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Abstract This paper presents a novel algorithm for per-
forming integrated segmentation and 3D pose estimation of
a human body from multiple views. Unlike other state of the
art methods which focus on either segmentation or pose es-
timation individually, our approach tackles these two tasks
together. Our method works by optimizing a cost function
based on a Conditional Random Field (CRF). This has the
advantage that all information in the image (edges, back-
ground and foreground appearances), as well as the prior
information on the shape and pose of the subject can be
combined and used in a Bayesian framework. Optimizing
such a cost function would have been computationally infea-
sible. However, our recent research in dynamic graph cuts
allows this to be done much more efficiently than before.
We demonstrate the efficacy of our approach on challenging
motion sequences. Although we target the human pose infer-
ence problem in the paper, our method is completely generic
and can be used to segment and infer the pose of any rigid,
deformable or articulated object.

Keywords Pose estimation · Segmentation · Energy
minimization

1 Introduction

Human pose inference is an important problem in com-
puter vision. It stands at the crossroads of various impor-
tant applications ranging from Human Computer Interac-
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tion (HCI) to surveillance. The importance and complex-
ity of this problem can be gauged by the number of pa-
pers which have tried to deal with it (Agarwal and Triggs
2004; Kehl et al. 2005; Shakhnarovich et al. 2003; Gavrila
and Davis 1996; Sidenbladh et al. 2000a, 2000b; Sminchis-
escu and Triggs 2001; Urtasun et al. 2005; Lan and Hutten-
locher 2005; Deutscher et al. 2001; Mori et al. 2004; Ra-
manan and Forsyth 2003; Felzenszwalb and Huttenlocher
2000). Most algorithms which perform pose estimation re-
quire the segmentation of humans as an essential intro-
ductory step (Agarwal and Triggs 2004; Kehl et al. 2005;
Shakhnarovich et al. 2003). This precondition limits the use
of these techniques to scenarios where good segmentations
are made available by enforcing strict studio conditions like
blue-screening. Otherwise a preprocessing step must be per-
formed in an attempt to segment the human, such as (Stauf-
fer and Grimson 1999). These approaches however cannot
obtain good segmentations in challenging scenarios which
have: complex foreground and background, multiple objects
in the scene, and moving camera/background. Some pose
inference methods exist which do not need segmentations.
These rely on features such as chamfer distance (Gavrila and
Davis 1996), appearance (Sidenbladh et al. 2000a, 2000b),
or edge and intensity (Sminchisescu and Triggs 2001). How-
ever, none of these methods is able to efficiently utilize all
the information present in an image, and fail if the feature
detector they are using fails. This is partly because the fea-
ture detector is not coupled to the knowledge of the pose and
nature of the object to be segmented.

The question is then, how to simultaneously obtain the
segmentation and human pose using all available informa-
tion contained in the images?

Some elements of the answer to this question have been
described by Kumar et al. (2005). Addressing the object seg-
mentation problem, they report that “samples from the Gibbs
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Fig. 1 Improving segmentation results by incorporating more infor-
mation in the CRF. (a) Original image. (b) The segmentation obtained
corresponding to the MAP solution of a CRF consisting of colour like-
lihood and contrast terms as described in (Boykov and Jolly 2001). We
give the exact formulation of this CRF in Sect. 2.2. (c) The result ob-
tained when the likelihood term of the CRF also takes into account
the Gaussian Mixture Models (GMM) of individual pixel intensities
as described in Sect. 2.2. (d) Segmentation obtained after incorporat-
ing a ‘pose-specific’ shape prior in the CRF as explained in Sect. 2.3.

