
Int J Comput Vis (2008) 76: 301–319
DOI 10.1007/s11263-007-0064-x

Learning Layered Motion Segmentations of Video

M. Pawan Kumar · P.H.S. Torr · A. Zisserman

Received: 9 September 2006 / Accepted: 18 May 2007 / Published online: 27 July 2007
© Springer Science+Business Media, LLC 2007

Abstract We present an unsupervised approach for learn-
ing a layered representation of a scene from a video for mo-
tion segmentation. Our method is applicable to any video
containing piecewise parametric motion. The learnt model
is a composition of layers, which consist of one or more
segments. The shape of each segment is represented using a
binary matte and its appearance is given by the RGB value
for each point belonging to the matte. Included in the model
are the effects of image projection, lighting, and motion blur.
Furthermore, spatial continuity is explicitly modeled result-
ing in contiguous segments. Unlike previous approaches,
our method does not use reference frame(s) for initialization.
The two main contributions of our method are: (i) A novel
algorithm for obtaining the initial estimate of the model by
dividing the scene into rigidly moving components using ef-
ficient loopy belief propagation; and (ii) Refining the initial
estimate using αβ-swap and α-expansion algorithms, which
guarantee a strong local minima. Results are presented on
several classes of objects with different types of camera mo-
tion, e.g. videos of a human walking shot with static or trans-
lating cameras. We compare our method with the state of the
art and demonstrate significant improvements.

Keywords Motion segmentation · Layered representation ·
Coarse-to-fine belief propagation · Graph cuts

M. Pawan Kumar (�) · P.H.S. Torr
Department of Computing, Oxford Brookes University, Oxford,
UK
e-mail: pkmudigonda@brookes.ac.uk

P.H.S. Torr
e-mail: philiptorr@brookes.ac.uk

A. Zisserman
Department of Eng. Science, University of Oxford, Oxford, UK
e-mail: az@robots.ox.ac.uk

1 Introduction

We present an approach for learning a layered representa-
tion from a video for motion segmentation. Our method is
applicable to any video containing piecewise parametric mo-
tion, e.g. piecewise homography, without any restrictions on
camera motion. It also accounts for the effects of occlusion,
lighting and motion blur. For example, Fig. 1 shows one
such sequence where a layered representation can be learnt
and used to segment the walking person from the static back-
ground.

Many different approaches for motion segmentation
have been reported in the literature. Important issues are:
(i) whether the methods are feature-based or dense;
(ii) whether they model occlusion; (iii) whether they model
spatial continuity; (iv) whether they apply to multiple frames
(i.e. a video sequence); and (v) whether they are independent
of which frames are used for initialization.

A comprehensive survey of feature-based methods can
be found in (Torr and Zisserman 1999). Most of these meth-
ods rely on computing a homography corresponding to the
motion of a planar object. This limits their application to a
restricted set of scenes and motions. Dense methods (Black
and Fleet 2000; Cremers and Soatto 2003; Torr et al. 2001;
Weiss and Adelson 1996) overcome this deficiency by com-
puting pixel-wise motion. However, many dense approaches
do not model occlusion which can lead to overcounting of
data when obtaining the segmentation, e.g. see (Black and
Fleet 2000; Cremers and Soatto 2003).

Chief amongst the methods which do model occlusion
are those that use a layered representation (Wang and Adel-
son 1994). One such approach, described in (Weiss and
Adelson 1996) divides a scene into (almost) planar regions
for occlusion reasoning. Torr et al. (2001) extend this repre-
sentation by allowing for parallax disparity. However, these

302 Int J Comput Vis (2008) 76: 301–319

Fig. 1 Four intermediate frames of a 31 frame video sequence of a person walking sideways where the camera is static. Given the sequence, the
model which best describes the person and the background is learnt in an unsupervised manner. Note that the arm always partially occludes the
torso

methods rely on a keyframe for the initial estimation. Other
approaches (Jojic and Frey 2001; Williams and Titsias 2004)
overcome this problem by using layered flexible sprites.
A flexible sprite is a 2D appearance map and matte (mask)
of an object which is allowed to deform from frame to
frame according to pure translation. Winn and Blake (2004)
extend the model to handle affine deformations. However,
these methods do not enforce spatial continuity i.e. they as-
sume each pixel is labeled independent of its neighbors. This
leads to non-contiguous segmentation when the foreground
and background are similar in appearance (see Fig. 19(b)).
Most of these approaches, namely those described in (Cre-
mers and Soatto 2003; Jojic and Frey 2001; Torr et al. 2001;
Wang and Adelson 1994; Weiss and Adelson 1996), use ei-
ther EM or variational methods for learning the parameters
of the model which makes them prone to local minima.

Wills et al. (2003) noted the importance of spatial conti-
nuity when learning the regions in a layered representation.
Given an initial estimate, they learn the shape of the regions
using the powerful α-expansion algorithm (Boykov et al.
2001) which guarantees a strong local minima. However,
their method does not deal with more than 2 views. In our
earlier work (Kumar et al. 2004), we described a similar mo-
tion segmentation approach to (Wills et al. 2003) for a video
sequence. Like (Ramanan and Forsyth 2003) this automat-
ically learns a model of an object. However, the method
depends on a keyframe to obtain an initial estimate of the
model. This has the disadvantage that points not visible in
the keyframe are not included in the model, which leads to
incomplete segmentation.

In this paper, we present a model which does not suffer
from the problems mentioned above, i.e. (i) it models occlu-
sion; (ii) it models spatial continuity; (iii) it handles multiple
frames; and (iv) it is learnt independent of keyframes. An
initial estimate of the model is obtained based on a method
to estimate image motion with discontinuities using a new
efficient loopy belief propagation algorithm. Despite the use
of piecewise parametric motion (similar to feature-based ap-
proaches), this allows us to learn the model for a wide va-
riety of scenes. Given the initial estimate, the shape of the
segments, along with the layering, are learnt by minimiz-
ing an objective function using αβ-swap and α-expansion

algorithms (Boykov et al. 2001). Results are demonstrated
on several classes of objects with different types of camera
motion.

In the next section, we describe the layered representa-
tion. In Sect. 3, we present a five stage approach to learn the
parameters of the layered representation from a video. Such
a model is particularly suited for applications like motion
segmentation. Results are presented in Sect. 4. Preliminary
versions of this article have appeared in (Kumar et al. 2004;
Kumar et al. 2005a). The input videos used in this work
together with the description and output of our approach
are available at http://www.robots.ox.ac.uk/~vgg/research/
moseg/.

2 Layered Representation

We introduce the model for a layered representation which
describes the scene as a composition of layers. Any frame
of a video can be generated from our model by assigning
appropriate values to its parameters and latent variables as
illustrated in Fig. 2. While the parameters of the model de-
fine the latent image, the latent variables describe how to
generate the frames using the latent image (see Table 1). To-
gether, they also define the probability of the frame being
generated.

The latent image is defined as follows. It consists of a set
of nP segments, which are 2D patterns (specified by their
shape and appearance) along with their layering. The lay-
ering determines the occlusion ordering. Thus, each layer
contains a number of non-overlapping segments. We denote
the ith segment of the latent image as pi . The shape of a seg-
ment pi is modeled as a binary matte �Mi of size equal to
the frame of the video such that �Mi(x) = 1 for a point x be-
longing to segment pi (denoted by x ∈ pi) and �Mi(x) = 0
otherwise.

The appearance �Ai(x) is the RGB value of points x ∈ pi .
We denote the set of mattes and appearance parameters for
all segments as �M and �A respectively. The distribution
of the RGB values �Ai(x) for all points x ∈ pi is specified
using a histogram Hi for each segment pi . In order to model

Int J Comput Vis (2008) 76: 301–319 303

Fig. 2 The top row shows the various layers of a human model (the
latent image in this case). Each layer consists of one of more segments
whose appearance is shown. The shape of each segment is represented
by a binary matte (not shown in the image). Any frame j can be gen-
erated using this representation by assigning appropriate values to its
parameters and latent variables. The background is not shown

Table 1 Parameters and latent variables of the layered representation

Input

D Data (RGB values of all pixels in every frame of a video).

nF Number of frames.

Parameters

nP Number of segments pi including the background.

�Mi Matte for segment pi .

�M Set of all mattes, i.e. {�Mi, i = 1, . . . , nP }.
�Ai Appearance parameter for segment pi .

�A Set of all appearance parameters, i.e. {�Ai, i = 1, . . . , nP }.
Hi Histogram specifying the distribution of the RGB values

for pi .

li Layer number of segment pi .

Latent

Variables

�
j
T i Transformation {tx , ty , sx, sy,φ} of segment pi to frame j .

