these regions. The parameters of the model esti-
mated from the clustered segments are then used in two different schemes,
one being an approximation to the maximum a posteriori estimate of the
labels and the other minimizing the percentage misclassification error.
Our approach is contrasted with a recently published algorithm [1] which
detailed an interesting simultaneous parameter estimation and segmen-
tation scheme. We compare the results of the adaptive segmentation
algorithm in [1] with a simple nearest neighbor classification scheme to
show that if enough information is available, simple techniques could be
used as alternatives to computationally expensive schemes.

Index Terms— Estimation, Gibbs distribution, Markov random field,
relaxation, segmentation, simulated annealing.

1. INTRODUCTION

Segmenting a textured scenc into different classes in the absence
of a priori information is still an unsolved issue in computer vision.
The main difficulty is that the model and its parameters are unknown
and need to be computed from the given image before segmentation.
To compute the parameters effectively the segmented image itself is
needed! Simultaneous parameter estimation and segmentation is often
computationally prohibitive. An alternate approach to this problem
is to have a two step process, first estimating the parameters in
small regions and getting a crude segmentation. Then estimate the
parameters again from this segmented image and use pixel based
segmentation schemes [2], [3]. In this correspondence we assume that
the texture intensity distribution can be modeled by a second order
GMREF. Hence the problem is in estimating these GMRF parameters
and segmenting the textures based on the estimated values.

Some of the recent work on unsupervised segmentation is reported
in [1], [4], and [5]. Lakshmanan and Derin [1] in a recent paper
address the problem of simultaneous estimation and segmentation of
Gibbs random fields (GRF). They obtained an interesting convergence
result for the maximum likelihood estimates (MLE) of the parameters
and maximum a posteriori probability (MAP) solution for the seg-
mentation. We give a brief description of their model in Section V
and cxperimental results to illustrate that if one makes the same
assumptions, a simple nearest neighbor classification rule produces
results very close to those obtained using simulated annealing as in
[1]. In [4], no specific texture model is assumed. Certain features
are extracted from the sub-images and the image is segmented based
on the disparity measure between the feature vectors from different
subimages.
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The approach to texture segmentation presented here is similar to
the work of Cohen and Fan [5]. In [5] the textures are modeled as
second order GMRF and the texture parameters are estimated from
disjoint windows. The windows are later grouped based on clustering
analysis. Finer segmentation is obtained by using the parameters from
the coarse segmentation in a suitable relaxation algorithm [6].

In the next section we give a brief description of the texture model.
Section 1II details the segmentation scheme and the experimental
results are provided in Section IV. In Section V, the adaptive seg-
mentation scheme of [1] is discussed along with the results of a
simple nearest neighbor classification scheme.

II. TEXTURE MODEL

The GMRF model for textures has been used by many researchers
[7]. In this correspondence we consider a second order GMRF model
for the conditional probability density of the intensity given the
texture label.

Let €2 denote the set of grid points in the M x M lattice, i.e.,
Q = {(i.j)1<i.j<M} Let {L..s€Q} and {Y;.s¢€ Q}
denote the labels and zero mean gray level arrays respectively. Let N
be the symmetric second order neighborhood of a site s (consisting
of the 8 nearest neighbors of s). Then assuming that all the neighbors
of s also have the same label as that of s, we can write the following
expression for the conditional density of the intensity at the pixel
site s
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where Z(1]y,. r € N,) is the partition function of the conditional
Gibbs distribution and
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In (2), oy and ©' are the GMRF model parameters of the /th texturc
class. The model parameters satisfy (—)f,q = (-)fv,s = (-)i,,. =0l

Further, the joint probability in a window 1", centered at s can
be written as
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y. represents the intensity array in the window 11°,. The above

equation assumes a free boundary model. V" is a set of shift vectors
corresponding to the second order GMRF model

N = {rn e = {(0.1).(1.0). (L1 (-1.1)}.  (4)
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A. GMRF Parameter Estimation

There are many existing methods for estimating the GMREF param-
eters, but none of them can guarantee both consistency (estimates
converging to the true values of the parameters) and stability (the
covariance matrix in the expression for the joint probability den-
sity of the MRF must be positive definite) together. Normally
an optimization algorithm is used to obtain the stable estimates.
The GMRF parameters are used in obtaining certain measures for
segmentation and not for texture synthesis. Hence it is appropriate
to use computationally less demanding schemes which can provide
reasonably good estimates of these parameters for the segmentation
process to work on, even if they do not necessarily guarantee the
stability of the estimates. The choice of the least squares estimate [8]
used here is motivated by this simplicity—stability tradeoff, and we
do not check for the stability of the estimates so computed.