The prior is represented as the distance transform of a stickman which
guarantees a human-like segmentation. (e) The stickman model after
optimization of its 3D pose (see Sect. 3). Observe how incorporating
the individual pixel colour models in the CRF (c) gives a consider-
ably better result than the one obtained using the standard appearance
and contrast based representation (b). However the segmentation still
misses the face of the subject. The incorporation of a stickman shape
prior ensures a human-like segmentation (d) and provides simultane-
ously (after optimization) the 3D pose of the subject (e)

distribution defined by the Markov Random Field (MRF)
very rarely give rise to realistic shapes”. As an illustration
of this statement, Fig. 1(b) shows the segmentation result
corresponding to the maximum a posteriori (MAP) solution
of the Conditional Random Field (CRF) incorporating in-
formation about the image edges and appearances of the ob-
ject and background. It can be clearly seen that this result is
nowhere close to the ground truth.

Shape Priors and Segmentation In recent years, a num-
ber of papers have tried to couple MRFs or CRFs used for
modeling the image segmentation problem, with informa-
tion about the nature and shape of the object to be segmented
(Kumar et al. 2005; Huang et al. 2004; Freedman and Zhang
2005; Zhao and Davis 2005). One of the earliest methods
for combining MRFs with a shape prior was proposed by
Huang et al. (2004). They incrementally found the MAP so-
lution of an extended MRF1 integrated with a probabilistic
deformable model. They were able to obtain a refined esti-
mate of the object contour by using belief propagation in the
area surrounding the contour of this deformable model. This
process was iterated till convergence.

1It is named an extended MRF due to the presence of an extra layer in
the MRF to cope with the shape prior.

The problem however was still far from being completely
solved since objects in the real world change their shapes
constantly and hence it is difficult to ascertain what would
be a good choice for a prior on the shape. This complex
and important problem was addressed by the work of Ku-
mar et al. (2005). They modeled the segmentation problem
by combining CRFs with layered pictorial structures (LPS)
which provided them with a realistic shape prior described
by a set of latent shape parameters. Their cost function was
a weighted sum of the energy terms for different shape para-
meters (samples). The weights of this energy function were
obtained by using the Expectation-Maximization (EM) al-
gorithm. During this optimization procedure, a graph cut
had to be computed in order to obtain the segmentation score
each time any parameter of the CRF was changed. This
made their algorithm extremely computationally expensive.

Although their approach produced good results, it had
some shortcomings. It was focused on obtaining good seg-
mentations and did not provide the pose of the object ex-
plicitly. Moreover, a lot of effort had to be spent to learn the
exemplars for different parts of the LPS model. Recently,
Zhao and Davis (2005) exploited the idea of object-specific
segmentation in improving object recognition or detection.
Their method worked by coupling the twin problems of ob-
ject detection and segmentation in a single framework. They
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matched exemplars to objects in the image using chamfer
matching and thus like (Kumar et al. 2005) also suffered
from the problem of maintaining a huge exemplar set for
complex objects.

Shape Priors in Level Sets Prior knowledge about the
shape to be segmented has also been used in level set meth-
ods for obtaining an object segmentation. Like (Kumar et
al. 2005) these methods learn the prior using a number of
training shapes. Leventon et al. (2000) performed princi-
pal component analysis on these shapes to get a embedding
function which was integrated in the evolution equation of
the level set. More recently, Cremers et al. (2006) have used
kernel density estimation and intrinsic alignment to embed
more complex shape distributions. Compared to Kumar et
al. (2005) and Zhao and Davis (2005) these methods have
a more compact representation of the shape prior. However,
they suffer from the disadvantage that equations for level set
evolution may not lead to the globally optimal solution.

In the next section we will describe how we overcome
the problem of maintaining a huge exemplar set by using
a simple articulated stickman model, which is not only ef-
ficiently renderable, but also provides a robust human-like
segmentation and accurate pose estimate. To make our algo-
rithm computationally efficient we use the dynamic graph
cut algorithm which was recently proposed in Kohli and
Torr (2005)). This new algorithm enables multiple graph cut
computations, each computation taking a fraction of the time
taken by the conventional graph cut algorithm if the change
in the problem is small.