�
j
Li Lighting variables {aj

i ,bj
i } of segment pi to frame j .

� {nP ,�M,�A,Hi , li;�T ,�L}.

the layers, we assign a (not necessarily unique) layer number
li to each segment pi such that segments belonging to the
same layer share a common layer number. Each segment pi

can partially or completely occlude segment pk , if and only
if li > lk . In summary, the latent image is defined by the
mattes �M , the appearance �A, the histograms Hi and the
layer numbers li of the nP segments.

When generating frame j , we start from a latent im-
age and map each point x ∈ pi to x′ using the transforma-
tion �

j
T i . This implies that points belonging to the same

segment move according to a common transformation. The

generated frame is then obtained by compositing the trans-
formed segments in descending order of their layer num-
bers. For this paper, each transformation has five degrees
of freedom: rotation, translations and anisotropic scale fac-
tors. The model accounts for the effects of lighting condi-
tions on the appearance of a segment pi using latent variable
�

j
Li = {aj

i ,bj
i }, where aj

i and bj
i are 3-dimensional vectors.

The change in appearance of the segment pi in frame j due
to lighting conditions is modeled as

d(x′) = diag(aj
i) · �Ai(x) + bj

i . (1)

The motion of segment pi from frame j − 1 to frame j ,
denoted by mj

i , can be determined using the transforma-

tions �
j−1
T i and �

j
T i . This allows us to take into account

the change in appearance due to motion blur as

c(x′) =
∫ T

0
d(x′ − mj

i (t))dt, (2)

where T is the total exposure time when capturing the frame.

Posterior of the Model We represent the set of all pa-
rameters and latent variables of the layered representation
as � = {nP ,�M,�A,Hi , li;�T ,�L} (summarized in Ta-
ble 1). Given data D, i.e. the nF frames of a video, the pos-
terior probability of the model is given by

Pr(�|D) = 1

Z
exp(−Ψ (�|D)), (3)

where Z is the partition function. The energy Ψ (�|D) has
the form

Ψ (�|D) =
nP∑
i=1

∑
x∈�M

(
Ai (x;�,D)

+λ1

∑
y∈N (x)

(Bi (x,y;�,D) + λ2Pi (x,y;�))

)
,

(4)

where N (x) is the neighborhood of x. For this paper, we de-
fine N (x) as the 8-neighborhood of x across all mattes �Mi

of the layered representation (see Fig. 3). As will be seen
in Sect. 3.3, this allows us to learn the model efficiently by
minimizing the energy Ψ (�|D) using multi-way graph cuts.
However, a larger neighborhood can be used for each point
at the cost of more computation time. Note that minimizing
the energy Ψ (�|D) is equivalent to maximizing the poste-
rior Pr(�|D) since the partition function Z is independent
of �.

The energy of the layered representation has two com-
ponents: (i) the data log likelihood term which consists
of the appearance term Ai (x;�,D) and the contrast term

304 Int J Comput Vis (2008) 76: 301–319

Fig. 3 The top row shows two segments of the human model. The un-
filled circles represent two of the neighboring points of the filled circle.
The neighborhood is defined across all mattes. We show one neigh-
bor which lies on the same matte (i.e. the torso) and another neighbor
which lies on a different matte (i.e. the upper arm). The bottom row
shows two frames of the video along with the projections of the points
on the segments. Note that the neighboring point on the torso is oc-
cluded by the neighboring point on the upper arm in the second frame

Bi (x,y;�,D), and (ii) the prior Pi (x,y;�). The appear-
ance term measures the consistency of motion and color
distribution of a point x. The contrast and the prior terms
encourage spatially continuous segments whose boundaries
lie on edges in the frames. Their relative weight to the ap-
pearance term is given by λ1. The weight λ2 specifies the
relative importance of the prior to the contrast term. An ex-
tension of Markov random fields (MRF) described in (Ku-
mar et al. 2005b), which we call Contrast-dependent random
fields (CDRF), allows a probabilistic interpretation of the en-
ergy Ψ (�|D) as shown in Fig. 4. We note, however, that
unlike MRF it is not straightforward to generate the frames
from CDRF since it is a discriminative model (due to the
presence of contrast term Bi (x,y)). We return to this when
we provide a Conditional random field formulation of the
energy Ψ (�|D). We begin by describing the three terms of
the energy in detail.

Appearance We denote the observed RGB values at point
x′ = �

j
T i(x) (i.e. the image of the point x in frame j) by

Ij
i (x). The generated RGB values of the point x′ are de-

scribed in (2). The appearance term for a point x is given
by

Ai (x;�,D) =
j=nF∑
j=1

− log(Pr(Ij
i (x)|�). (5)

For a point x ∈ pi , i.e. �Mi(x) = 1, the likelihood of Ij
i (x)

consists of two factors: (i) consistency with the color distrib-

Fig. 4 Contrast-dependent random field (CDRF) formulation of the en-
ergy of the layered representation containing two segments pi and pk .
The appearance term Ai (x;�,D), shown in red, connects the data D
(specifically the set of RGB values Ij

i (x)) with the matte �Mi(x). The
prior Pi (x, z;�) between two neighboring points x and z, which en-
courages spatial continuity, connects �Mi(x) and �Mi(z). The data
dependent contrast term Bi (x,y;�,D), which cannot be included in
the prior, is shown as the blue diagonal connections. Extending the for-
mulation to more than two segments is trivial. Note that some of these
diagonal connections are not shown, i.e. those connecting the other
neighboring points of x and y to �Mk(y) and �Mi(x) respectively, for
the sake of clarity of the figure

ution of the segment, which is the conditional probability of
Ij

i (x) given x ∈ pi and is computed using histogram Hi , and
(ii) consistency of motion which measures how well the gen-
erated RGB values cj

i (x
′) match the observed values Ij

i (x)

(i.e. how well does the latent image project into the frames).
Thus,

Pr(Ij
i (x)|�) ∝ Pr(Ij

i (x)|Hi) exp(−μ(cj
i (x

′) − Ij
i (x))2),

(6)

where μ is some scaling factor. We use μ = 1 in our experi-
ments.

Note that in the above equation we assume that the point
x is visible in frame j . When x is occluded by some other
segment, we assign

Pr(Ij
i (x)|�) = κ1. (7)

There is also a constant penalty for all points x which do not
belong to a segment pi to avoid trivial solutions, i.e.

Ai (x;�,D) = κ2,x /∈ pi. (8)

One might argue that motion consistency alone would pro-
vide sufficient discrimination between different segments.
However, consider a video sequence with homogeneous
background (e.g. brown horse walking on green grass). In
such cases, motion consistency would not be able to distin-
guish between assigning some blocks of the background (i.e.
the green grass) to either the horse segment or the grass seg-
ment. Figure 5 shows such a scenario where a block of the

Int J Comput Vis (2008) 76: 301–319 305

Fig. 5 a–b Two possible latent images of the model consisting of two
segments. Unlike a, the latent image shown in b assigns a block of
green points to the first segment of the model. c–d Two frames of the
video sequences. The brown region translates to the left while the green
region remains stationary. Note that when only consistency of motion
is used in (6), the appearance term Ai (x;�,D) for x ∈ pi remains the
same for both the latent images. This is because the green block pro-

vides the same match scores for both transformations (i.e. stationary
and translation to left) since it maps onto green pixels in the frames.
However, when consistency of appearance is also used this green block
would be more likely to belong to the second segment (which is entirely
green) instead of the first segment (which is mostly brown). Hence,
the appearance term Ai (x;�,D) would favor the first latent image
(Colour figure online)

green background is assigned to different segments. How-
ever, the color distribution of each segment would provide
better discrimination. For example, the likelihood of a green
point belonging to the first (mostly brown) segment would
be low according to the color distribution of that segment.
Empirically, we found that using both motion and color con-
sistency provide much better results than using either of
them alone.

Contrast and Prior As noted above, the contrast and
prior terms encourage spatially continuous segments whose
boundaries lie on image edges. For clarity, we first describe
the two terms separately while noting that their effect should
be understood together. We subsequently describe their joint
behavior (see Table 2).

