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Abstract

This paper shows how the information enclosed in a colour image of a bi-colour apple can
be used to segment defects. A method to segment pixels, based on a Bayesian classification
process, is proposed. The colour frequency distributions of the healthy tissue and of the
defects were used to estimate the probability distribution of each class. The results showed
that most defects, namely bitter pit, fungi attack, scar tissue, frost damages, bruises, insect
attack and scab, are segmented. However, russet was sometimes confused with the transition
area between ground and blush colour. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The quality standards for apples issued by the European Union (Anonymous,
1989) specify three different categories based mainly on the external quality of the
fruit, the presence of defects, their size and location. Fruit sorting automation
according to these standards could be achieved by colour machine vision. This
technique requires as a first step a defect segmentation.
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Yang (1994) used a flooding algorithm on apples to segment ‘patch-like’ defects
on monochrome images. This method did not require many assumptions about the
grey level distribution but could be difficult to apply on bi-colour fruits where the
defects are usually darker than the ground colour, but lighter than the blush
colour. Moltó et al. (1995) studied the external quality of different fruits including
peaches, oranges apples and pears. The authors used linear discriminant analysis to
segment pixels into three or four classes (peel, stain, stem or background). The
accuracy was good for apples, excepted for the ‘stem’ class. A wider range of
defects should however be taken into account. Leemans et al. (1998) used a
Gaussian model of the colour to segment defects on ‘Golden Delicious’ apples,
completed with two enhancement steps. The detection was effective, but revealed
some noise (healthy tissue presenting patches and segmented as defect). Nakano
(1997) studied the colour grading of ‘San-fuji’ apples, presenting a red surface
colour and an orange to light green background colour. A first neural network was
used to grade the pixels into six categories, ‘normal red’, ‘poor red’, ‘injured’,
‘vine’ and ‘upper’ or ‘lower background’ with an accuracy over 95%. A second
neural network classified the whole surface of the fruit into ‘superior’, ‘excellent’,
‘good’, ‘poor’ and ‘damaged’. The classification rate was 75% for the damaged
fruits. All the mentioned authors who were working on colour images used the r,
g, b colour space. The classification proposed used by Moltó et al. (1995) and
Nakano (1997) required a segmentation or selection of pixels by an operator while
methods used by Yang (1994) and Leemans et al. (1998) did not, which is
advantageous.

This paper focuses on the defects segmentation of Jonagold apples which are
bi-colour.

2. Materials and methods

2.1. The material

The image acquisition system is described in Leemans et al. (1998) and included
a lighting tunnel, a three CCD colour camera (Sony XC003P, Brussel), a frame
grabber (Imascan Chroma-Imagraph, Chelmsford, MA, USA) and a PC (Pentium
133 MHz, Santa Clara, CA, USA). The basic treatments were carried out using
Image-Pro Software (Media cybernetics, Silver Spring, MD, USA) while the other
algorithms were written in C+ + . The images were acquired with a resolution of
3.6 pix/mm2. In order to have execution times compatible with on-line grading, the
resolution was reduced to 0.9 pix/mm2 before segmentation. These images are 120
pixels width and 95 pixels height.

Two samples were used during this study. Sample 1 contained only healthy fruits
and was subdivided into sub-sample 1a and 1b: 1a included 400 fruits (Jonagold
apples) coming from an auction, the ‘Belgische Fruit Veiling’, in January 1997,
equally shared into categories A3+ + , A3+ , A3 and A3r; 1b included 140 fruit
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in categories A2+ + , A2+ , A2, A2r, and out of category, overripe (coming from
the same auction). Categories A are good quality fruits; A3 have at least 25%
of blush area, while A2 have at least 33% of blush area; + + codes for far green
ground colour, + for green ground colour,’’ for normal ground colour and r for
ripe (yellow) ground colour, according to Belgian standards. Each fruit
was represented by four images, with the stem to calyx axis perpendicular to the
camera optical axis. The first view was randomly chosen and the others were
obtained by rotation of the fruit through 90°. The second sample contained the
fruits presenting at least one defect. One image was acquired for each defect, with
the defect presented to the camera. Sub-sample 2a included 42 of these images and
sub-sample 2b 165 images. In all, 222 different defects were encountered as a result
of: bitter pit, fungi attack, scar tissue, frost damage, bruises, insect attack, russet
and scab.

Both sub-samples 1a and 2a were used for parameter fitting, while sub-samples
1b and 2b were used for the validation.

