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Abstract

A method based on colour information is proposed to detect defects on ‘Golden Delicious’
apples. In a first step, a colour model based on the variability of the normal colour is
described. To segment the defects, each pixel of an apple image is compared with the model.
If it matches the pixel, it is considered as belonging to healthy tissue, otherwise as a defect.
Two other steps refine the segmentation, using either parameters computed on the whole
fruit, or values computed locally. Some results are shown and discussed. The algorithm is
able to segment a wide range of defects. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The European Community defines three quality categories for the fresh apples
market (Journal of the European Community, 1989). The ‘extra’ class includes
fruits with no defects or misshapenness. Good quality fruits presenting certain small
defects (scab or russet for example) or a slight misshapenness are put in class I (or
A in Belgium). In Class II (or B), more pronounced defects are tolerated. If the
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defect is too large or if the fruit pulp is strongly affected (like rot or insect holes),
it is rejected as culls. These standards tolerate a small amount of misclassified fruits
depending on the class and on the kind of defect. The general tolerance for the
quality is 5% for class extra, and 10% for classes I and II. Belgian trade practices
add four subclasses for Golden Delicious apples, following the ground colour of the
fruit (noted as + + for the greenest, + , ‘ ’ i.e. normal, and r for the yellows).

Apple quality grading, which implies the detection of the possible defects, their
measurement (area or length) and their recognition, is actually done manually.
Automation of this process could be done with machine vision and the first step is
to detect or segment the defects. Some authors have studied this problem with
monochrome cameras, while others have preferred to use colour cameras. Several
approaches have been global, i.e. few parameters are computed to represent the
whole image, while other approaches have been local and concern small areas.

Yang and Tillett (1994) and Yang (1994), quoting Rehkugler and Throop (1985),
Davenel et al. (1988), present the situation for the monochrome approach. They
link the mean grey level to the fruit colour, which varies locally. Because of the fruit
curvature, the intensity decreases from the centre of the fruit to the boundaries.
Furthermore, some noise exists due, amongst other things, to lenticels. The defects
usually appear darker than the rest of the fruit, but the contrast between healthy
and sick tissues changes from one defect to another. Mostly, their size and shape
may vary strongly. For these reasons, simple techniques such as threshold or
background subtraction give poor results, and pattern techniques are unusable.
Yang finally declares that the global approach is best suited for large diffuse
defects, while texture techniques are more convenient for spotty defects. Yang
(1994) proposed the use of a ‘flooding’ algorithm to segment patch-like defects
(russet patch, bruise, and also stalk or calyx area). This technique was improved by
Yang and Marchant (1995) who applied a ‘snake’ algorithm to closely surround the
defects. In both cases, noise had to be reduced, using median and Gaussian filters.
Both algorithms produced small erroneous defects which could be eliminated by a
threshold.

Using a colour camera, Heinemann et al. (1995) used the hue (H) to discriminate
russet. It was a global approach, since the mean hue on the apple was computed.
A discriminant function sorted the apple as accepted or rejected. The accuracy
reached 82.5%, which is poor compared with European standards. Miller (1995)
used HSI colour measurement for citrus sorting. The main idea was to compute
mean differences and mean square differences with respect to a colour standard, for
each colour parameter on the whole fruit. These values were normalised ((value−
min)/(max−min)). A seventh parameter concerning the shape was added. After-
wards three different techniques were used (neural net, Bayesian–Gaussian
separation and a non-parametric classifier) to sort the fruits as accepted or rejected.
The maximum successful classifications reached 68.9–85.8%. The latter percentage
is reached with the Bayesian method, depending on the citrus species. This method
affords little discrimination between the kinds of defects and is probably too rough
to grade apples with respect to the European standards, which require classification
of the defect and determination of its dimensions.
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Analysing the different techniques used to detect defects, it appears that with the
monochrome approach the conditions impose sophisticated algorithms. This is due
to the intensity variations from fruit to fruit and within a fruit from place to place,
especially from the centre to the boundary. The first problem (differences between
fruits) suggests either an algorithm using little a priori information, or information
which does not depend on the fruit background colour, or a self-fitting algorithm.
The second problem (differences in an image) inspires the use of a region-based
algorithm. Of course, this also calls for lighting as suitable as possible. All these
problems exist on colour images, but can be overcome by studying the different
relations linking the three channels. An example is the lighting problem, where the
ratio between two or more of the RGB channels or the H (hue) channel does not
depend on the light intensity if the studied surface is mat and does not present any
specular reflection. In most published research, those working with colour images
either did not use the whole colour information (i.e. they selected one or two
channels) or they computed a single parameter. Often, they did not segment the
defect, but computed few general parameters representing the whole picture, losing
the main part of the information related to space (i.e. the shape, local texture, etc.).