Contrast The contrast term encourages the projection of
the boundary between segments to lie on image edges and
has the form

Bi (x,y;�,D)

=
{−γik(x,y) if x ∈ pi, y ∈ pk, i �= k,

0 if x ∈ pi, y ∈ pk, i = k.
(9)

Table 2 Pairwise terms for points x ∈ pi and y ∈ pk , where y belongs
to the 4-neighborhood of x. In the first column, i = k implies that x and
y belong to the same segment and i �= k implies that x and y belong to
different segments. The second column lists the value of gik(x,y). The
third, fourth and fifth column are computed using (9), (12) and (15)
respectively

Segment gik(x,y) Contrast Prior Pairwise potential

i = k σ/3 0 0 0

i = k 3σ 0 0 0

i �= k σ/3 −0.054 1.2 1.146

i �= k 3σ −0.9889 1.2 0.2111

The term γik(x,y) is chosen such that it has a large value
when x and y project onto image edges. For this paper, we
use

γik(x,y) = 1 − exp

(−g2
ik(x,y)

2σ 2

)
· 1

dist(x,y)
, (10)

where

gik(x,y) = 1

nF

nF∑
j=1

|Ij
i (x) − Ij

k (y)|. (11)

In other words, gik(x,y) measures the difference between
the RGB values Ij

i (x) and Ij
k (y) throughout the video se-

quence. The term dist(x,y), i.e. the Euclidean distance

306 Int J Comput Vis (2008) 76: 301–319

between x and y, gives more weight to the 4-neighborhood
of x than the rest of the 8-neighborhood. The value of σ

in (10) determines how the energy Ψ (�|D) is penalized
since the penalty is high when gik(x,y) < σ and small when
gik(x,y) > σ . Thus σ should be sufficiently large to allow
for the variation in RGB values within a segment. In our ex-
periments, we use σ = 5. Note that similar contrast terms
have been applied successfully in various applications, e.g.
image segmentation (Boykov and Jolly 2001) and image
restoration (Boykov et al. 2001).

MRF Prior The prior is specified by an Ising model, i.e.

Pi (x,y;�) =
{

τ if x ∈ pi, y ∈ pk, i �= k,

0 if x ∈ pi, y ∈ pk, i = k.
(12)

In other words, the prior encourages spatial continuity by as-
signing a constant penalty to any pair of neighboring pixels
x and y which belong to different segments.

CRF Formulation The energy of the model can also be
formulated using a conditional random field (CRF) (Lafferty
et al. 2001). Within the CRF framework, the posterior of the
model is given by

Pr(�|D)

= 1

Z
exp

(
−

nP∑
i=1

(∑
x

Φi(x) + λ1

∑
x,y

Φi(x,y)

))
, (13)

where Φi(x) and Φi(x,y) are called the unary and pairwise
potentials respectively. The above formulation is equivalent
to (3) for an appropriate choice of the potentials, i.e.

Φi(x) = Ai (x;�,D), (14)

and

Φi(x,y) = Bi (x,y;�,D) + λ2Pi (x,y;�),

=
{

λ2τ − γik(x,y) if x ∈ pi, y ∈ pk, i �= k,

0 if x ∈ pi, y ∈ pk, i = k.

Note that the CRF is a discriminative model since the pair-
wise potential Φi(x,y|D) is data dependent. Hence, unlike
the generative MRF model, it is not straightforward to gen-
erate frames using the CRF.

In all our experiments, we use λ1 = λ2 = 1 and τ = 1.2.
As will be seen, these values are suitable to encourage spa-
tially contiguous segments whose boundaries lie on image
edges. Empirically, they were found to provide good seg-
mentations for all our input videos. Table 2 shows the values
of the pairwise terms for two neighboring points x ∈ pi and
y ∈ pk for this choice of the weights. We consider two cases
for the term gik(x,y) defined in (11): (i) gik(x,y) = σ/3, i.e.

x and y have similar appearance; (ii) gik(x,y) = 3σ , which
implies x and y have different appearance (as is the case
with neighboring pixels lying on image edges). As can be
seen from the table, the value of the pairwise potential is
small when boundaries of the segment lie on image edges
(i.e. when i �= k and gik(x,y) = 3σ).

For two points x and y belonging to different segments,
the minimum value of the pairwise potential Φi(x,y) de-
pends only on τ (since γik(x,y) is always less than 1). Un-
like the CRF framework, this fact comes across clearly in the
CDRF formulation which forces us to treat the prior and the
contrast term separately. In our case, the value of τ is chosen
such that the minimum value of Φi(x,y) is always greater
than 0.2. In other words, the penalty for assigning x and y
to different segments is at least 0.2. This prevents speckles
appearing in the estimated segments by encouraging con-
tiguous regions (i.e. regions which minimize the length of
the boundary between segments). For example, consider the
case where x differs in appearance from all its neighbors due
to noise in the video frames. It would be undesirable to as-
sign x to a different segment from all its neighbors. Such
an assignment would be discouraged since x would have to
incur a penalty of at least 0.2 from all its neighbors.

In the next section, we describe a five stage approach to
obtain the layered representation (i.e. �) of an object, given
data D, by minimizing the energy Ψ (�|D) (i.e. maximizing
Pr(�|D)). The method described is applicable to any scene
with piecewise parametric motion.

3 Learning Layered Segmentation

Given a video, our objective is to estimate � (i.e. the la-
tent image, the transformations and the lighting variables)
of the layered representation. Our approach takes inspira-
tion from the highly successful interactive image segmenta-
tion algorithm of Boykov and Jolly (2001) in which the user
provides a small number of object and background seed pix-
els. The appearance model learnt from these seed pixels then
provides sufficient information to obtain reliable segmenta-
tion by minimizing an objective function similar to (4). In
our case, the seed pixels are provided by a rough motion
segmentation obtained by computing the image motion (see
Sect. 3.1 and Sect. 3.2). These seed pixels are sufficient to
bootstrap the method to minimize equation (4) to obtain re-
liable segmentations. This is one of the key intuitions behind
our method.

We obtain the layered representation � in five stages. In
the first stage, image motion is computed between every pair
of consecutive frames to obtain rigidly moving components.
An initial estimate of � is then found in the second stage
using these components. This provides us with the seed pix-
els for each segment. In the remaining stages, we alternate

Int J Comput Vis (2008) 76: 301–319 307

Table 3 Estimating the parameters and latent variables of the layered
representation

1. Rigidly moving components are identified between every pair of
consecutive frames by computing the image motion (Sect. 3.1).

2. An initial estimate of � is obtained by combining these components
(Sect. 3.2).

3. The parameters �A and latent variables �T and �L are kept con-
stant and the mattes �M are optimized using αβ-swap and α-
expansion algorithms (Boykov et al. 2001). The layer numbers li
are obtained (Sect. 3.3).

4. Using the refined values of �M , the appearance parameters �A are
updated. (Sect. 3.4).

5. Finally, the transformations �T and lighting variables �L are re-
estimated, keeping �M and �A unchanged (Sect. 3.5).

between holding some parameters and latent variables con-
stant and optimizing the rest as illustrated in Table 3.

Our method makes use of two inference algorithms for
CRFs : loopy belief propagation (LBP) and graph cuts. LBP

is particularly useful for applications such as estimating mo-
tion fields where each site of the CRF has a large number of
labels (i.e. equal to the number of possible motions from
one frame to the next). However, when refining the model,
the number of labels is small (i.e. equal to the number of
segments) and hence efficient inference can be performed
using graph cuts. As will be seen, we take advantage of the
strengths of both the algorithms. We begin by describing our
approach for computing image motion.

3.1 Two Frame Motion Segmentation

In this section, we describe a novel, efficient algorithm to
obtain rigidly moving components between a pair of frames
by computing the image motion. This is a simple two frame
motion segmentation method that is used to initialize the
more complex multiframe one described later. We use the
term components here to distinguish them from the segments
finally found. The method is robust to changes in appear-
ance due to lighting and motion blur. The set of components
obtained from all pairs of consecutive frames in a video se-
quence are later combined to get the initial estimate of the
segments (see Sect. 3.2). This avoids the problem of finding
only those segments which are present in one keyframe of
the video.

In order to identify points that move rigidly together from
frame j to j + 1 in the given video D, we need to determine
the transformation that maps each point x in frame j to its
position in frame j + 1 (i.e. the image motion). However,
at this stage we are only interested in obtaining a coarse es-
timate of the components as they will be refined later us-
ing graph cuts. This allows us to reduce the complexity of
the problem by dividing frame j into uniform patches fk of
size m×m pixels and determining their transformations ϕk .
However, using a large value of m may result in merging
of two components. We use m = 3 for all our experiments

which was found to offer a good compromise between effi-
ciency and accuracy.

The components are obtained in two stages: (i) finding a
set of putative transformations ϕk for each patch in frame j ;
(ii) selecting from those initial transformations the best joint
set of transformations over all patches in the frame. As the
size of the patch is only 3 × 3 and we restrict ourselves to
consecutive frames, it is sufficient to use transformations
defined by a scale ρk , rotation θk and translation tk , i.e.
ϕk = {ρk, θk, tk}.

