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Abstract

In the last few years, object detection techniques have pro-
gressed immensely. Impressive detection results have been
achieved for many objects such as faces [11, 14, 9] and
cars [11]. The robustness of these systems emerges from a
training stage utilizing thousands of positive examples. One
approach to enable learning from a small set of training ex-
amples is to find an efficient set of features that accurately
represent the target object. Unfortunately, automatically se-
lecting such a feature set is a difficult task in itself.

In this paper we present a novel feature selection method
that is based on the notion of object categories. We assume
that when learning to recognize a new object (like an apple)
we also know a category it belongs to (fruit). We further
assume that features that are useful for learning other ob-
jects in the same category (e.g. pear or orange) will also
be useful for learning the novel object. This leads to a sim-
ple criterion for selecting features and building classifiers.
We show that our method gives significant improvement in
detection performance in challenging domains.

1 Introduction

Achieving human like object detection capabilities is one of
the most challenging goals facing the computer vision com-
munity. The primary difficulty in achieving robust object
detection emerges from the wide variety in the appearance
of objects. In order to confront this variety, many recent
object detection systems (e.g. [10, 11, 14]) use thousands
of positive examples as a training set. Though using numer-
ous examples enhances detection performance, we maintain

fruit category office category

a b c d

Figure 1: We demonstrate our approach on two categories:
fruit (apple, orange, pear, banana and peach) and office ob-
jects (computer monitor, light switch, door, picture frame
and bookshelf). Detection after training from a small sam-
ple (a - 10 apples, c - 10 monitors), was significantly im-
proved by prioratizing features with high discriminative
value on the remaining objects in the category (b,d).

several motivations for attempting to develop new detection
methods that rely on small training sets.

Our first motivation stems from the human ability to de-
tect new objects after a short exposure to very few exam-
ples [5]. In addition training examples are often expensive
to acquire or otherwise scarce. Collecting 5,000 examples
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of upright faces might be a matter of a few days work using
an Internet search engine, but obtaining a large number of
annotated images of other objects like apples or chairs is a
substantially more demanding task.

As the object detection research progresses, more and
more feature sets are proposed for different object detec-
tion tasks [9, 14, 1, 8]. One might assume that using an
inclusive pool of all feature sets proposed in the literature
might be instrumental in creating a generic object detection
scheme. However, adopting such a large feature pool leads
to an overfitting problem when learning from few training
examples. We therefore remain with the option to either
manually select which feature set should be used for each
specific object or characterize a generic mechanism that au-
tomatically selects the relevant feature set.

Defining a relevant feature set is often done implicitly by
the researchers’ biased selection of the candidate feature set.
Yet, this selection might be difficult and counterintuitive.
For example Haar-features have been surprisingly effective
in characterizing upright frontal faces [14], but when ap-
plying these same features for profile face detection a sub-
stantial drop of performance is observed [9]. Our underly-
ing assumption is that while defining an efficient feature set
might be nontrivial; characterizing a perceptual category by
stating a visual resemblance might be more natural.

Applying any traditional learning algorithm to each of
the objects in a visual category independently would yield
poor detection results due to combined effect of a small
available training sample and a substantial candidate feature
set.

Rather than relying on many examples of a single object,
our approach assumes that a few examples of many objects
are available and that we have some capability of segregat-
ing the world of objects into different visual categories1.
It should be emphasized that we focus on utilizing visual
categories, defined by perceptual commonalities and not on
semantic categories, which might be defined by function or
abstract knowledge (like genetic resemblance). We show
that using the information common between several objects
in the perceptual category can significantly improve the de-
tection results of any novel object belonging to the same
category.

1.1 Previous works

The human perceptual system possesses the unparalleled
capability of learning to detect a new object category from
very few examples. This capacity might be a necessity
in designing a perceptual system capable of recognizing
30,000 objects [2]. In the last decades the computer vision

1We use the term category to describe a group of objects with some
common ground e.g. the category fruit includes the objects orange, pair
etc.

community has struggled to achieve robust object detection
capabilities [11, 14]. These methods notoriously require
thousands of training examples. Lately, comparable object
detection performance has been achieved with as few as 250
training examples [9].

As the single object detection algorithms have matured,
several researchers attempted to detect multiple objects in
an image (e.g. [8]). Nevertheless, the required number of
training examples for these multi class object detectors has
not significantly decreased as a function of the multiple
learning tasks. One exception can be found in an attempt to
learn priors on object appearance and shape configurations
by training many object classifiers in a Bayesian frame-
work [3]. Recently it has been demonstrated that robust
detection capabilities of multiple objects might be achieved
by selecting a small set of common features [12]. Given
information on such a set of features, we will demonstrate
that training from a very small sample might be feasible.