Consider a region of size N x N containing a single texture. Let
Q) be the lattice under consideration and let €27 be the interior region
of Q, ie.,

Qr=Q-90Qg,
Qp = {s=(i.Jj)
s€Qand s+ 7 ¢ for at least some 7 € N'}. (5)
Let
T
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Then the least square estimates of the parameters are
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If /i is the mean of the subimage, then the feature vector for the
region is denoted by

F=(fi.fo-fs. fa. fs. fo) = (91-92-93-94-[1-6'2). )

Label field: The label field is modeled as second order discrete
MREF. It does not play any role in parameter estimation or in obtaining
the initial coarse segmentation. The label field is characterized by a
single parameter 3 which determines the bonding between different
regions in the image.

1II. SEGMENTATION

A. Clustering

The given image is divided into a number of nonoverlapping
subimages. For each of these subimages the corresponding feature
vectors are estimated as described in the previous section. It is
assumed that all these subimages are homogeneous. A normalized
Eucledian distance measure is defined for these vectors as

o i gi)?
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A simple clustering is done based on this distance measure. First the
maximum distance between any two regions in the image is found as

dinax = max d(Fi,F’).

(10)

The regions are now grouped such that any two subimages i and j
belonging to the same class satisfy

d(F’.F’) < pdmax 1

where p is a clustering parameter. Since p affects the number of clus-
ters that are formed, a good guess of p should be based on the knowi-
edge about the approximate number of classes present in the image.
In our experiments we used a simple heuristic p = 1/(approximate
number of classes). In the above clustering process all isolated regions
are marked as ambiguous. Also all regions which satisfy the criterion
(11) for two different classes should be labeled ambiguous. Usually
the boundary regions which have more than one texture inside fall
into this class. Note that alternate schemes like k-mean clustering can
also be used in obtaining such a coarse segmentation.

From these clustered regions the parameters are recomputed. These
parameters are then used in pixel based segmentation algorithms [3]
to obtain finer segmentation.

B. Deterministic and Stochastic Algorithms

1) Deterministic Relaxation: Assuming that the parameters of the
model and the number of classes in the image are known, the texture
segmentation problem can be formulated as a minimization problem.
Further, for the case when the model is an MRF, mapping this
problem onto a relaxation network is straightforward. The function
to be minimized can be written as [3]
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where N, is the second order neighborhood of site s and {Va} are
variables taking on values from {0.1}. If V5 is 1, it indicates that
the site s belongs to class /. Note that for each s, only one Vi has a
value one and all others are zero. 3 represents the binding between
textures of the same class and characterizes the initial distribution
of the class labels. U"(s.1) includes all the information regarding the
intensity and parameter values for the site s € class L It gives a
measure of the joint distribution of the intensities in a small window
W, centered at s and for the case when all pixels inside the window
belong to class , it is given by

Us. )= w(d)+ U1 (YD) (13)
where [';(-) is as in (3) and w(l) is the bias corresponding to
class I [3]. The U(s.1)’s are computed (for each s and /) before
starting the relaxation with the assumption that all pixels in the
window belong to the same class as /. This is an approximation,
since, as the relaxation proceeds, the pixels in a window might take
different labels. A computationally expensive alternative would be to
compute the U(-)’s during each iteration taking into account the label
configuration existing at that time. The bias w(l) can be estimated
from the given data as we have a coarse initial segmentation to begin
with. Before starting the relaxation, we can selectively fix the labels
of the pixels from which the parameters are initially estimated, so
that the relaxation process can be faster.

During each visit to site s, the class corresponding to the lowest
energy E is selected. This is equivalent to setting the appropriate
V,; to 1. The process is repeated until there is no further change in
the energy E. Since the energy is nonincreasing at each stage, the
procedure is bound to converge, although the convergence in general
will be to a local optimum. This algorithm is similar to the iterated
conditional mode rule proposed by Besag [9].

2) Stochastic Algorithms: The alternative to deterministic relax-
ation is to update the class labels in a random way. Simulated
annealing can be used to get the MAP solution [2]. Here we
consider another criterion which minimizes the expected classification
error per pixel (or alternatively, maximizes the posterior marginal
distribution) and use the algorithm suggested in [10] for this. This
algorithm is equivalent to running simulated annealing at a fixed
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temperature T = 1 (i.e., no annealing) and for details we refer to [3].
The final labels chosen correspond to the most frequently selected
ones. For convenience we refer to this as the MPM (maximizing the
posterior marginal) algorithm in the following. We also implemented
an algorithm which combines deterministic relaxation with stochastic
learning [3]. This has an advantage that it requires fewer number of
iterations compared to simulated annealing and the results are better
than using the deterministic relaxation alone. Learning is introduced
by defining a probability distribution over the class labels at each
pixel site and these probabilities are updated at each convergence
of the deterministic relaxation procedure. A new starting state for
the relaxation is obtained by sampling from this updated probability
distribution and the process is repeated. Usually about 20—40 such
learning cycles are enough to get good results.