Fig. 1. Relative frequency diagrams. Upper: healthy tissue colours; Lower: defect colours. Left:
projection on the plane determined by the r and g axis; Right: projection on the plane determined by the
b and g axis.
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2.2. The method

Jonagold apples are characterised by a green ground colour and a darker red
blush colour. The two upper graphs in Fig. 1 represent two projections of the
relative frequency distribution of the healthy tissues’ colours, on a plane deter-
mined, respectively, by the axis r-g (red green) and b-g (blue green); the position on
the graph represents the colour, and the grey level is proportional to the relative
frequency in each plane (a white level indicates a null relative frequency and the
black level indicate the maximum relative frequency). This relative frequency
distribution was bimodal and not symmetrical, presenting two local maxima, one
around the r, g, b (red, green, blue) co-ordinate (88, 45, 33) representing the blush
colour and the other one around (181, 177, 55) corresponding to the ground colour.
The central area, representing the transition colours between the blush and the
ground colour, was in a ‘pass’ between the two maxima, i.e. it had a lower
frequency than the blush and ground colours. On the other hand, this filled a larger
surface on the upper diagrams of Fig. 1. and so represents a wider range of
different colours. The blush, intermediate and ground colours represented, respec-
tively, 46%, 10% and 44% of the total numbers of the pixels belonging to the
images. Of the 16 million available colours (a colour is coded by 8 bits in each r,
g and b channel), 264 182 represented the apples.

Preliminary tests showed that the segmentation process based on non-parametric
colour models of the healthy tissue did not have enough accuracy. The segmenta-
tion of the defects was thus considered as a classification process of each pixel into
‘healthy’ or ‘defect’ classes based on the pixels’ colours. Bayes’s theorem gave the
probability for a pixel to belong to the healthy tissue on its colour basis:

P(healthy�x)=P(x�healthy)×P(healthy)/P(x)

with x the (r, g, b) colour component vector; P(healthy�x) the a posteriori
probability for the healthy tissue or the probability for a pixel having the colour x
to belong to the healthy tissue; P(x�healthy) the probability for a pixel belonging to
class ‘healthy’ to have the colour x; P(healthy) the healthy colour class a priori
probability; P(x) the probability to observe the colour x (the two classes blended).
The complementary probability was given by:

P(defect�x)=P(x�defect)×P(defect)/P(x)

with P(defect�x) the a posteriori probability for the defect or the probability for a
pixel having the colour x to belongs to a defect; P(defect) was the defect colour
class prior probability. As two classes were considered:P(healthy�x)=1-P(defect�x).

The pixel would be allocated to the classes with the highest probability, higher
than 0.5.

Three independent parameters should be estimated: P(x�healthy), P(healthy) and
P(x�defect). The a priori probabilities P(healthy) or P(defect) were unknown and
variable in time (depending on the harvest condition, climate of the season,...) and
space (depending on the grower, soil, local climate,...). Both prior probabilities were
thus considered equal:
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P(healthy)=P(defect)=0.5;
P(x)=0.5 P(x�healthy)+0.5 P(x�defect);

P(healthy�x)=P(x�healthy)/(P(x�healthy)+P(x�defect)).

In this case, the pixel was graded taking into account an unknown threshold. The
ratio of healthy pixels was clearly wider than those of the defect pixels. This
threshold was thus comprised between 0 and 0.5, and was considered as a
parameter of the model. The kernel method was used to estimate P(x�healthy) and
P(x�defect). The colour of the fruit in sample 1 was used to compute the ‘healthy
tissue colour frequency distribution’ (f(x)). The relative frequency distribution fr(x)
was then computed:

fr(x)= f(x)/n,

with n the sample size. fr(x) is represented in Fig. 1 above. As the sample
was considered representative for the fruit population, this distribution tends
towards the corresponding probability distribution when n grows. The sample size
is high (about 11×106) but it must be compared to the 264 000 colours represent-
ing the fruits. It was observed that the maximum colour resolution was not required
for the defect segmentation. The six most significant bits in each r, g, b channel
were thus taken into account and the resulting amount of colour classes was
reduced to 6 000. In that case the sample size seems high enough and several
conditional colour frequency distributions were observed to validate this assump-
tion. If the sample size is big enough, the random variations as a result of the
sampling should disappear. Fig. 2 represents some of these conditional distribu-
tions, which were considered soft enough to represent the probability distribu-
tion:P(x�healthy)= fr(x).