2 Approach

Assume we have a learning algorithm aimed at generat-
ing an object detector. The input of this algorithm is a
set of positive and negative examples of a single category
and its output is a binary classifier H(x). Given any can-
didate image sub-window x, H(x) might classify it either
as an example of the target object or otherwise reject the
sub-window. The classifier’s output is determined by some
attributes of x commonly termed, features. In Section 3 we
describe a broad set of features which capture many of the
objects properties such as shape and color. Although the ex-
amples are of a relatively small size (e.g. 24x24 pixels) this
set is quite extensive (including over 1, 000, 000 features).
Due to detection efficiency constraints, we would like H(x)
to rely only on a small fraction of the immense candidate
feature set. Thus, the detection learning algorithm must in-
clude a mechanism for feature selection.

When one examines the substantial feature set, it is ob-
vious that several features generalize better than others for
many objects. Thus, for example, features that are very
small (e.g. relying on a single pixel) are expected to show
poor generalization results. However, when trained on a
small set of examples, such incidental features can occa-
sionally exhibit high discriminative performance between
the positive and negative examples of a restricted training
set. It is observed that features that generalize well are of-
ten characterized as being of intermediate complexity [13].

In addition to this basic superiority that some features
have over others, we wish to make use of the fact that dif-
ferent channels of information characterize different cate-
gories of objects. This implies that if a specific type of fea-
tures (e.g. color features), have shown good performance
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over objects in a certain visual category, this type of fea-
tures will probably generalize well in other objects in the
same visual category.

Hence, our algorithm includes two stages:

1. Estimate a category related error for each feature.
Given the category j, the output of this stage is a group
of expected errors Cj

i (0 ≤ Cj
i ≤ 1) where i stands for

the feature i.

2. Incorporate these category-related errors into our ob-
ject detection learning scheme in order to create a more
robust and accurate classifier.

The following section describes how we calculate these
category related errors and how we embed them into our
object detection learning scheme.

2.1 Learning category related errors

When considering the detection tasks of apples and oranges,
it is important to notice that though colors are important
in both tasks, it does not mean that all fruit have the same
color. Hence, when we learn the category related errors, it
is not reasonable to assign a unique error for each feature
(e.g. color is red) but rather to a group of features, which
are grouped together based on there characteristics such as
type and size.

We therefore divide the immense feature set, F , into K
bins where each bin includes features from a specific type
and a specific size. Thus, K = |types| ∗ |sizes|.

For each bin k we will calculate its category related error
Bj

k where j stands for the category. The category related
error of each feature is then determined by its bin i.e., Cj

i =
Bj

k if feature i belongs to the bin k.
We propose a simple method to calculate Bj

k. Given an
object m that belongs to the category j, we define Errorm

i

to be the classification error that the feature Fi can achieve
on the training examples of object m. I.e,

errorm
i =

#FP

#Falses
+

#FN

#Positives
(1)

Where #FP is the number of false positives and #FN
is the number of false negatives.

Notice that 0 ≤ errorm
i ≤ 1 and errorm

i = 0 iff Fi cor-
rectly classifies all examples. Notice also that errori does
not depend on the ratio between the number of positive and
negative examples. This is required since in object detec-
tion settings the number of negative examples significantly
exceeds the number of positive examples in the training set.

We then set Bj
k to be the average error over all the fea-

tures in bin k and over all objects in category j, i.e,

Bj
k = meanm∈categoryj, i∈bink

(errorm
i ) (2)

2.2 Embedding category related errors
within a boosting framework

The main idea proposed in this paper is that by using cate-
gory related information regarding the features, over-fitting
might be prevented. Thus, we avoid cases where a feature
selection procedure might choose feature F which classi-
fies the small training set well but later demonstrates poor
generalization capabilities.

Though many learning algorithms can be modified in or-
der incorporate category related information, we adopted
AdaBoost [6]. The AdaBoost algorithm is widely used for
object detection (for example [9, 14, 12]). As we will show,
we can apply our concept of using prior knowledge over
the features while remaining within the robust framework
of AdaBoost.

Recall that AdaBoost requires that for any weight distri-
bution D over the examples the weak learner will be able to
return a weak hypothesis hi(x) ∈ {1, −1} which performs
better than chance i.e. its weighted error on the training ex-
amples, Erri is less than 0.5.