IV. EXPERIMENTAL RESULTS

In the experiments described below, the subimage size was chosen
to be 32 x 32. The value of the clustering parameter depends on the
number of texture classes present and as mentioned earlier we used
the heuristic p = 1/(approximate number of classes). To eliminate
very small isolated regions one can use a penalty function in the relax-
ation algorithm which prohibits small clusters from being formed [4].
We found it convenient to use a smoothing filter (size 3 x 3or5 x 5)
to do the same. A useful observation is that with this kind of “post-
processing,” the performances of both the deterministic and stochastic
relaxation algorithms are comparable. The results given below corre-
spond to those obtained after performing the smoothing. However the
boundaries obtained by the stochastic algorithms are more accurate.

Example 1 (Grass and Leather Texture): Fig. 1(a) shows this
128 x 128 image and p is set to 0.5. Fig. 1(b) shows the result of
coarse clustering described in Section III-A. Fig. 1(c) is the result
of the deterministic relaxation. This normally takes about 10-20
iterations. The result of using learning in the deterministic relaxation
is shown in Fig. 1(d). About 10 learning cycles are used in this
experiment. Fig. 1(e) gives the result for the MPM algorithm after
about 500 iterations. The boundary obtained by the MPM is the
most accurate and also there are no misclassifications inside the
homogeneous regions.

Example 2 (Grass, Raffia, and Wood): Fig. 2(a) shows the original
image and Fig. 2(b) gives the coarse clustering obtained using
p = 0.3. Note the presence of an ambiguous region (dark region at the
top), which could not be classified into any of the other classes. The
results of the various algorithms are shown in Fig. 2(c)—(e). Here
agair the MPM gave the best result.

V. COMMENTS ON AN ADAPTIVE SEGMENTATION ALGORITHM

In [1], a simpler model based on GRF is used to model the intensity
process. This model can be summarized as
Yo, =X+, 14)

where Y;; is observed intensity at location (i.j), X, is the true
intensity and W is an independent identically distributed zero mean
Gaussian noise and it is assumed that its variance is known. Further,
Xij € {s1.---.sx}, s, being the intensity of the ith region, and
N are assumed to be known. The process X is modeled as an MRF
taking one of these N values. The joint distribution of X can be written
as a Gibbs distribution and the particular form of this used in [1] is
called a multilevel logistic (MLL) distribution. Hence the parameters
correspond to this MLL distribution. A maximum likelihood estimate
of the parameters of the MLL distribution are computed and combined
with simulated annealing to obtain an optimum segmentation of

(©)
Fig. 1. Unsupervised segmentation of an image consisting of two textures
(grass and leather). (a) Original image. (b) Coarse clustering. () Deterministic
relaxation. (d) Stochastic learning. (¢) MPM result.

the scene. A convergence result is also proved for this adaptive
segmentation scheme.

In the analysis of the algorithm, thc assumptions made play an
important role. Even with these simple assumptions, due to compu-
tational difficulties further approximations have to be made. For ex-
ample in the above scheme, a pseudo-likelihood algorithm is used to
approximate the MLE’s to avoid the computational burden involved
in the estimation of MLE. The use of simulated annealing makes the
algorithm computationally demanding. Further, if any of the assump-
tions made above (e.g., known number of regions, their intensity
values or known noise parameters) are relaxed [11], the resulting
convergence may not be even to a local optimum. Thus, even though
the principle of simultaneous parameter estimation and segmentation
could be used in more general cases like the textured images consid-
ered in this correspondence, it is not clear if it has any advantages
compared to the scheme detailed in this correspondence where we
first estimate the parameters from windows to obtain a coarse seg-
mentation and then use pixel based schemes for finer segmentation.