The same distributions were also computed on the defect parts of the fruits in
sample 2a (defect colour frequency distribution, fd(x)). The defects were segmented
by the operator. A first way consisted in delimiting the defect by an irregular area
of interest, using the mouse, and then colouring this area in blue (Image-Pro
software, Silver Spring, MD, USA). The most difficult defects, such as the reticular
russet, were painted in blue using Microsoft Paint (Window 95 tools, Microsoft
Corporation, Washington, USA). Then for both cases, applying a threshold on the
blue channel and a logical bit AND operation gave an image of the defect on a
black background. Another way to proceed consisted in using the colour recogni-
tion function implemented in Image-Pro. The segmentation of these defects by an
operator required several days. This limited the sample size: about two 105 pixels
and about 2 500 classes. Nevertheless, the curves concerning the defects colours in
Fig. 2 were also considered as soft enough. We had thus:

frd(x)= fd(x)/nd,P(x�defect)= frd(x),

with frd the relative frequency distribution for the defect colours; nd the defect
colour sample size. frd is represented in the lower part of Fig. 1.

It was also admitted that P(healthy�x)=0 if both P(x�healthy) and P(x�defect)
are null: the considered colour was never encountered, either for the defects or the
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Fig. 2. Conditional probabilities P(x�healthy), P(x�defect) and a posteriori probability P(healthy)for
several colours.

healthy tissue. P(x�healthy), P(x�defect) and P(healthy�x) are represented in Fig. 2.
Fig. 2a shows the relation between g and the three probabilities, for r=62 and
b=22. This corresponds to the blush colour for the healthy tissue. P(x�healthy) and
P(x�defect) do not overlap themselves and the transition between P(healthy�x)=1
and P(healthy�x)=0 is neat. This is usually the case, but for several conditional
distributions, the situation in Fig. 2b can be observed. Fig. 2b shows the same
relation as Fig. 2a but for g=98 and b=38, corresponding to the transition area.
The curve representing P(x�defect) shows several maxima, which can also be
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noticed in Fig. 1, mainly on the r-g diagram. These maxima represent the different
defects (scar tissue, rotten tissue, reaction to scab, fruit flesh, etc). The peak centred
at r=124 (Fig. 2b) corresponds to the russeting and is responsible for a drop for
P(healthy�x). In Fig. 1, frd presented a smaller variability, filling a smaller area than
fr. This explains why in Fig. 2 P(x�defect) is often higher than P(x�healthy).

The computation of P(healthy�x) was made before the segmentation process and
written in a look-up table. The segmentation consisted in comparison of the value
of the look-up table at colour x (coded on six bytes) to the threshold. This process
is rapid (5 ms for an image).

The local enhancement applied on Golden Delicious apples and described by
Leemans et al. (1998) was also tested here. The size of the kernel was 7×7 pixels
and the method was applied once. The duration of this step is 30 ms for an image.

The 42 images in set 2a were used to adjust threshold value.

3. Results and discussion

The 725 images in samples 1b and 2b were used to test the algorithms. Two
separate methods were used to evaluate the results on the healthy fruits and the
fruits presenting a damage. For the first ones (sample 1b), the ratio of the surfaces
of patches erroneously segmented as defect to the whole surface of the fruit was
measured for each image. These data are summarised in Fig. 3. It can be noticed
that 69% of the healthy fruits have less than 5% of their surface segmented as

Fig. 3. Relative frequency of the proportion of the healthy fruits surface segmented as defect.
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Table 1
Mean marks and standard deviation for the evaluation of damaged fruit images

Mean Standard deviation

Defects segmented as defects 3.8 1.0
1.33.3Over-segmentation of healthy tissue

Segmentation of the boundaries 2.0 0.2

defect, while 88% of these fruits have less than 10% of their surface segmented as
defect. The confusion between healthy tissue and defect is possible mainly with
russet. A fruit presenting a chaotic blush colour as in Figs. 4 and 2a, would thus be
graded in category I instead of Extra. For the damaged fruits (sample 2b), the same
quotation used by Leemans et al. (1998) was used here. Three marks were given for
each image. The first one dealt with the accuracy in defect segmentation, ranging
from 1 to 5: 5 for a correct detection compared with human assessment, 3 for minor
differences, 1 for major differences. The second mark indicated how the healthy
tissue was segmented as defect, also ranging from 1 to 5 (1 for a major area of
healthy pixels segmented as defect; 5 for no good pixels segmented as defect). The
third mark concerned the detection of the boundaries as defect, ranging from 1 to
3. Table 1 gives a summary of the quotations. The mean mark for the defect
segmentation, 3.8, indicates a good segmentation efficiency. Only 4% of the image
have their first mark below 3. The mean mark for the over-segmentation of healthy
tissue is 3.3 and 22% of the images have the second mark below 3. This reveals an
over-segmentation. The mean mark for the boundaries of the fruit indicates that the
boundaries are generally segmented as defect, but as these areas are limited, they
could be removed by erosion.