Finding Putative Transformations We define a CRF over
the patches of frame j such that each site nk of the CRF

represents a patch fk . Each label sk of site nk corresponds
to a putative transformation ϕk . Note that this is a different
CRF from the one described in the previous section which
models the energy of the layered representation using the
unary potentials Φi(x) and the pairwise potentials Φi(x,y).
It is a simpler one which we will solve in order to provide
initialization for the layered representation.

In the present CRF, the likelihood ψ(sk) of a label mea-
sures how well the patch fk matches frame j +1 after under-
going transformation ϕk . The neighborhood Nk of each site
nk is defined as its 4-neighborhood. As we are interested in
finding rigidly moving components, we specify the pairwise
term ψ(sk, sl) such that it encourages neighboring patches
to move rigidly together. The joint probability of the trans-
formations is given by

Pr(ϕ) = 1

Z2

∏
k

ψ(sk)
∏

nl∈Nk

ψ(sk, sl), (15)

where Z2 is the partition function of the CRF and ϕ is the set
of transformations {ϕk,∀k}.

By taking advantage of the fact that large scaling, trans-
lations and rotations are not expected between consecutive
frames, we restrict ourselves to a small number of putative
transformations. Specifically, we vary scale ρk from 0.7 to
1.3 in steps of 0.3, rotation θk from −0.3 to 0.3 radians in
steps of 0.15 and translations tk in vertical and horizontal
directions from −5 to 5 pixels and −10 to 10 pixels respec-
tively in steps of 1. Thus, the total number of transforma-
tions is 3465.

The likelihood of patch fk undergoing transformation ϕk

is modeled as ψ(sk) ∝ exp(L(fk, ϕk)). The term L(fk, ϕk) is
the normalized cross-correlation between frame j + 1 and
an n × n window around the patch fk , transformed accord-
ing to ϕk . When calculating L(fk, ϕk) in this manner, the
n × n window is subjected to different degrees of motion
blur according to the motion specified by ϕk , and the best
match score is chosen. This, along with the use of normal-
ized cross-correlation, makes the likelihood estimation ro-
bust to lighting changes and motion blur. In all our experi-
ments, we used n = 5. Since the appearance of a patch does

308 Int J Comput Vis (2008) 76: 301–319

not change drastically between consecutive frames, normal-
ized cross-correlation provides reliable match scores. Un-
like (Kumar et al. 2004), we do not discard the transforma-
tions resulting in a low match score. However, it will be seen
later that this does not significantly increase the amount of
time required for finding the minimum mean squared error
(MMSE) estimate of the transformations due to our compu-
tationally efficient method.

We want to assign the pairwise terms ψ(sk, sl) such that
neighboring patches fk and fl which do not move rigidly to-
gether are penalized. However, we would be willing to take
the penalty when determining the MMSE estimate if it results
in better match scores. Furthermore, we expect two patches
separated by an edge to be more likely to move non-rigidly
since they might belong to different segments. Thus, we de-
fine the pairwise terms by a Potts model such that

ψ(sk, sl) =
{

exp(1) if rigid motion,

exp(ζ∇(fk, fl)) otherwise,
(16)

where ∇(fk, fl) is the average of the gradients of the neigh-
boring pixels x ∈ fk and y ∈ fl , i.e. along the boundary
shared by fk and fl . The term ζ specifies how much penalty
is assigned for two neighboring patches not moving rigidly
together. We choose ζ such that it scales ζ∇(fk, fl) to lie
between 0 and 1.

To handle occlusion, an additional label so is introduced
for each site nk which represents the patch fk being occluded
in frame j + 1. The corresponding likelihoods and pairwise
terms ψ(so),ψ(sk, so),ψ(so, sk) and ψ(so, so) are modeled
as constants for all k. In our experiments, we used the val-
ues 0.1,0.5,0.5 and 0.8 respectively. The higher value for
ψ(so, so) specifies that two neighboring patches tend to get
occluded simultaneously.

Obtaining the Transformations The best joint set of trans-
formations for all patches is found by maximizing the prob-
ability Pr(ϕ) defined in (15). We use sum-product loopy
belief propagation (LBP) (Pearl 1998) to find the posterior
probability of a patch fk undergoing transformation ϕk . This
provides us with the MMSE estimate of transformations.

The two main limitations of LBP are its large memory re-
quirements and its computational inefficiency. We overcome
these problems by developing a novel coarse to fine LBP al-
gorithm. This algorithm groups similar labels of the CRF to
obtain a smaller number of representative labels, thereby re-
ducing the memory requirements. The time complexity of
LBP is also reduced using the method described in (Felzen-
szwalb and Huttenlocher 2003). Details of the algorithm can
be found in Appendix 1.

Once the transformations for all the patches of frame j

have been determined, we cluster the points moving rigidly
together to obtain rigid components. Components with size

less than 100 pixels are merged with surrounding compo-
nents. We repeat this process for all pairs of consecutive
frames of the video. The kth component of frame j is rep-
resented as a set of points Cj

k . Figure 6 shows the result of
our approach on four pairs of consecutive frames. Figure 7
shows the advantage of modeling motion blur when com-
puting the likelihood of a patch fk undergoing a transfor-
mation ϕk . In the next section, we describe how an initial
estimate of the layered representation is obtained using the
rigid pairwise components.

3.2 Initial Estimation of the Model Over Multiple Frames

In this section, we describe a method to get an initial es-
timate of �. The method consists of two stages: (i) com-
bining rigidly moving components to obtain the number of
segments and the initial estimate of their shape parameter
�Mi ; (ii) computing the remaining parameters and latent
variables, i.e. �Ai , �

j
T i and �

j
Di .

Combining Rigid Components Given the set of all pairwise
components, we want to determine the number of segments
nP present in the entire video sequence and obtain an ini-
tial estimate of their shape. The task is made difficult due to
the following problems: (i) a segment may undergo differ-
ent transformations (scaling, rotation and translation) from
one frame to the next which need to be recovered by estab-
lishing a correspondence over components; (ii) the transfor-
mations ϕk of the components (found in Sect. 3.1) may not
be accurate enough to obtain the required correspondence;
and (iii) each component may overlap with one or more seg-
ments thereby providing us with multiple estimates of the
shape parameter �Mi .

Figure 8 shows an example of the problem of combining
rigid components. All the components shown in Fig. 8(a)
contain the ‘torso’ segment which undergoes different trans-
formations in each of the four frames. In order to recover the
shape of the torso, we need to establish a correspondence
over the components (i.e. find the components which con-
tain torso and determine the transformations between them).
Further, the method for obtaining the correspondence should
be robust to errors in the transformations ϕk . Finally, the ini-
tial estimate of the shape of the torso needs to be determined
from the four estimates provided by the components.

We overcome the first problem (i.e. establishing corre-
spondence over components) by associating the components
from one frame to the next using the transformations ϕk .
This association is considered transitive, thereby establish-
ing a correspondence of components throughout the video
sequence.

However, as noted above (in problem (ii)), this corre-
spondence may not be accurate due to errors in the trans-
formations ϕk . For example, an error in the transformation

Int J Comput Vis (2008) 76: 301–319 309

Fig. 6 Results of obtaining the
MMSE estimates of the
transformations. The first two
columns show consecutive
frames of a video. The third
column shown the
reconstruction of the second
frame obtained by mapping the
patches of the first frame
according to the transformations
obtained using coarse-to-fine
efficient LBP. Points which are
occluded from the first frame
but are present in the second
frame would be missing from
the reconstruction. These points
are shown in red. Fragments
moving rigidly are clustered
together to obtain the
components shown in the fourth
column (Colour figure online)

Fig. 7 Effects of modeling motion blur. a–b Two consecutive frames
from the video shown in Fig. 1. c The image motion computed with-
out modeling motion blur. The reconstruction of the second frame,
obtained by mapping the patches of the first frame according to the
transformations obtained, indicates that incorrect transformations are
found around the feet (see e.g. the shoes) where there is considerable

motion blur. Note that the pixels marked red are those that are occluded
in the first frame but present in the second frame. d Results after mod-
eling motion blur. Accurate transformations for the patches belonging
to the shoes are obtained by accounting for the change in appearance
due to motion blur

310 Int J Comput Vis (2008) 76: 301–319

Fig. 8 a Examples of rigid
pairwise components obtained
for the video sequence shown in
Fig. 1 which contain the ‘torso’
segment. The components are
shown to the right of the
corresponding frames. The
initial estimate of the torso is
obtained by establishing a
correspondence over these
components. b The smallest
component (i.e. the top left one)
is used as the initial estimate of
the shape of the torso segment

may result in a component containing the torso correspond-
ing to a background component. Hence, we need to make
our method more robust to errors in ϕk . To this end, we at-
tempt to cluster the components such that each cluster con-
tains only those components which belong to one segment.
Clearly, such clusters would provide correspondence over
the components. Note that we rely on every segment of the
scene being detected as an individual component in at least
one frame.