A. A Simple Nearest-Neighbor Classification Scheme
Adaptive segmentation should be data driven, but at the same
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{e)
Unsupervised segmentation of an image having throe textures (grass,
raffia, and wood). (a) Original image. {1 Coarse clustering. Note the pres-
ence of an ambiguous region {darkest region at the top). (¢ Deterministic
relaxation. (d) Stochastic learning. () MPM result.

time we should make use of whatever information that is available
about the data in the design of such algorithms. For example in this
correspondence we made an assumption that the texture intensities
could be modeled by GMRF which simplified the parameter esti-
mation significantly. To further illustrate the usefulness of the prior
knowledge about data, we give below a simple classification scheme
which makes the same assumptions as in the adaptive segmentation
scheme of [1] and does not need expensive algorithms like simulated
annealing to obtain comparable results. The data is the same as the
one used in [1]. Also the information about the noise variance 18
not used in this segmentation operation. For obtaining the segmented
image from a noisy version of it, we used the following algorithm:

1} At each pixel site {7, j}, compute the average pi,; in a small
window (of size 3 x 3 in our case) around the pixel (z. ] 3.
7y Then the intensity of the pixel is estimated as

= s = min s~ teisl

s (15)

3) The resulting segmentation is processed through a smoothing
filter (similar to the one described in Section V) to eliminate
small isolated regions.

481

® (b)

©
Fig. 3. Segmentation of two region hand-drawn image using a nearest
neighbor classification rule. (a) Original image. This is the same as the
one used in [1}. (b) With SNR 2 (standard deviation 25). () Segmented
image from (b). {(d} With SNR 1 (standard deviation 50). {¢) Segmented
image from (d).

Fig. 3 shows the performance of this scheme on a two region
hand-drawn image. Fig. 3(a) is the original image with the two
intensity levels being 100 and 150. This is one of the images used
in [1}. Fig. 3(b) is the noisy version with the noise being additive
iid. zero mean Gaussian with standard deviation 25 (signal-to-noise
ratio (SNR) of 2). The ification result we obtained is shown in
Fig. 3{(c) with the classification error of 1.73%. Fig. 3(dy and 3(e)
show the results when the noise deviation is 50 (SNR 1).

Corresponding results for the four region case (with intensity
values 100, 150, 200, and 250) are shown in Fig. 4. The maximum
difference in the performance of the nearest neighbor classification
rule to that reported in [1] is for the four region case with SNR 2,
where we obtained an error of 2.21% compared to 0.4% reported
in |1]. Table I compares the performance of this nearest neighbor
classification scheme with the adaptive segmentation algorithm of
[1] As far as the compufat ion time required, this clustering technique
takes few seconds of CPU time (for the 128 x 128 images, on &
SUN-3 workstation) compared to 1530 minutes (on VAX 860(0)
reported in {1].

As can be seen from these experiments, complexity of the seg-
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(2) (b)

(©
Fig. 4. Segmentation of a four region hand-drawn image using a nearest
neighbor classification algorithm. (a) Original image, same as the one used in
{1]. (b) With SNR 2 (standard deviation 25). (c) Segmented image from (b).
(d) With SNR 1 (standard deviation 50). (¢) Segmented image from (d).

mentation algorithms can be greatly reduced by a proper use of prior
information about the assumed models. The texture model considered
in Section I is more complicated than the one discussed in this
section and the only explicit assumption made was that the textures
can be modeled by a second order GMRF. Depending on the textures,
this may or may not be a valid assumption. However from our
experience with the different real textures like wood, wool, water,
etc., this appears to be a good approximation and our experimental
results also support this fact. From the computational viewpoint it is
better to separate the estimation and segmentation stages. However,
by doing this the algorithm will not lend itself to easy theoretical
analysis.

V1. CONCLUSIONS

Unsupervised segmentation is a difficult problem. Even before
estimating the parameters of any assumed model, one has to decide
whether the model is applicable to a particular image or not. As
we observed in the previous section, often the choice of appropriate
models play a significant role. Separating estimation from segmenta-
tion simplifies the problem and enables computationally manageable

TABLE 1
COMPARISON OF THE ADAPTIVE SEGMENTATION ALGORITHM IN [1] TO THE
NEAREST-NEIGHBOR CLASSIFICATION SCHEME. THE NUMBERS INDICATE
PERCENTAGE CLASSIFICATION ERRORS. SNR 2 CORRESPONDS TO A NOISE
STANDARD DEVIATION OF 25 AND SNR 1 CORRESPONDS TO A DEVIATION OF 50.

Algorithm 2 Regions 4 Regions
SNR2 SNR1 SNR2 SNR1
Nearest-Neighbor Classification 1.73 4.60 221 3.19
Adaptive Segmentation (from [1]) 0.96 3.88 0.40 1.98

algorithms. In cases where the number of textures in an image is
reasonably small, we are able to estimate the model parameters and
segment the scene. We also noticed that by introducing a penalty
for the small regions, which is equivalent to doing simple smoothing
operations, deterministic relaxation schemes give results comparable
to those of stochastic techniques like simulated annealing and MPM.
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