This paper presents a novel algorithm able to detect defects, using the whole
significant colour information. This algorithm consists of three steps. The first is a
coarse defect segmentation based on a statistical comparison between the colour of
an individual pixel and the global colour of the fruit. The following ones, based
either on a global or on a local approach, enhance the detection. They can be
applied separately (the second or the third) or successively (the third following the
second). These different configurations are evaluated.

2. Materials and methods

The image acquisition system included the following elements: a tunnel providing
diffuse light, a colour camera, a frame grabber, and a personal computer (Pentium
133 MHz, 32 Mb RAM, two hard disks each having a 1 Gb capacity).

The tunnel was a horizontal cylindrical reflector (diameter 0.5 m, length 1.25 m).
The inner surface was painted flat white and reflected the light provided by two 36
W fluorescent tubes (Philips model 33, colour temperature 4100 K) placed under
the apple level. Two horizontal and one semicircular diffusers finished to distribute
the light. The camera viewed the top of the fruit through a circular window on the
upper part of the lighting chamber. A general diagram and a section diagram are
presented in Fig. 1.

A 3-CCD matrix type camera (XC-003P, Sony) was placed at about 400 mm
from the top of the fruit and was fitted with a 16 mm lens. The camera and a
coupled frame grabber (Imascan Chroma, Imagraph) were able to acquire 720×
540 pixels images, with a colour resolution of 3×8 bits per pixel.

The basic pretreatments were made using ImagePro software (Media Cybernet-
ics), while other algorithms were developed in C+ + (Visual C+ + , Microsoft).
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2.1. Initial segmentation

This basic algorithm sorted each pixel belonging to the fruit image. It aimed to
compare the pixel colour to a global colour of the fruit image. If the colour values
were too different, i.e. higher than a threshold, the pixel was considered as defect.
Otherwise it was classified as sound tissue.

Firstly the colour variability of defectless apples was studied. These fruits were
chosen in class A. In order to cover a wide range of maturity, four sets of 20 apples
belonging to each of the four ground-colour subclasses A+ + , A+ , A and Ar
were measured. The stem–calyx axis was placed perpendicular to the camera’s
optical axis. Four images of fruit cheeks were acquired at 90° rotation increments,
around the stem–calyx axis. The first image was randomly chosen. The images were
pretreated. First of all, a background correction eliminated the colour variations
due to the data acquisition system (camera and frame grabber). This was made by
using an image of a flat uniform white object (the background image). The colour
of each pixel is replaced by the value of the expression:

NX=
� X−mXbl

XB−mXbl

× (mXb−mXbl)
n

+mXbl

where NX is the RGB vector of the pixel, after correction; X is the RGB vector of
the pixel, before correction; mXbl is the mean black level vector, i.e. the mean vector
of an image acquired with the lens closed; XB is the colour vector of the pixel in the
background image, at the same co-ordinate as X ; and mXB is the mean colour
vector of the background image.

The resolution was divided in three linearly, which gave 240×180 pixels, 3.6
pix/mm2. The image was also reframed. A 5×5 median filter was used to remove

Fig. 1. General diagram (left, without the diffusers) and section (right) of the lighting chamber.
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Fig. 2. Effect of the pretreatment: left, original image; right, final result.

the lenticels noise. Furthermore, the apple was eroded to suppress the darker area
around the borders. To do this, the R channel was extracted; after a threshold
operation at level 35, the bi-level image was eroded by four-neighbourhood kernel
applied five times (Jähne, 1995); the result was converted to a RGB picture, and a
logical bit AND operation with the ‘median-filtered image’ was applied to give the
final result, shown in Fig. 2.

The colour model taken into account for a fruit image was a three-dimensional
Gaussian distribution. It is based on the observation of several frequency distribu-
tions R, G and B, as shown in Fig. 3. Its mean vector may be expressed by:

m=Ã
Æ

È

r
g
b
Ã
Ç

É

where r, g and b correspond to the mean values of a fruit image for the three
channels red, green and blue captured from the camera. The variance and covari-
ance matrix was:

Fig. 3. Frequency distribution for R, G and B channels, for a Golden Delicious apple.
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where srr, sgg and sbb were the variances and srg, sgb and srb the covariances. It
was found that the mean vector m varied from image to image, according to the
fruit colour. On the other hand, one single variance and covariance matrix was
considered for the whole population.