Solving Random Fields using Dynamic Graph Cuts Infer-
ring the most probable solution of a MRF or CRF involves
minimizing the energy function which characterizes it. This
energy is defined by some CRF parameters and the data.
A change in any of the two causes a change in the energy. If
these changes are minimal, then intuitively the change in the
MAP solution of the CRF should also be small. We made
this observation and showed how dynamic graph cuts can
be used to efficiently find the MAP solutions for MRFs
or CRFs that vary minimally from one time instant to the
next (Kohli and Torr 2005). The underlying idea of our pa-
per was dynamic computation, where an algorithm solves
a problem instance by dynamically updating the solution
of the previous problem instance. Its goal is to be more
efficient than a re-computation of the solution after every
change from scratch. In the case of large problem instances
and few changes, dynamic computation yields a substantial
speed-up.

Human Pose Estimation In the last few years, several
techniques have been proposed for tackling the pose in-
ference problem. In particular, the works of Agarwal and

Triggs (2004) using relevance vector machines and that of
Shakhnarovich et al. (2003) based on parametric sensitive
hashing induced a lot of interest and have been shown to
give good results. Some methods for human pose estimation
in monocular images use a tree-structured model to capture
the kinematic relations between parts such as the torso and
limbs (Mori et al. 2004; Ramanan and Forsyth 2003; Felzen-
szwalb and Huttenlocher 2000). They then use efficient in-
ference algorithms to perform exact inference in such mod-
els. In their recent work, Lan and Huttenlocher (2005) show
how the tree-structured restriction can be overcome while
not greatly increasing the computational cost of estimation.

Overview of the Paper The paper proposes a novel algo-
rithm for performing integrated segmentation and 3D pose
estimation of a human body from multiple views.2 We do
not require a feature extraction step but use all the data in
the image. We formulate the problem in a Bayesian frame-
work building on the object-specific CRF (Kumar et al.
2005) and provide an efficient method for its solution called
POSECUT. We include a human pose-specific shape prior in
the CRF used for image segmentation, to obtain high qual-
ity segmentation results. We refer to this integrated model
as a pose-specific CRF. Unlike Kumar et al. (2005), our
approach does not require the laborious process of learn-
ing exemplars. Instead we use a simple articulated stickman
model, which together with an CRF is used as our shape
prior. The experimental results show that this model suffices
to ensure human-like segmentations.

Given an image, the solution of the pose-specific CRF is
used to measure the quality of a 3D body pose. This cost
function is then optimized over all pose parameters using
dynamic graph cuts to provide both a object-like segmenta-
tion and the pose. The astute reader will notice that although
we focus on the human pose inference problem, our method
is in-fact general and can be used to segment and/or infer the
pose of any object. We believe that our methodology is com-
pletely novel and we are not aware of any published methods
which perform simultaneous segmentation and pose estima-
tion. To summarize, the novelties of our approach include:

– An efficient method for combined object segmentation
and pose estimation (POSECUT).

– Integration of a simple ‘stickman prior’ based on the
skeleton of the object in a CRF to obtain a pose-specific
CRF which helps us in obtaining high quality object pose
estimate and segmentation results.

In the next section we give an intuitive insight into our
framework. The pose-specific CRF and the different terms

2A shorter version of this paper earlier appeared as (Bray et al. 2006).
This extended version contains a more thorough discussion of the be-
havior of the optimization algorithm and additional quantitative and
qualitative results.
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Fig. 2 Interactive Image Segmentation. The figure shows how good
segmentation results can be obtained using a set of rough region
cues supplied by the user. (a) An image with user specified segmen-
tation cues (shown in blue and red). These cues were used to ob-

tain the segmentation shown in image (b). This segmentation is not
perfect and can be improved by specifying additional cues which
are shown in (b). The final segmentation result is shown in im-
age (c)

used in its construction are introduced in the same section.
In Sect. 3 we formulate the pose inference problem and de-
scribe the use of dynamic graph cuts for optimization in our
problem construction. We present the experimental results
obtained by our methods in Sect. 4. These include qualitative
and quantitative results on challenging data sets. We com-
pare our segmentation results with those obtained by some
state of the art methods. We also show some results of si-
multaneous 3D pose estimation and segmentation. Section 5
discusses the extension of our work for object detection. The
conclusions and the directions for future work are listed in
Sect. 6.

