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Introduction
Coral reefs have experienced serious declines in recent decades due to 
commercial and subsistence harvesting, environmental degradation
related to burgeoning human communities, and rising ocean 
temperatures5,6,9.  An important part of understanding these events is 
obtained though observation and collection of data.  New technologies 
are needed to improve the efficiency of monitoring and assessing the 
health of global coral reef communities.  A convergence of several 
rapidly advancing technologies, including digital imaging, 
computational mass storage and processing speed, integrated with
computer vision image analysis now makes it feasible to acquire,
archive, and digitally classify aspects of coral reef community structure. 
Simple initial goals include distinguishing hard corals from their 
background and detecting evidence of bleaching or disease on hard 
corals. 

Study Sites
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Preliminary Results

Importance
Developing rapid, objective and quantitative classification is essential for time-series 
monitoring, evaluation of the effectiveness of marine reserves, and to improve global 
assessments of coral community biodiversity and health.  

Threats to coral reefs and 
their associated biodiversity 
happen on a variety of time 
and space scales.  Local 
sampling is limited by 
man-power and the time it 
takes to analyze photos and 
videos is often the limiting 
step. We explore computer 
vision techniques in an 
effort to evaluate their 
potential.

Main Challenge
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Background
Methods addressing this problem demonstrate the feasibility of 
classifying coral reef ecology using computer-vision based techniques 
with proper image training sets:

•Clement et al. (2004) use texture-based 
classification to identify the destructive 
Crown of Thorn starfish on coral reefs2.

•Using images classified by marine 
scientists, Marcos et al. (2005) applied 
neural networks to classify images as live 
coral, dead coral or sand/rubble, resulting 
in a recognition rate of 86.5%7.
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(Marcos et al. 2005)
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Image Segmentation and Classification: Graph Cuts
At this stage, the computer vision goal has been to classify each pixel in the image as being either healthy 
coral, bleached coral or the background. Our approach uses a recently developed algorithm based on 
graph cuts1 that segments (partitions) the image into regions that have similar image characteristics within 
a region (and look like one of the three classes) and differing characteristics across the regions.  For each 
pixel i in the image, a set of local image descriptors is computed using an image neighborhood around 
pixel i. Texture is characterized by filtering the image with a bank of 60 Gabor filters.  A 2-D Gabor filter 
is the product of an oriented sinusoid and a circularly symmetric Gaussian function.  The three (R,G,B) 
color components at pixel i are appended to the filter outputs to create a 63 dimensional real valued vector 
wi.

For class j={Healthy, Bleached, Background}, we learn a probability distribution of the appearances of 
each class using a set of training images that have been hand-segmented by a coral expert.  In this work, 
we model the probability of feature vector wi given that pixel i is from class j as a mixture of Gaussian

functions and the mean and covariance matrices are estimated from hand-labeled training data using the 
EM algorithm.

To segment an input image using graph cuts, a weighted undirected graph is formed whose nodes are the 
pixels in the image and whose arcs connect all pairs of pixels within a fixed image distance of each other.  
The weights between nodes are a measure of similarity (affinity) computed from the texture/color feature 
vector.  Two nodes S and T, representing two of the classes {Healthy, Bleached, Background}, are added 
to the graph; arcs connect S, T to all other nodes, and the weight connecting S (respectively T) to node i is 
related to P(wi | i ∈ S). Once the graph is constructed, it is partitioned into two disjoint subgraphs using 
the min cut/max flow algorithm; this divides the pixels in the image into two set corresponding to the two 
classes.  This basic 2-class algorithm is augmented to work for multiple classes.
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Gabor Filter Kernel. This convolution kernel is 
applied at several orientations and scales to 
compute local texture features that, together with 
local color features, characterize small 
neighborhoods of the image.

“Healthy” Reef,
Panama

Bleached coral, Fiji“Healthy” Namea Reef

Graph representing a 3-by-3 
neighborhood of an image. Red line 
indicates arcs (edges) connecting 
neighboring pairs of nodes (pixels) with 
weight (affinity).  The special nodes (top 
and bottom) indicate two material classes 
for which labeled examples are available 
from an expert. The partition is specified 
by a cut, shown in green, that assigns 
pixels to one of the two classes.Partition
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Input Image
Segmented/labeled Image

Application of the graph 
cuts method to an input 
image displaying both live 
and bleached coral and the 
resulting partitioned image.  
Chart shown at lower left is 
used for calibrating the color 
response of the camera.  
This allows for consistency 
in color measurements

Technology Development
We envision adding the following classification dimensions:
•Fluorescence to assess bleaching and physiological health8

•Spectral reflectance to provide ground truth for remote sensing
•Burst imagery or video to determine mobility of targets
•Stereo photography to obtain 3-D information
•Laser ranging system to get distance to target
•Turbidity correction
•Additional classes of reef objects (e.g. soft corals, invertebrates) 
•Greater accuracy is expected using algorithms which include     
richer descriptions of features of each class provided by ecology experts. 

Coral core with White Plague 
disease on the right side. As 
photographed under natural light 
(left) and using various 
fluorescence filters.  Photos by 
Alistair Grinham, University of 
Queensland, 2006.

Fluorescence can distinguish 
healthy vs. bleached coral tissue

Adapted from Boykov et al. 1999
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