In a second step, apples affected by various defects were analysed. The colour of
each pixel of an image was compared with the global colour of the image by using
the Mahalanobis distance computed as follows:

D2= (x−m)%S−1(x−m) (1)

where D is the generalised distance; x=Ã
Æ

È

rp

gp

bp

Ã
Ç

É
with rp, gp and bp the measured

values on each pixel, m=Ã
Æ

È

r̃
g̃
b0
Ã
Ç

É
with r̃, g̃ and b0 the median values on the images;

S−1is the inverse of the mean variance and covariance matrix, computed on the 80
healthy apples; and (x−m)’ is the (x−m) vector transposed. The m vector is an
estimation of the global colour of the fruit. Median values were used rather than
mean values, since the former are less affected by the presence of a defect. If the
square of the Mahalanobis distance, D2 is high, the considered pixel is probably a
defect. If D2 is small, the pixel corresponds probably to healthy tissue. A threshold
value D was chosen by analysing 32 apples affected by various defects (scab, russet,
bruising, holes). The value of the threshold was a compromise between an over-seg-
mentation for dark defects and an under-segmentation for light defects. In the rest
of the paper, this part of the algorithm will be noted ‘ID’, with D the value of the
threshold (for example I9).

2.2. Enhancing detection, global approach

In this second step, the medians’ vectors and the average interquartile ranges
were computed for the pixels belonging to healthy tissues and for those belonging
to defective tissues, according to the initial segmentation. Afterwards, the ‘distance’
between each pixel and both medians is computed and weighed by the respective
interquartile ranges. The pixel belongs to the closest class, the one for which the
weighed distance is the smallest.

The weighed distances are given by:

Dpd=
�rp− r̃d�+ �gp− g̃d�+ �bp−b0 d�

Iqrd

(2)
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Dph=
�rp− r̃h�+ �gp− g̃h�+ �bp−b0 h�

Iqrh

(3)

where Dpd is the ‘weighed distance’ between the pixel and the defect class median;
Dph is the ‘weighed distance’ between the pixel and the healthy class median; rp, gp

and bp are the RGB pixel components; r̃d, g̃d and b0 d are the RGB components of
the median for the defects class; r̃h, g̃h and b0 h are the RGB components of the
median for the healthy class; and Iqrd and Iqrh are the average interquartile ranges
for defects and healthy classes, respectively.

Some tests showed that there is no advantage in dividing each difference by the
interquartile ranges of the considered channel. The mean value was thus used.

All the variables used in this part of the algorithm are computed on the image,
and no parameter needed to be fitted. It will be noted ‘II’.

2.3. Enhancing detection, local approach

The following lines explain how local information was taken into account. The
algorithm worked like a filter combining the information belonging to the original
image, and that coming from the segmented images.

A square area around the investigated pixel was considered (Fig. 3). Different
sizes, 3×3, 5×5 and 7×7 were tested. Into this mask, the mean RGB vector for
the healthy area and the same vector for the defect area were computed. The
distances between the pixel under investigation and both means were computed:

Dpd= �rp− r̄d�+ �gp− ḡd�+ �bp−b( d� (4)

Dph= �rp− r̄h�+ �gp− ḡh�+ �bp−b( h� (5)

Dpd is the ‘distance’ between the pixel and the defect class mean computed on the
mask; Dph is the ‘distance’ between the pixel and the healthy class mean computed
on the mask; r̄d, ḡd and b( d are the RGB components of the mean for the defects
class; and r̄h, ḡh and b( h are the RGB components of the mean for the healthy class.

The pixel was allocated to the nearest class. According to the possibly small
number of pixels in one class, we did prefer the use of the mean instead of the
median. We did not use any dispersion parameters, because they depend on local
variations as well as on differences on wider areas. Therefore a global parameter is
not convenient to describe the local variations. Computing them on the mask would
not make sense because each class could contain only a few pixels, which does not
represent the local variations. If the pixel belonged to the border of the fruit, the
background pixels were not taken into account. This algorithm produces limited
variations and had to be applied several times, to allow important corrections. The
limitation is due to the size of the mask. If we consider a 5×5 mask (Fig. 4), a
pixel at a distance greater than two pixels (according to the eight-neighbourhood
rule) is not taken into account and could thus have any influence on the considered
pixel. This means that the boundaries of a defect could only move by two pixels.
The same set of 32 apples as before was used to determine the size of the mask and
the number of repetitions. This algorithm will be noted IIIs,n where s is the size of
the mask and n is the number of repetitions (for example: III5,3).
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Fig. 4. Mask used by the algorithm.