2 Pose Specific CRF for Image Segmentation

In this section we define a CRF based energy function that
gives the cost of any pose of a subject. This energy function
is minimized using the Press et al. (1988) minimization al-
gorithm and graph cuts to obtain the pose and segmentation
of the human as described in Sect. 3. The optimization of
the energy is made efficient by the use of the dynamic graph
cut algorithm (Kohli and Torr 2005).

Image segmentation has always remained an iconic prob-
lem of computer vision. The past few years have seen rapid
progress made on it driven by the emergence of powerful op-
timization algorithms such as graph cuts. Early methods for
performing image segmentation worked by coupling colour
appearance information about the object and background
with the edges present in an image to obtain good segmen-
tations. However, this framework does not always guarantee
good results. In particular, it fails in cases where the colour
appearance models of the object and background are not dis-
criminative as seen in Fig. 1(b). The problem becomes even
more pronounced in the case of humans where we have to
deal with the various idiosyncracies of human clothing.

A semi-automated solution to this problem was explored
by Boykov and Jolly (2001) in their work on interactive im-

age segmentation. They showed how users could refine seg-
mentation results by specifying additional constraints. This
can be done by labeling particular regions of the image as
‘object’ or ‘background’ and then computing the MAP so-
lution of the CRF again. The interactive image segmentation
process is illustrated in Fig. 2. From their work, we made the
following interesting observations:

– Simple user supplied shape cues used as rough priors for
the object segmentation problem produced excellent re-
sults.

– The exact shape of the object can be induced from the
edge information embedded in the image.

Taking these into consideration, we hypothesized that the
accurate exemplars used in Kumar et al. (2005) to generate
shape priors were in-fact an overkill and could be replaced
by much simpler models. Motivated by these observations
we decided against using a sophisticated shape prior. We
have used two simple models in our work which are de-
scribed below.

Stickman Model We used a simple articulated stickman
model for the full body human pose estimation problem. The
model is shown in Fig. 1(e). It is used to generate a rough
pose-specific shape prior on the segmentation. As can been
seen from the segmentation results in Fig. 1(d), the stickman
model helped us to obtain excellent segmentation results.
The model has 26 degrees of freedom consisting of parame-
ters defining absolute position and orientation of the torso,
and the various joint angle values. There were no constraints
or joint-limits incorporated in our model.

The Upper body Model The second model was primarily
designed for the problem of segmenting the human speaker
in video conference scenarios. The model can be seen in
Fig. 3. It is parameterized by 6 parameters which encode
the x and y location of the two shoulders and the length and
angle of the neck.
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Fig. 3 Upper Body Model.
(a) The model parameterized by
6 parameters encoding the x and
y location of the two shoulders
and the length and angle of the
neck. (b) The shape prior
generated using the model.
Pixels more likely to belong to
the foreground/background are
green/red. (c) and (d) The model
rendered in two poses

We now formally describe how the image segmentation
problem can be modeled using a pose-specific CRF.

2.1 Random Fields

A random field comprises of a set of discrete random vari-
ables {X1,X2, . . . ,Xn} defined on the index set V , such
that each variable Xv takes a value xv from the label set
X = {X1,X2, . . . ,Xl} of all possible labels. We represent
the set of all values xv,∀v ∈ V by the vector x which takes
values in X n, and is referred to as the configuration of the
random field. Further, we use Nv to denote the set consist-
ing of indices of all variables which are neighbors of the
random variable Xv in the graphical model. A random field
is said to be a MRF with respect to a neighborhood sys-
tem N = {Nv|v ∈ V} if and only if it satisfies the positivity
property: Pr(x) > 0 ∀x ∈X n, and the Markovian property:

Pr(xv|{xu : u ∈ V − {v}}) = Pr(xv|{xu : u ∈ Nv})
∀v ∈ V . (1)

Here we refer to Pr(X = x) by Pr(x) and Pr(Xi = xi) by
Pr(xi). A conditional random field (CRF) may be viewed as
an MRF globally conditioned on the data.