In order to cluster the components, we measure the sim-
ilarity of each component Cj

k in frame j with all the com-
ponents of frame l that lie close to the component corre-
sponding to Cj

k in frame l (i.e. not just to the corresponding
component). This makes the method robust to small errors
in ϕk . The similarity of two components is measured using
normalized cross-correlation (to account for changes in ap-
pearance due to lighting conditions) over all corresponding
pixels.

The number of segments are identified by clustering sim-
ilar components together using agglomerative clustering.
Agglomerative clustering starts by treating each component
as a separate cluster. At each step, the two most similar
clusters (i.e. the clusters containing the two most similar
components) are combined together. The algorithm is ter-
minated when the similarity of all pairs of clusters falls be-
low a certain threshold. We simply let components contain-
ing more than one segment lie in a cluster representing one
of these segments. For example, the top right component
shown in Fig. 8 may belong to the cluster representing ei-
ther the ‘head’ or the ‘torso’.

Finally, we address the third problem (i.e. the overlap-
ping of components with multiple segments) by choosing
the smallest component of each cluster to define the shape
�Mi of the segment pi , as shown in Fig. 8. This avoids us-
ing a component containing more than one segment to de-
fine the shape of a segment. However, this implies that the
initial estimate will often be smaller than (or equal to) the

Fig. 9 Result of clustering all pairwise rigid components of the video
sequence shown in Fig. 1. a Components obtained for four pairs of
consecutive frames. b Initial estimate of the shape of the segments ob-
tained by choosing the smallest component in each cluster

ground truth and thus, needs to be expanded as described in
Sect. 3.3.

The above method for combining rigid components to
obtain segments is similar to the method described by Ra-
manan and Forsyth (2003) who cluster rectangular frag-
ments found in a video to obtain parts of an object. How-
ever, they rely on finding parallel lines of contrast to define
the fragments, which restricts their method to a small class
of objects and videos. In contrast, our method obtains rigidly
moving components by computing image motion and hence,
is applicable to any video containing piecewise parametric
motion.

The initial shape estimates of the segments, excluding the
background, obtained by our method are shown in Fig. 9.
Note that all the segments of the person visible in the video
have been found.

Int J Comput Vis (2008) 76: 301–319 311

Initial Estimation of the Model Once the mattes �Mi are
found, we need to determine the initial estimate of the re-
maining parameters and latent variables of the model. The
transformations �

j
T i are obtained using ϕk and the compo-

nent clusters. The appearance parameter �Ai(x) is given by
the mean of Ij

i (x) over all frames j . The histograms Hi are
computed using the RGB values �Ai(x) for all points x ∈ pi .
As the size of the segment is small (and hence, the number
of such RGB values is small), the histogram is implemented
using only 15 bins each for R, G and B. The lighting vari-
ables aj

i and bj
i are calculated in a least squares manner us-

ing �Ai(x) and Ij
i (x), for all x ∈ pi . The motion variables

mj
i are given by �

j
T i and �

j−1
T i . This initial estimate of the

model is then refined by optimizing each parameter or latent
variable while keeping others unchanged. We start by opti-
mizing the shape parameters �M as described in the next
section.

3.3 Refining Shape

In this section, we describe a method to refine the estimate of
the shape parameters �M and determine the layer numbers
li using the αβ-swap and α-expansion algorithms (Boykov
et al. 2001). Given an initial coarse estimate of the seg-
ments, we iteratively improve their shape using consistency
of motion and texture over the entire video sequence. The
refinement is carried out such that it minimizes the energy
Ψ (�|D) of the model given in (4).

To this end, we take advantage of efficient algorithms for
multi-way graph cuts which minimize an energy function
over point labellings h of the form

Ψ̂ =
∑
x∈X

Dx(hx) +
∑

x,y∈N
Vx,y(hx, hy), (17)

under fairly broad constraints on D and V (which are sat-
isfied by the energy of the layered representation) (Kol-
mogorov and Zabih 2004). Here Dx(hx) is the cost for as-
signing the label hx to point x and Vx,y(hx, hy) is the cost
for assigning labels hx and hy to the neighboring points x
and y respectively.

Specifically, we make use of two algorithms: αβ-swap
and α-expansion (Boykov et al. 2001). The αβ-swap algo-
rithm iterates over pairs of segments, pα and pβ . At each
iteration, it refines the mattes of pα and pβ by swapping
the values of �Mα(x) and �Mβ(x) for some points x. The
α-expansion algorithm iterates over segments pα . At each
iteration, it assigns �Mα(x) = 1 for some points x. Note
that α-expansion never reduces the number of points with
label α.

In our previous work (Kumar et al. 2004), we described
an approach for refining the shape parameters of the LPS

model where all the segments are restricted to lie in one ref-
erence frame. In other words, each point on the reference

frame has a unique label, i.e. it belongs to only one segment.
In that case, it was sufficient to refine one segment at a time
using the α-expansion algorithm alone to correctly relabel
all the wrongly labeled points. For example, consider a point
x ∈ pi which was wrongly labeled as belonging to pk . Dur-
ing the expansion move where α = i, the point x would be
relabeled to pi (and hence, it would not belong to pk). Since
the shape of each segment in the layered representation is
modeled using a separate matte, this restriction no longer
holds true (i.e. each point x can belong to more than one
segment). Thus, performing only α-expansion would incor-
rectly relabel the point x to belong to both pi and pk (and
not to pi alone). We overcome this problem by perform-
ing αβ-swap over pairs of segments. During the swap move
when α = i and β = k, the point x would be relabeled to pi

and would no longer belong to pk . The α-expansion algo-
rithm would then grow the segments allowing them to over-
lap (e.g. the segments Fig. 10 grow due to the α-expansion
algorithm). Therefore, refining the shape parameters �Mi

of the layered representation requires both the αβ-swap and
α-expansion algorithm.

A standard way to minimize the energy of the layered
representation would be to fix the layer numbers of the seg-
ments and refine their shape by performing α-expansion for
each segment and αβ-swap for each pair of segments. The
process would be repeated for all possible assignments of
layer numbers and the assignment which results in the mini-
mum energy would be chosen. However, this would be com-

Fig. 10 Result of refining the mattes of the layered representation
of a person using multi-way graph cuts. The shape of the head is
re-estimated after one iteration. The next iteration refines the torso seg-
ment. Subsequent iterations refine the half limbs one at a time. Note
that the size of the mattes is equal to that of a frame of the video but
smaller mattes are shown here for clarity

312 Int J Comput Vis (2008) 76: 301–319

putationally inefficient because of the large number of pos-
sible layer numbers for each segment. In order to reduce the
complexity of the algorithm, we make use of the fact that
only those segments which overlap with each other are re-
quired to determine the layering.

We define the limit Li of a segment pi as the set of points
x whose distance from pi is at most 40% of the current size
of pi . Given segment pi , let pk be a segment such that the
limit Li of pi overlaps with pk in at least one frame j of the
video. Such a segment pk is said to be surrounding the seg-
ment pi . The number of surrounding segments pk is quite
small for objects such as humans and animals which are re-
stricted in motion. For example, the head segment of the per-
son shown in Fig. 1 is surrounded by only the torso and the
background segments.

We iterate over segments and refine the shape of one seg-
ment pi at a time. At each iteration, we perform an αβ-swap
for pi and each of its surrounding segments pk . This rela-
bels all the points which were wrongly labeled as belong-
ing to pi . We then perform an α-expansion algorithm to ex-
pand pi to include those points x in its limit which move
rigidly with pi . During the iteration refining pi , we con-
sider three possibilities for pi and its surrounding segment
pk : li = lk , li > lk or li < lk . Recall that if li < lk , we as-
sign Pr(Ij

i (x)|�) = κ1 for frames j where x is occluded
by a point in pk . We choose the option which results in the
minimum value of Ψ (�|D). This determines the occlusion
ordering among surrounding segments. We stop iterating
when further reduction of Ψ (�|D) is not possible. This pro-
vides us with a refined estimate of �M along with the layer
number li of the segments. Since the neighborhood for each
point x is small (see Fig. 3), graph cuts can be performed ef-
ficiently. The graph constructions for both the αβ-swap and
α-expansion algorithms are provided in Appendix 2.

Figure 10 shows the refined shape parameters of the seg-
ments obtained by the above method using the initial esti-
mates. Results indicate that reliable shape parameters can
be learnt even while using a small neighborhood. Note that
though the torso is partially occluded by the arm and the
backleg is partially occluded by the front leg in every frame,
their complete shape has been learnt using individual binary
mattes for each segment. Next, the appearance parameters
corresponding to the refined shape parameters are obtained.