Often, the weak hypothesis hi(x) consists of a single fea-
ture Fi(x) and a threshold T where

hi(x) =
{

1 if Fi(x) ≥ Ti

−1 otherwise
(3)

When using AdaBoost as a feature selection mechanism,
it is common that the weak learner chooses the hypothesis
hi(x) with minimal error Erri over the weighted distribu-
tion D of the training examples. Thus, on iteration t of
the boosting process, the weak learner is usually guided to
choose the weak hypothesis according to the following rule:

ht(x) = argminhi(x)(Erri) (4)

However, as we mentioned above, AdaBoost does not
require that the weak learner will return the weak hypothe-
sis hi(x) with the minimal training error Erri but rater that
it returns any weak hypothesis hj(x) with an error smaller
than 0.5. Therefore, as long as we maintain the weak learner
criterion we can change the conventional weak learner se-
lection such that it will consider also category related errors
estimated at the previous stage:

ht(x) = argminhi(x),Erri<0.5(γ∗Erri+(1−γ)∗Cj
i ) (5)

Where γ determine the relative emphasis of the category
related error (0 ≤ γ ≤ 1).

We summarize our approach as an attempt to achieve a
more robust estimation of each feature’s error by making
use of the feature’s discriminative capacity on other objects
within the same visual category. Our experiments will show
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that by doing so features that incidentally discriminate be-
tween the positive and negative examples in the small sam-
ple and that will lead to overfitting effects, will not be pre-
ferred over features that have a well established discrimina-
tive capacity for the remaining objects within the category.

3 Features

The multiplicity of features suggested for different object
detection tasks demonstrates that no one single type of fea-
tures might suffice for all possible detectors. Therefore, we
created a pool of features that characterizes many aspects of
the object like shape, color and contour.

Though our model does not assume any efficiency con-
straints applying to the features, due to practical reasons,
we limited ourselves to features that can be quickly calcu-
lated during the detection phase. Thus, all the proposed fea-
tures can be efficiently calculated so that the resulting clas-
sifier will have real-time performance. Specifically, after a
preprocessing phase which takes O(n) steps with a small
constant (where n is the number of pixels in the image),
calculating the value of each feature on any scale requires
only O(1) basic operations. We will now turn to describe in
detail, the set of proposed features.

3.1 Haar-like Features

In [14] Viola and Jones present a set of features that measure
the contrast between two to four neighboring areas in the
sub-window. Suppose that R1 and R2 are two neighboring
rectangles in the image and that val(p) is the gray level of
the pixel p then Fhaar(R1, R2) is defined to be:

Fhaar(R1, R2) =
∑

p∈R1

(val(p)) −
∑

p∈R2

(val(p)) (6)

It is easy to infer the computation of this feature for the
case of three or four neighbouring areas. It has been shown
that these features can be calculated efficiently with only a
small constant number of lookup table operations using the
Integral Image data structure. See figure 2 for an illustration
of these features.

3.2 Edge Orientation Features

While the Haar-like features perform well on some tasks
such as face detection, they fail when the contrast relations
do not tend to be constant. Therefore, Levi and Weiss [9]
proposed a new set of features which captures the relations
between two edge orientations within a rectangle.

These features are calculate by first performing edge de-
tection using Sobel masks. Then the edges are grouped

into four representative orientations. Let Ek(R) be the
sum of edges from the group k in the rectangle R. Then
Feoh(R, K1, K2) is defined to be:

Feoh(R, K1, K2) =
Ek1(R) + ε

Ek2(R) + ε
(7)

Levi and Weiss show that these features can be calcu-
lated efficiently using the Integral Image. These features
are superior to the previous Haar-like features when the de-
tection is based mainly on the outer contour of the object.

3.3 Dominant Orientation Features

Several objects are characterized by a dominant edge ori-
entation in a specific area rather than the ratio between two
different orientations. Therefore Levi and Weiss defined an
additional set of features, which measure the ratio between a
single orientation K and the others remaining orientations,
i.e.

Fde(R, K) =
Ek(R) + ε∑
i Ei(R) + ε

(8)

3.4 Color Features

While many objects can be detected solely based on their
shape, it is clear that color plays a significant role in the de-
tection process of certain objects. Therefore, we created a
set of features that capture information from the color space.
Assuming that we work in the RGB color space, it is well
known that this color representation is not invariant to illu-
mination. In order to overcome this problem, Gevers and
Smeulders [7] proposed the l1, l2, l3 color model.

l1 =
(R − G)2

Z
, l2 =

(R − B)2

Z
, l3 =

(G − B)2

Z
(9)

Where

Z = (R − G)2 + (R − B)2 + (G − B)2 (10)

Based on the l1, l2, l3 model, we define a new set of
features, Fcolor , that measure the intensity of one of the
l1, l2, l3 channels over the rectangle R.

Fcolor(R, lx) =
∑
p∈R

val(lx(p)) (11)

4 Implementation

In this section we will briefly describe the cascade data
structure [14] which we use in this paper.