The problem of finding the most probable solution of the
CRF can be formulated as an energy minimization prob-
lem where the energy corresponding to configuration x is
the negative log likelihood of the joint posterior probability
of the CRF and is defined as

E(x) = − log Pr(x|D) + const, (2)

where D is the observed data. The minimization problem
is independent of the partition function of the probability
distribution.

2.2 CRFs for Image Segmentation

I n the context of image segmentation, V corresponds to the
set of all image pixels, N is a neighborhood defined on this

set,3 the set X comprises of the labels representing the dif-
ferent image segments (which in our case are ‘foreground’
and ‘background’), and the value xv denotes the labeling of
the pixel v of the image. Every configuration x of such an
CRF defines a segmentation. The image segmentation prob-
lem can thus be solved by finding the least energy configu-
ration of the CRF. The energy function characterizing the
CRFs used for image segmentation can be written as a sum
of likelihood (φ(D|xi)) and prior (ψ(xi, xj )) terms as:

Ψ1(x) =
∑

i∈V

(
φ(D|xi) +

∑

j∈Ni

ψ(xi, xj )

)
+ const. (3)

The term φ(D|xi) in the CRF energy is the data log like-
lihood which imposes individual penalties for assigning any
label Xk to pixel i. If we only take the appearance model
into consideration, the likelihood is given by

φ(D|xi) = − log Pr(i ∈ Vk|Hk) if xi = Xk (4)

where Hk is the RGB (or for grey scale images, the inten-
sity value) distribution for Sk , the segment denoted by la-
bel Xk .4 The probability of a pixel belonging to a particular
segment i.e. Pr(i ∈ Sk|Hk) is proportional to the likelihood
Pr(Ii |Hk), where Ii is the colour intensity of the pixel i. As
can be seen from Fig. 2(b), this term is rather undiscrimi-
nating as the colours (grey intensity values in this case) in-
cluded in the foreground histogram are similar to the ones
included in the background histogram.

The prior ψ(xi, xj ) terms takes the form of a Generalized
Potts model:

ψ(xi, xj ) =
{

Kij if xi �= xj ,

0 if xi = xj .
(5)

The CRF used to model the image segmentation problem
also contains a contrast term which favors pixels with sim-
ilar colour having the same label (Boykov and Jolly 2001;

3In this paper, we have used the standard 8-neighborhood i.e. each
pixel is connected to the 8 pixels surrounding it.
4In our problem, we have only 2 segments i.e. the foreground and the
background.
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Blake et al. 2004). This is incorporated in the energy func-
tion by increasing the cost within the Potts model for two
neighboring variables being different in proportion to the
similarity in intensities of their corresponding pixels. In our
experiments, we use the function:

γ (i, j) = λ exp

(−g2(i, j)

2σ 2

)
1

dist(i, j)
, (6)

where g2(i, j) measures the difference in the RGB values
of pixels i and j and dist(i, j) gives the spatial distance be-
tween i and j . This is a likelihood term (not prior) as it is
based on the data, and hence has to be added separately from
the smoothness prior. The energy function of the CRF now
becomes

Ψ2(x) =
∑

i∈V

(
φ(D|xi) +

∑

j∈Ni

(φ(D|xi, xj ) + ψ(xi, xj ))

)
.

(7)

The contrast term of the energy function is defined as

φ(D|xi, xj ) =
{

γ (i, j) if xi �= xj

0 if xi = xj .
(8)

By adding this term to the energy, we have diverged from
the strict definition of a MRF. The resulting energy function
now characterizes a Conditional Random Field (Lafferty et
al. 2001).