3.4 Updating Appearance

Once the mattes �Mi of the segments are obtained, the ap-
pearance of a point x ∈ pi , i.e. �Ai(x) is calculated as the
mean of Ij

i (x) over all frames j . The histograms Hi are re-
computed using the RGB values �Ai(x) for all points x ∈ pi .
Fig. 11 shows the appearance of the parts of the human
model learnt using the video in Fig. 1. The refined shape and
appearance parameters help in obtaining a better estimate
for the transformations as described in the next section.

Fig. 11 Appearance of the parts learnt for the human model as de-
scribed in Sect. 3.4

3.5 Refining the Transformations

Finally, the transformations �T and the lighting variables
�L are refined by searching over putative transformations
around the initial estimate, for all segments at each frame j .
For each putative transformation, variables {aj

i ,bj
i } are cal-

culated in a least squares manner. The variables which result
in the smallest SSD are chosen. When refining the transfor-
mation, we searched for putative transformations by consid-
ering translations upto 5 pixels in steps of 1, scales 0.9, 1.0
and 1.1 and rotations between −0.15 and 0.15 radians in
steps of 0.15 radians around the initial estimate. Figure 12
shows the rotation and translation in y-axis of the upper arm
closest to the camera in Fig. 1 obtained after refining the
transformations.

The model � obtained using the five stage approach de-
scribed above can be used iteratively to refine the estimation
of the layered representation. However, we found that it does
not result in a significant improvement over the initial esti-
mate as the parameters and latent variables do not change
much from one iteration to the other. In the next section, we
describe a method to refine the segmentation of each frame.

3.6 Refining the Segmentation of Frames

Our model maps the segments onto a frame using only sim-
ple geometric transformations. This would result in gaps in
the generated frame when the motion of segments cannot be
accurately defined by such transformations. In order to deal
with this, we refine the segmentation of each frame by re-
labeling the points around the boundary of segments. Note
that this step is performed only to obtain more accurate seg-
mentations and does not change the values of any parameters
or latent variables. The relabeling is performed by using the
α-expansion algorithm. The cost Dx(hx) of assigning point
x around the boundary of pi to pi is the inverse log like-
lihood of its observed RGB values in that frame given by
the histogram Hi . The cost Vx,y(hx,hy) of assigning two
different labels hx and hy to neighboring points x and y is
directly proportional to Bi (x,y;�,D) for that frame. Fig-
ure 13 shows an example where the gaps in the segmentation
are filled using the above method.

Int J Comput Vis (2008) 76: 301–319 313

Fig. 12 a Rotation of the upper arm obtained after refining the trans-
formations as described in Sect. 3.5. During the first half of the video,
the arm swings away from the body while in the second half it rotates
towards the body. Clearly, this motion has been captured in the learnt
rotations. b Translation of the upper arm in the horizontal direction.

The person moves from the right to the left of the scene with almost
constant velocity as indicated by the learnt translations. Note that the
transformations are refined individually for each frame and are there-
fore not necessarily smooth

Fig. 13 Result of refining the segmentation. a The segmentation ob-
tained by compositing the transformed segments in descending or-
der of the layer numbers. b The refined segmentation obtained using
α-expansion (see text). Note that the gaps in the segmentation that ap-
pear in (a), e.g. between the upper and lower half of the arm, have been
filled

4 Results

We now present results for motion segmentation using the
learnt layered representation of the scene. The method is
applied to different types of object classes (such as jeep,
humans and cows), foreground motion (pure translation,
piecewise similarity transforms) and camera motion (static
and translating) with static backgrounds. We use the same
weight values in all our experiments.

Figures 14, 15, 16 show the segmentations obtained by
generating frames using the learnt representation by pro-
jecting all segments other than those belonging to layer 0
(i.e. the background). Figure 14(a) and 14(b) show the re-
sult of our approach on simple scenarios where each layer
of the scene consists of segments which are undergoing pure
translation. Despite having a lot of flexibility in the putative

transformations by allowing for various rotations and scales,
the initial estimation recovers the correct transformations,
i.e. those containing only translation. Note that the trans-
parent windshield of the jeep is (correctly) not recovered in
the M.A.S.H. sequence as the background layer can be seen
through it. For the sequence shown in Fig. 14(a) the method
proves robust to changes in lighting condition and it learns
the correct layering for the segments corresponding to the
two people.

Figures 15(a) and 15(b) show the motion segmentation
obtained for two videos, each of a person walking. In both
cases, the body is divided into the correct number of seg-
ments (head, torso and seven visible half limbs). Our method
recovers well from occlusion in these cases. For such videos,
the feet of a person are problematic as they tend to move
non-rigidly with the leg in some frames. Indeed the feet are
missing from the segmentations of some of the frames. Note
that the grass in Fig. 15(b) has similar intensity to the per-
son’s trousers and there is some error in the transformations
of the legs.

Figures 16(a) and 16(b) are the segmentations of a cow
walking. Again the body of the cow is divided into the cor-
rect number of segments (head, torso and eight half limbs).
The cow in Fig. 16(a) undergoes a slight out of plane rota-
tion in some frames, which causes some bits of grass to be
pulled into the segmentation. The video shown in Fig. 16(b)
is taken from a poor quality analog camera. However, our
algorithm proves robust enough to obtain the correct seg-
mentation. Note that when relabeling the points around the
boundary of segments some parts of the background, which
are similar in appearance to the cow, get included in the seg-
mentation.

Our approach can also be used to segment objects present
at different depths when the camera is translating. This is
due to the fact that their transformations with respect to the

314 Int J Comput Vis (2008) 76: 301–319

Fig. 14 Motion Segmentation
Results I. In each case, the left
image shows the various
segments obtained in different
colors. The top row shows the
original video sequence while
the segmentation results are
shown in the bottom row. a A 40
frame sequence taken from a
still camera (courtesy Nebojsa
Jojic Jojic and Frey 2001). The
scene contains two people
undergoing pure translation in
front of a static background. The
results show that the layering is
learnt correctly. b A 10 frame
video sequence taken from
‘M.A.S.H.’. The video contains
a jeep undergoing translation
and slight out of plane rotation
against a static background
while the camera pans to track
the jeep

Fig. 15 Motion Segmentation
Results II. a A 31 frame
sequence taken from a still
camera (courtesy Hedvig
Sidenbladh Sidenbladh and
Black 2003). The scene consists
of a person walking against a
static background. The correct
layering of various segments of
the person is learnt. The ground
truth used for comparison is also
shown in the third row. b A 57
frame sequence taken from a
translating camera of a person
walking against a static
background (courtesy Ankur
Agarwal Agarwal and Triggs
2004). Again the correct
layering of the segments is
learnt

camera will differ. Figure 17 shows one such example us-
ing the well-known garden sequence. Note that the correct
number of objects have been found and good segmentation
is obtained.

Timing The initial estimation takes approximately 5 minu-
tes for every pair of frames: 3 minutes for computing the
likelihood of the transformations and 2 minutes for MMSE

estimation using LBP. The shape parameters of the segments
are refined by minimizing the energy Ψ (�|D) as described

in Sect. 3.3. The graph cut algorithms used have, in practice,
a time complexity which is linear in the number of points
in the binary matte �Mi . It takes less than 1 minute to re-
fine the shape of each segment. Most of the time is taken
up in calculating the various terms which define the energy
Ψ (�|D) as shown in (4). Since the algorithm provides a
good initial estimate, it converges after at most 2 iterations
through each segment. All timings provided are for a C++
implementation on a 2.4 GHz processor.

Int J Comput Vis (2008) 76: 301–319 315

Fig. 16 Motion Segmentation
Results III. a A 44 frame
sequence of a cow walking
taken from a translating camera.
All the segments, along with
their layering, are learnt. b A 30
frame sequence of a cow
walking against a static
(homogeneous) background
(courtesy Derek Magee Magee
and Boyle 2002). The video is
taken from a still analog camera
which introduces a lot of noise.
The results obtained using our
approach (row 2) and the ground
truth used for comparison
(row 3) are also shown

Fig. 17 Segmenting objects.
The top row shows some frames
from the 29 frame garden
sequence taken from a
translating camera. The scene
contains four objects, namely
the sky, the house, the field and
the tree, at different depths
which are learnt correctly. The
bottom row shows the
appearance and shape of the
segmented objects

Ground Truth Comparison The segmentation performance
of our method was assessed using eight manually segmented
frames (four each from the challenging sequences shown in
Fig. 15(a) and 16(b)). Out of 80901 ground truth foreground
pixels and 603131 ground truth background pixels in these
frames, 79198 (97.89%) and 595054 (98.66%) were present
in the generated frames respectively. Most errors were due
to the assumption of piecewise parametric motion and due
to similar foreground and background pixels.