In order to detect an object in an image we need to ex-
amine each possible sub-window and determine whether it
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Haar-like mean intensity edge orientation

Figure 2: Three of the feature types implemented in this paper.

contains a face or not. In a regular image of 320*240 pix-
els there are over 500,000 sub-windows. In order to reduce
the total running time of the system, we need to radically
limit the average time that the system spends on processing
each sub-window. For this purpose, Viola and Jones [14]
suggested using a cascade of classifiers. The idea of a cas-
cade is based on the observation that we need very few
features to create a classifier that accepts almost all (more
than 99%) positive examples while rejecting non-negligible
amount (20 - 50%) of the false examples. Linking many
such classifiers in a sequence creates a cascade that sep-
arates positive and negative examples in a robust manner.
This is done with a very low cost per sub-window due to
the fact that most non-face sub-windows are rejected in the
early classifiers of the cascade. In order to train each stage
of the cascade, we use the discrete version of Adaboost [6]
to select features and determine their weights. The classifier
at stage t of the cascade is:

Ht(x) = sign(
n∑

i=1

αihi(x)) (12)

where hi(x) is a weak hypothesis and αi is its weight.

5 Experiments

5.1 Dataset

In order to test our method, we collected examples of ob-
jects from two categories, fruits and in-door office objects.
Each category includes 5 objects. The fruit category in-
cludes the objects apple, orange, pear, banana, and peach.
The indoor office category includes the objects computer
monitor, light switch, door, picture and book shelf. The ex-
amples of fruit were taken from the Internet (using Google
queries with the object name). We used the Caltech office
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Figure 3: Results of the apple detector.

database [4] to extract examples of common office objects.
The entire set of positive examples is shown in figure 1.

All examples were rescaled to 24x24 but no other pre-
processing (such as alignment, normalization etc.) has been
performed. We made use of a set of ∼ 500 images, which
do not include any of the objects, so that by randomly crop-
ping these images, we were able to extract the required
number of negative examples (5000 false examples).

5.2 Testing

We define our goal as learning to detect a target object (e.g.
computer monitors or apples) from 10 positive examples
(along with 5000 randomly selected false examples).

We begin testing our two stage algorithm by estimating
the category related error of each feature on the remaining
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Figure 4: Results of the monitor detector.

category objects (see figure 1).
We then compare three training procedures:

• We first followed the naive object detection algorithm
which does not use the category related errors. As de-
scribed above, our training set included 10 positive ex-
amples for each object. We refer to the results of this
procedure as a baseline for later comparison.

• In the second training procedure we incorporate the
category specific errors while training the target object
detector. In this experiment we set the value of γ to
0.5 (see equation 5), i.e. we equally weight the cate-
gory related errors and the current training error of the
target object.

• One may argue that using any similar constraint on the
feature space, might improve detection results due to
model regularization effect. In order to eliminate this
possibility, we perform a third training procedure. In
this setup, rather than using the category related errors
we imposed errors calculated for another category. In
other words, we used the fruit category errors instead
of the office category errors while training a monitor
detector.

In the following section we compare the results of these
three training procedures on a predefined test set composed
of a 100 images containing the target objects.

5.3 Results

We demonstrate the effect of using category related errors
on two objects, one from each category. Figure 3 shows the

results of the apple detector, whereas figure 4 shows the
results of the monitor detector.

The results of the apple detector show that incorporating
category related errors can have a significant effect in im-
proving the detection rates. Given a false positive rate of
2 ∗ 10−6 the detection rates improve from 17.2% to 41.4%
by using the fruit category related errors. Given a false posi-
tive rate of 1∗10−5 using these errors improves the detection
rates from 22.4% to 67.2%.

In a similar fashion, the results of the monitor detector
demonstrate the advantage of using category related errors.
While a naive detector achieves a detection rate of 55.9%
with 1521 false positives (∼ 7.5 ∗ 10−6), a detector which
uses the category related errors achieves the same detection
rate with only 650 false positives (∼ 3.3 ∗ 10−6).

Finally, we examine whether the improvement in the de-
tection rates results from utilizing the category related er-
rors or just from the constraining the feature space. To
this end we trained an object detector from one category
(monitors) using the category related errors derived from
the other category (fruit). As illustrated in figure 4 the de-
tection rates of a detector trained using non-related category
errors were substantially lower than the naive detector. This
clearly shows that the improvement we achieved is due to
the category specific information rather than due to just con-
straining the substantial feature space.

6 Discussion

One of the major challenges facing object detection re-
search is developing algorithms that will scale up to recog-
nition of thousands of objects. In this paper we have focused
on one aspect of scaling up - developing recognition algo-
rithms that require a small number of training examples.
The basic insight behind our method is that the world of
objects is not a uniform mixture, but rather consists of dis-
crete object categories. By utilizing this additional source
of information, our proposed method can achieve signifi-
cant improvement in detection ability with a small number
of training examples.

In our current method, we have assumed that we know
for each object to which perceptual category it belongs. We
are currently working on relaxing this assumption as well
as investigating the use of overlapping object categories.
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