The discussion presented here will concern the whole set and is illustrated with
the five images in Fig. 4, chosen to be representative of the method’s results. The
first row (a in Fig. 4) shows five original images. The green parts are the ground
colour areas and the red parts are the blush colour. In the images on the second
row (b), the probability P(healthy�x) is represented by the grey level: the maximum
probability (equal to 1) appears in white while a null value appears in black. The
result of the segmentation is presented in the third row (c) with the background in
white, the healthy part of the fruit in grey and the defects in black. The result of the
enhancement is presented on the last row (d), with the same conventions.

The fruit in the first column is a healthy fruit, with the ground colour on the left,
the blush colour on the right and a neat transition area. In column two, is a healthy
fruit with a chaotic transition between blush and ground colour. The fruit in the
third column presents a major defect (decay, lower part of the fruit) poorly
contrasted and a little russet. The images in column four show linear russet, well
contrasted. In the last column is the result of a scab attack.

In the image Fig. 4-1c, a few pixels close to the transition area were segmented
as defect. Some of these were reduced by local enhancement while others were
expanded (Fig. 4-1d). For this image, 1.1% of the fruit area is segmented as defect.
The rest of the fruit is clear of segmentation errors. The image Fig. 4-2c shows that
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many pixels in the transition area were segmented as defect. The situation is partially
corrected in Fig. 4-2d, but 21.4% of the fruit area is segmented as defect. It can be
seen on Fig. 3 that less than 1% of the fruits present such an over segmentation. For
the first defect (Fig. 4 column 3), there is a slight over-segmentation in Fig. 4-3c,
corrected in Fig. 4-3d. The russet is also more accurately detected. The marks for this
image are 4, 5, 2, respectively, for the defect segmentation, for the over-segmentation
of healthy tissues and for the boundaries. The linear russet was not completely
segmented in Fig. 4-4c, while the area at the bottom right of the fruit (a transition
area) was erroneously segmented. The russet in Fig. 4-4d is more completely detected
and the transition area regressed. The marks are 3, 2, 2 (same order). The last image
series show that the defects were well segmented in Fig. 4-5c and more closely on Fig.
4-5d. The marks are 4, 3, 2.

From these images (Fig. 4) and from the graphs in Fig. 1, it was observed that the
r, g, b levels of most defects were similar to those in the healthy part of the fruit, but
the ratio between those components vary for the healthy and defect areas. As it can
also be noticed on Fig. 2a, the probability P(healthy�x) remained high for the healthy
tissue (Fig. 4-1b) and dropped for the defects (Fig. 4-3b and Fig. 4-5b). Most of the
defects were thus easily segmented with this method, whatever their contrast was, and
the value of the threshold have few effect on this result. The situation was a little
more complex for the russet (Fig. 4-4) which had a colour close or equal to the fruit’s
colour in the transition areas between blush and ground colours. P(healthy�x) had an
intermediate level as shown on images Fig. 4-2b and Fig. 4-4b, or in the graph Fig.
2b. This can also be observed in Fig. 4-4a, where the upper part of the defect had the
same colour as the bottom of the fruit. In this particular area, the contrast between
the russet and the healthy tissue disappeared. The threshold value was thus a
compromise between segmenting both the russet and a part of the transition area as
defect (Fig. 4) or segmenting none of these areas (unshown). We chose the first
alternative because we hoped that this could be corrected in a further step, where the
segmented patches could be identified in order to grade the fruit. It was also observed
that some defects, such as scab or frost damage, induced changes in the healthy
colour tissue near the defect. This was revealed by the algorithm for example in image
Fig. 4-5b, where the grey level drops around the defect.

The second treatment based on local information made the patches previously
segmented more homogeneous, moving the boundaries closer to what human eyes
detect. Its action had however to be tempered because poorly contrasted defects (Fig.
4-3) became under-segmented if the size of the kernel or the number of repetitions
grew (unshown). This algorithm provided an enhancement in most cases but is
unable to remove completely the segmentation mistakes in the transition areas,
especially in the case of a chaotic transition.

4. Conclusions

Defect segmentation by machine vision on bi-colour fruit is a complex task. The
Bayesian classification process was used successfully to segment most defects on
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Jonagold apples. This took into account only the pixel’s colour and the results were
good even for poorly contrasted defects. This method is however not always able to
distinguish between pixels in the transition area (from ground colour to blush
colour) and some in russet. An over-segmentation was preferred as an erroneously
segmented defect might be rejected in further steps. The second treatment based on
the similarity of the pixel’s colour with its neighbourhood gave limited
enhancement. Further work is needed to study these particular points: enhancement
of the russet segmentation or accurate patches recognition.
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Leemans, V., Magein, H., Destain, M.-F., 1998. Defects segmentation on ‘Golden Delicious’ apples by
using colour machine vision. Comput. Electron. Agric. 20, 117–130.
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