2.4. Filtering

Unlike the model’s fruit images, the images used to establish and control the
algorithm may be filtered before or after the segmentation to eliminate small
erroneous defects (lenticels etc.). The main defect must be preserved as much as
possible, which requires a slight filtration. Before segmentation, two types of filters
were tested: a ‘3×3 median filter’ and a ‘3×3 box filter’ as described by Jähne
(1995). After segmentation, the image appeared in three levels. The background was
in black, the defects in dark grey, and the healthy tissue was in white. A
‘four-neighbourhood close filter’ (Jähne, 1995) was tested (on images not filtered
before segmentation). This morphological filter worked in two steps. Firstly the
white areas are dilated, deleting the small dark holes. Secondly, the white areas are
eroded, bringing back the main dark areas to their original size.

The border of the fruit was left as it stood.

3. Results and discussion

A set of 80 apples, including fruits of different qualities and damaged fruits, was
used to test the different algorithm combinations. The defects encountered were
bitter pit, fungi attack, growth defects, bruising, punches, insect holes, russeting and
scab.

Four different algorithms combinations were tested, with one or three parameters
to be fitted for each combination.

Some results are shown in Figs. 5–7; defect segmentation appear in the lower
part of the figures. Four particular fruits were especially chosen to show the
inherent difficulties due to the high variability encountered in apple sorting. The
apple ground colours in images a, b, c and d were, respectively, typically ripe,
green, yellow (over ripe) and very green (normal, + , r, + + according to the
Belgian ground colour classes). The first apple (Fig. 5a, Fig. 6a, Fig. 7a) had an old
insect bite, which had produced a growth defect. At the left, the contrast between
healthy and defective areas was clear, but on the right, the colour of the scar tissue
tended gradually to the normal colour of the skin. The second defect (Fig. 5b, Fig.
6b, Fig. 7b) resulted from an early scab attack. The contrast was also clear;
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Fig. 5. Samples of apples with various defects, segmented with I9. a, Typical defect; b, well-contrasted
defect; c, diffuse defect; and d, bruise.

however the middle of the defect was made of scar tissue and the defect presented
a wide range of colours (dark to light brown, grey and green). The third defect (Fig.
5c, Fig. 6c, Fig. 7c) showed a diffuse russeting. Here, the contrast was low
compared with the normal skin colour variations. The last defect (Fig. 5d, Fig. 6d,
Fig. 7d) was a bruise. The healthy tissue was impaired, providing poor contrast,
and the defect border was strongly blurred. No filtering was applied on the shown
images. Fig. 5 concerns the initial segmentation with a threshold value equal to 9
(I9). Fig. 6 represents the enhancement using the global approach (I16+II), while
Fig. 7 shows the result of the three algorithms applied sequentially (I16+II+
III7,3).

Fig. 6. Samples of apples with various defects segmented with I16+II; a, Typical defect; b, well-con-
trasted defect; c, diffuse defect; and d, bruise.
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Fig. 7. Samples of apples with various defects segmented with I16+II+III7,3. a, Typical defect; b,
well-contrasted defect; c, diffuse defect; and d, bruise.

When the parameters of the different algorithms were near their optimum, the
detection became accurate and the differences between the combinations were not
easy to reveal. To give an appreciation of the results, three quotations were given
for each image. The first one concerns the accuracy in defect segmentation, ranging
from 0 to 5 (0 corresponds to no detection of an existing defect, 3 to a satisfactory
detection, and 5 to a perfect detection). The second quote indicates how healthy
tissue can be segmented as defect, also ranging from 0 to 5 (0 corresponds to a
major area of good pixels falsely segmented, 3 to a few healthy pixels segmented as
defect, and 5 to no good pixels segmented as defect). The last quote concerns the
detection in the apple boundary area, ranging from 1 to 3 (1 corresponds to the
whole apple border segmented as defect, 3 corresponds to a correct detection of the
boundaries). The sum gives a global quotation. This evaluation was made by two
operators, independently. Their results are naturally slightly different but the
algorithms are sorted in the same order, which is the important point. It is possible
to link these quotations to the kind of defects. Table 1 gives a summary of some of
the quotations. The mean quotes are given for the two first results of the different
algorithm combinations (three first for the last combination).