Sensitivity to Weights When determining rigidity of two
transformations or clustering patches to obtain components,
we allow for the translations to vary by one pixel in x and
y directions to account for errors introduced by discretiza-
tion of putative transformations. Figure 18 shows the effects
of not allowing for slight variations in the translations. As
expected, it oversegments the body of the person. However,
allowing for more variation does not undersegment as dif-
ferent components move quite non-rigidly for a large class
of scenes and camera motion.

Fig. 18 Results of finding rigidly moving components for four frames
from the video shown in Fig. 1 without tolerating slight variation in
translations. This oversegments the body of the person thereby result-
ing in a large number of incorrect segments. However, the algorithm
is robust to larger tolerance as neighboring components move quite
non-rigidly

Our model explicitly accounts for spatial continuity us-
ing the weights λ1 and λ2 as described in (4). Recall that
λ1 and λ2 are the weights given to the contrast and the prior

316 Int J Comput Vis (2008) 76: 301–319

Fig. 19 Encouraging spatial continuity. a Result obtained by setting
λ1 and λ2 to zero. The method works well for the simple case of the
video shown in Fig. 14(a) where the foreground and background dif-
fer significantly. When compared with ground truth, 93.1% of fore-
ground pixels and 99.8% of background pixels were labeled correctly.
b By encouraging spatial continuity, a small improvement is observed
(95.4% of foreground pixels and 99.9% of background pixels were
present in the generated frame). c For the more difficult case shown
in Fig. 14(b), the segmentation starts to include parts of the homoge-
neous background when spatial continuity is not enforced. Only 91.7%
of foreground pixels and 94.1% of background pixels are generated,
compared to 95% of foreground pixels and 99.8% of background pixels
correctly obtained when encouraging spatial continuity (shown in (d))

term which encourage boundaries of segments to lie on im-
age edges. Figure 19 shows the effects of setting λ1 and λ2

to zero, thereby not modeling spatial continuity. Note that
this significantly deteriorates the quality of the segmentation
when the background is homogeneous.

Sensitivity to Length of Sequence We tested our approach
by varying the number of frames used for the video sequence
shown in Fig. 1. Since the number of segments (and their
initial shape) is found using rigidly moving components,
using fewer frames tends to undersegment the object. For
example, given 10 frames of a video where the two half
limbs of an arm move rigidly together, our method would
detect the arm as one segment. Figure 20 shows the ini-
tial estimate of the segments obtained for a varying num-
ber of input frames. Note that the video sequence contains
two half-periods of motion (i.e. the person takes two steps
forward, first with the left leg and then with the right leg).
As expected, the algorithm undersegments the body when
the full period of motion is not considered. By the twenty
fourth frame, i.e. just after the beginning of the second half-

Fig. 20 Results of obtaining the initial estimate of the segments for a
varying number of input frames. The refined estimates of the shape ob-
tained using the method described in Sect. 3.3 are also shown. During
the first four frames only two segments are detected, i.e. the body and
a leg. In the next four frames, the arm close to the camera and the other
leg are detected. The half limbs which constitute this arm and leg are
detected using 11 frames of the video sequence. When 24 frames are
used, all 9 visible segments of the body are detected. The initial esti-
mate of the segments and the refined estimate of their shapes for the
entire video sequence is shown in Fig. 10

period, all visible segments are detected due to the differ-
ence in their transformations. Using more than twenty four
frames does not change the number of segments obtained.
However, the initial estimate of the segments changes as
smaller components are found in subsequent frames (see
Sect. 3.2).

Int J Comput Vis (2008) 76: 301–319 317

5 Summary and Discussion

The algorithm proposed in this paper achieves good motion
segmentation results. Why is this? We believe that the rea-
sons are two fold. Incremental improvements in the Com-
puter Vision field have now ensured that: (i) we can use an
appropriate model which accounts for motion, changes in
appearance, layering and spatial continuity. The model is not
too loose so as to undersegment, and not too tight so as to
oversegment; (ii) we have more powerful modern algorith-
mic methods such as LBP and graph cuts which avoid local
minima better than previous approaches.

However, there is still more to do. As is standard in meth-
ods using layered representation, we have assumed that the
visual aspects of the objects and the layering of the segments
do not change throughout the video sequence. At the very
least we need to extend the model to handle the varying vi-
sual aspects of objects present in the scene, e.g. front, back
and 3/4 views, in addition to the side views. The restriction
of rigid motion within a segment can be relaxed using non-
parametric motion models.

For our current implementation, we have set the values
of the weights λ1 and λ2 and the constant κ1 and κ2 empiri-
cally. Although these values provide good results for a large
class of videos, it would be interesting to learn them using
ground truth segmentations (similar to Blake et al. 2004 for
image segmentation).

Acknowledgements This work was supported by the EPSRC re-
search grant EP/C006631/1(P) and the IST Programme of the Euro-
pean Community, under the PASCAL Network of Excellence, IST-
2002-506778. This publication only reflects the authors’ views.

Appendix 1: Efficient Coarse to Fine Loopy Belief
Propagation

Loopy belief propagation (LBP) is a message passing algo-
rithm similar to the one proposed by Pearl (1998) for graph-
ical models with no loops. For the sake of completeness, we
describe the algorithm below.

The message that site nk sends to its neighbor nl at itera-
tion t is given by

mt
kl(sl) =

∑
sk

(
ψ(sk, sl)ψ(sk)

∏
nd∈Nk\nl

mt−1
dk (sk)

)
. (18)

All messages are initialized to 1, i.e. m0
kl(sk) = 1, for all k

and l. The belief (posterior) of a patch fk undergoing trans-
formation ϕk after T iterations is given by

b(sk) = ψ(sk)
∏

nl∈Nk

mT
lk(sk). (19)

The termination criterion is that the rate of change of all be-
liefs falls below a certain threshold. The label s∗

k that maxi-
mizes b(sk) is selected for each patch thus, providing us an
estimate of the image motion.

The time complexity of LBP is O(nH 2), where n is the
number of sites in the CRF and H is the number of labels
per site, which makes it computationally infeasible for large
H . However, since the pairwise terms of the CRF are defined
by a Potts model as shown in (16), the runtime of LBP can
be reduced to O(nH ′), where H ′ 	 H 2 using the method
described in (Felzenszwalb and Huttenlocher 2003). Briefly,
we can speed-up the computation of the message mt

kl by
precomputing the terms which are common in mt

kl(sl), for
all labels sl as follows:

T =
∑
sk

(
ψ(sk)

∏
nd∈Nk\nl

mt−1
dk (sk)

)
. (20)

To compute the message mkl(sl) for a particular label sl ,
we now consider only those labels sk which define a rigid
motion with sl . These labels are denoted by the set Ck(sl).
Specifically, let

Tc =
∑

sk∈Ck(sl)

(
ψ(sk)

∏
nd∈Nk\nl

mt−1
dk (sk)

)
, (21)

which can be computed efficiently by summing |Ck(sl)|	H

terms. Clearly, the message mt
kl(sl) defined in (18) is equiv-

alent to

mt
kl(sl) = Tc exp(1) + (T − Tc) exp(ζ∇(fk, fl)). (22)

Thus, the messages can be computed efficiently in O(nH ′)
time where H ′ 	 H 2.

Another limitation of LBP is that it has memory require-
ments of O(nH). To overcome this problem, we use a vari-
ation of the coarse to fine strategy suggested in (Vogiatzis
et al. 2004). This allows us to solve O(log(H)/ log(h))

problems of h labels instead of one problem of H labels,
where h 	 H . Thus, the memory requirements are reduced
to O(nh). The time complexity is reduced further from
O(nH) to O(log(H)nh/ log(h)).

The basic idea of the coarse to fine strategy is to group
together similar labels (differing slightly only in transla-
tion) to obtain h representative labels φk (see Fig. 21).
We now define an CRF where each site nk has h labels
Sk such that ψ(Sk) = maxϕk∈φk

ψ(sk) and ψ(Sk, Sl) =
maxϕk∈φk,ϕl∈φl

ψ(sk, sl). Using LBP on this CRF, we ob-
tain the posterior for each representative transformation.
We choose the best r representative transformations (un-
like Vogiatzis et al. 2004, which chooses only the best) with
the highest beliefs for each site. These transformations are
again divided into h representative transformations. Note
that these h transformations are less coarse than the ones

318 Int J Comput Vis (2008) 76: 301–319

used previously. We repeat this process until we obtain the
most likely transformation for each patch fk . In our experi-
ments, we use h = 165 and r = 20. LBP was found to con-
verge within 20 iterations at each stage of the coarse to fine
strategy.