The initial segmentation algorithm was able to detect the defects as indicated by
Fig. 5 and Table 1. Its ability to segment them was related to the contrast. It
worked best with contrasted defects (Fig. 5-b), but was less accurate for other
defects (Fig. 5-a, right part of the defect and Fig. 5-c). The border of the fruits was
also slightly segmented as defect. However, this is not too important. When
inspecting the fruit with a matrix camera, the area near the border is less explored
than the central part. This problem would vanish in industrial processing. Indeed,
rotation will be imposed to the fruits to see their entire surface, and lateral devices
such as mirrors would be placed to see the sides of the apples. The best values were
obtained with D around 9 or 16. The defects segmented with I16 present a slight
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under segmentation, while I9 is more accurate. The detection improvement by the
global approach was effective due to the algorithm which adapted the limit between
accepted or rejected colours. For this reason it worked also on diffuse defects. The
segmentation of the defect border in Fig. 6-a was correct, while the russeting (Fig.
6-c) and the bruising (Fig. 7-d) were detected, but not so accurately. For healthy
fruits, presenting only some lenticels, the risk of erroneously segmented areas
increased. Furthermore, if the stem or the calyx were present with light defects, the
results were not quite satisfactory. The detection of the border as a defect increased,
but as mentioned before, this problem is of no great importance. Combining the
local approach enhancement on results of segmentation by I (I16+III7,3 and
I25+III7,3) improved diffuse defect detection. Unfortunately, the number of good
pixels segmented as defects also increased dramatically (Table 1). The enhancement
shown by this combination on the sum was due to mainly to the enhancement in
the border area. Finally, the three algorithms were applied sequentially. Three
parameters had to be adjusted. The combination I16+II+III7,3 was the best for
the sum of the mean results and for the two first mean quotes (defects detection and
healthy tissue segmentation Table 1). Its good segmentation efficiency appears in
Fig. 7. In Fig. 7-a, the main defect is present as well as all the small, slightly
contrasted blemishes. In Fig. 7-b, the border of the scab patch is very accurately
segmented. The result in Fig. 7-c is far better. The main weakness of this algorithm
is, for apples presenting defects close to the normal colour, like light russet or a
bruise, to class in the defect some good pixels (Fig. 7-d). The previous step, the
global enhancement, erroneously segmented some small areas. This was aggravated
by the region’s base enhancement because their colour was close to the normal
colour of the neighbourhood. These pseudo-defects had a mean colour very close to
the fruits’ mean colour and often were lighter. They were thus easily recognised. A
calyx end which is far greener than the rest of the fruit (which suggests a
development problem) or a riper area were sometimes segmented as defect. The
borders were clean, unless the apple presented marked ridges, producing a shaded
border. It should also be noted that many of the lenticels were detected, even on
healthy apples.

The segmentation revealed a lot of small spots. They could be removed using
filtering or they could be ignored when counting the defects. Fig. 8 compares

Fig. 8. Comparison of different filtering methods, applied on a segmented apple. a, No filtering; b,
median filtering, before segmentation; c, median low pass filtering, before segmentation; and d, close
filtering, applied on the result of the segmentation.
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different filtering methods applied to an apple image before or after segmentation
using the I16+II+III7,3 algorithm. The different results are very close, but the
last one (Fig. 8-d) seems most accurate, since it preserves slightly contrasted defects.
The border of the defect is smoothed by filtration, which is advantageous for defect
shape evaluation.

If we compare the different algorithms, the last solution (I16+II+III7,3) was
the most accurate, but the basic segmentation algorithm (I9) gave sufficient defect
detection. The precision enhancement needs more computing time and is acceptable
only if it is compatible with on-line application for a reasonable cost. The
resolution has a major influence on the speed of the process, while the prefiltering
is less important. The postfiltration concerns monochrome images, therefore it
treats less information and is faster to compute.

4. Conclusions

An algorithm using colour information is presented to segment defects on
Golden Delicious apples. It comprises three steps to detect both well-contrasted and
diffuse defects. The basic step compares the colour of a pixel with that of a global
model of healthy fruits by making use of the Mahalanobis distances. This algorithm
gave satisfactory results with well-contrasted defects. A first enhancement was well
suited for diffuse defects, but increased the part of healthy tissues segmented as
defects, especially on the border and on healthy fruits. A second enhancement,
consisting of a local approach, was able to correct these problems. The filtration of
the segmented image is preferable to the filtration of the original image. The
proposed algorithm was found effective in detecting various defects such as bruises,
russet, scab, fungi or wounds.
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