Appendix 2

Refining the shape of the segments by minimizing the en-
ergy of the model (defined in (4)) requires a series of graph
cuts. Below, we provide the graph constructions required
for both the αβ-swap and the α-expansion algorithms (see
Sect. 3.3).

Graph Construction for αβ-swap

The αβ-swap algorithm swaps the assignments of certain
points x which have label α to β and vice versa. In our case,

Fig. 21 Coarse to fine loopy belief propagation. a An example CRF

with 12 sites and 20 labels per site. b A set of 5 labels is grouped
into one representative label (shown as a square) thereby resulting in a
coarser CRF with 4 labels per site. Inference is performed on this CRF

using efficient LBP. In this case, the best r = 2 representative labels
(shown as red squares) are chosen for each site and expanded. This
results in an CRF with 10 labels per site. The process of grouping the
labels is continued until we obtain the most likely label for each site
(Colour figure online)

it attempts to relabel points which were incorrectly assigned
to segments pα or pβ . We now present the graph construc-
tion required for performing αβ-swap such that it minimizes
the energy of the layered representation. For clarity, we only
consider the case when there are two neighboring points x
and y. The complete graph can be obtained by concatenating
the graphs for all pairs of neighboring points (Kolmogorov
and Zabih 2004).

Each of the two points x and y are represented by one
vertex in the graph (shown in blue in Fig. 22). In addition,
there are two special vertices called the source and the sink
(shown in brown and green respectively) which represent the
labels α and β . Recall that the unary potential for assigning
point x to segment pα is Aα(x;�,D). Similarly, the unary
potential for assigning x to segment pβ is Aβ(x;�,D).

The pairwise potentials, given by (15), for all four pos-
sible assignments of two points x and y are summarized
in Fig. 22. Here, γ ′

ik(x,y) = λ2τ − γik(x,y) is the total
cost (contrast plus prior) for assigning points x and y to
(different) segments pα and pβ . The corresponding graph
construction, also shown in Fig. 22, is obtained using the
method described in (Kolmogorov and Zabih 2004).

Graph Construction for α-expansion

The α-expansion algorithm relabels some points x to α.
In other words, it attempts to assign the points belonging
to pα , which were missed by the initial estimate, to the seg-
ment pα . Again, we show the graph construction for only
two neighboring points x and y for clarity.

Similar to the αβ-swap case, the unary potential of as-
signing x to pα is Aα(x;�,D). Recall that the potential of
not assigning a point x to a segment α is given by the con-
stant κ2 (see (8)).

The pairwise potentials for all four possible assignments
of two points x and y are summarized in Fig. 23. Note that
in accordance with the energy of the model, the pairwise
potentials are summed over all segments contain the points x
or y. Using the source and sink vertices to represent labels α

and not-α (denoted by ∼ α) respectively the corresponding

y ∈ pα y ∈ pβ

x ∈ pα 0 γ ′
αβ(x,y)

x ∈ pβ γ ′
βα(x,y) 0

Fig. 22 Graph construction for αβ-swap. The table shown in the left summarizes the pairwise potentials for two points x and y. The figure on the
right shows the corresponding graph construction. Here C1 and C2 are the (1,2)th and (2,1)th (i.e. the non-zero) elements of the table respectively

Int J Comput Vis (2008) 76: 301–319 319

y ∈ pα y /∈ pα

x ∈ pα 0
∑

i,y∈pi
γ ′
αi(x,y)

x /∈ pα

∑
i,x∈pi

γ ′
iα(x,y) 0

Fig. 23 Graph construction for α-expansion. The table shown in the left summarizes the pairwise potentials for two points x and y. The figure on
the right shows the corresponding graph construction. Again, C1 and C2 are the (1,2)th and (2,1)th elements of the table respectively

graph construction, shown in Fig. 23, can be obtained by the
method described in (Kolmogorov and Zabih 2004).

References

Agarwal, A., & Triggs, B. (2004). Tracking articulated motion using a
mixture of autoregressive models. In ECCV (Vol. III, pp. 54–65).

Black, M., & Fleet, D. (2000). Probabilistic detection and tracking of
motion discontinuities. International Journal of Computer Vision,
38, 231–245.

Blake, A., Rother, C., Brown, M., Perez, P., & Torr, P. H. S. (2004). In-
teractive image segmentation using an adaptive GMMRF model.
In ECCV (Vol. I, pp. 428–441).

Boykov, Y., & Jolly, M. P. (2001). Interactive graph cuts for optimal
boundary and region segmentation of objects in N-D images. In
ICCV (Vol. I, pp. 105–112).

Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate en-
ergy minimization via graph cuts. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(11), 1222–1239.

Cremers, D., & Soatto, S. (2003). Variational space-time motion seg-
mentation. In ICCV (Vol. II, pp. 886–892).

Felzenszwalb, P. F., & Huttenlocher, D. P. (2003). Fast algorithms for
large state space HMMs with applications to web usage analysis.
In NIPS.

Jojic, N., & Frey, B. (2001). Learning flexible sprites in video layers.
In CVPR (Vol. 1, pp. 199–206).

Kolmogorov, V., & Zabih, R. (2004). What energy functions can be
minimized via graph cuts. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(2), 147–159.

Kumar, M. P., Torr, P. H. S., & Zisserman, A. (2004). Learning layered
pictorial structures from video. In ICVGIP (pp. 148–153).

Kumar, M. P., Torr, P. H. S., & Zisserman, A. (2005a). Learning layered
motion segmentations of video. In ICCV (Vol. I, pp. 33–40).

Kumar, M. P., Torr, P. H. S., & Zisserman, A. (2005b). OBJ CUT. In
Proceedings of IEEE conference on computer vision and pattern
recognition (pp. 18–25).

Lafferty, J., McCallum, A., & Pereira, F. (2005). Conditional random
fields: probabilistic models for segmenting and labelling sequence
data. In ICML.

Magee, D. R., & Boyle, R. D. (2002). Detecting lameness using re-
sampling condensation and multi-stream cyclic hidden Markov
models. Image and Vision Computing, 20(8), 581–594.

Pearl, J. (1998). Probabilistic reasoning in intelligent systems: net-
works of plausible inference. Los Altos: Kauffman.

Ramanan, D., & Forsyth, D. A. (2003). Using temporal coherence to
build models of animals. In ICCV (pp. 338–345).

Sidenbladh, H., & Black, M. J. (2003). Learning the statistics of people
in images and video. International Journal of Computer Vision,
54(1), 181–207.

Torr, P. H. S., & Zisserman, A. (1999). Feature based methods for
structure and motion estimation. In W. Triggs, A. Zisserman, &
R. Szeliski (Eds.). International workshop on vision algorithms
(pp. 278–295).

Torr, P. H. S., Szeliski, R., & Anandan, P. (2001). An integrated
Bayesian approach to layer extraction from image sequences.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(3), 297–304.

Vogiatzis, G., Torr, P. H. S., Seitz, S., & Cipolla, R. (2004). Recon-
structing relief surfaces. In BMVC (pp. 117–126).

Wang, J., & Adelson, E. (1994). Representing moving images with
layers. IEEE Transactions on Image Processing, 3(5), 625–638.

Weiss, Y., & Adelson, E. A unified mixture framework for motion seg-
mentation. In CVPR (pp. 321–326).

Williams, C., & Titsias, M. (2004). Greedy learning of multiple objects
in images using robust statistics and factorial learning. Neural
Computation, 16(5), 1039–1062.

Wills, J., Agarwal, S., & Belongie, S. (2003). What went where. In
CVPR (pp. I:37–44).

Winn, J., & Blake, A. (2004). Generative affine localisation and track-
ing. In NIPS (pp. 1505–1512).

	Learning Layered Motion Segmentations of Video
	Abstract
	Introduction
	Layered Representation
	Posterior of the Model
	Appearance
	Contrast and Prior
	Contrast
	MRF Prior
	CRF Formulation

	Learning Layered Segmentation
	Two Frame Motion Segmentation
	Finding Putative Transformations
	Obtaining the Transformations

	Initial Estimation of the Model Over Multiple Frames
	Combining Rigid Components
	Initial Estimation of the Model

	Refining Shape
	Updating Appearance
	Refining the Transformations
	Refining the Segmentation of Frames

	Results
	Timing
	Ground Truth Comparison
	Sensitivity to Weights
	Sensitivity to Length of Sequence

	Summary and Discussion
	Acknowledgements
	Appendix 1: Efficient Coarse to Fine Loopy Belief Propagation
	Appendix 2
	Graph Construction for alphabeta-swap
	Graph Construction for alpha-expansion

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