Modeling Pixel Intensities as GMMs The CRF defined
above for image segmentation performs poorly when seg-
menting images in which the appearance models of the fore-
ground and background are not highly discriminative. When
working on video sequences, we can use a background
model developed using the Grimson-Stauffer (Stauffer and
Grimson 1999) algorithm to improve our results. This algo-
rithm works by representing the colour distribution of each
pixel position in the video as a Gaussian Mixture Model
(GMM). The likelihoods of a pixel for being background or
foreground obtained by this technique are integrated in our
CRF. Figure 1(c) shows the segmentation result obtained af-
ter incorporating this information in our CRF formulation.

2.3 Incorporating the Pose-Specific Shape Prior

Though the results obtained from the above formulation
look decent, they are not perfect. Note that there is no prior
on the segmentation to look human like. Intuitively, incor-
porating such a constraint in the CRF would improve the
segmentation. In our case, this prior should be pose-specific
as it depends on what pose the object (the human) is in. Ku-
mar et al. (2005) in their work on interleaved object recogni-
tion and segmentation, used the result of the recognition to

develop a shape prior over the segmentation. This prior was
defined by a set of latent variables which favored segmenta-
tions of a specific pose of the object. They called this model
the Object Category Specific CRF, which had the following
energy function:

Ψ3(x,�) =
∑

i

(φ(D|xi) + φ(xi |�)

+
∑

j

(φ(D|xi, xj ) + ψ(xi, xj ))) (9)

with posterior p(x,�|D) = 1
Z3

exp(−Ψ3(x,�)). Here � ∈
Rp is used to denote the vector of the object pose parame-
ters. The shape-prior term of the energy function for a par-
ticular pose of the human is shown in Fig. 4(e). This is a
distance transform generated from the stick-man model sil-
houette using the fast implementation of Felzenszwalb and
Huttenlocher (2004).

The function φ(xi |�) was chosen such that given an
estimate of the location and shape of the object, pixels
falling near to that shape were more likely to be labeled
as ‘foreground’ and vice versa. It has the form: φ(xi |�) =
− logp(xi |�). We follow the formulation of Kumar et al.
(2005) and define p(xi |�) as

p(xi = figure|�) = 1 − p(xi = ground|�)

= 1

1 + exp(μ ∗ (d(i,�) − dr))
, (10)

where d(i,�) is the distance of a pixel i from the shape de-
fined by � (being negative if inside the shape). The parame-
ter dr decides how ‘fat’ the shape should be, while parameter
μ determines the ratio of the magnitude of the penalty that
points outside the shape have to face compared to the points
inside the shape.

2.4 Inference in the CRF Using Graph Cuts

Energy functions like the one defined in (9) can be solved
using graph cuts if they are sub-modular (Kolmogorov and
Zabih 2002). A function f : {0,1} → R is submodular if and
only if all its projections on 2 variables (f p : {0,1}2 → R)
satisfy:

f p(0,0) + f p(1,1) ≤ f p(0,1) + f p(1,0). (11)

For the pairwise potentials, this condition can be seen as im-
plying that the energy for two labels taking similar values
should be less than the energy for them taking different val-
ues. In our case, this is indeed the case and thus we can find
the optimal configuration x∗ = minx Ψ3(x,�) using a single
graph cut. The labels of the latent variable in this configura-
tion give the segmentation solution.
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Fig. 4 Different terms of our
pose specific CRF. (a) Original
image. (b) The ratios of the
likelihoods of pixels being
labeled foreground/background
(φ(D|xi = ‘fg’) − φ(D|xi =
‘bg’)). These values are derived
from the colour intensity
histograms (see Sect. 2.2).
(c) The segmentation results
obtained by using the GMM
models of pixel intensities.
(d) The stickman in the optimal
pose (see Sects. 2.3 and 3).
(e) The shape prior (distance
transform) corresponding to the
optimal pose of the stickman.
(f) The ratio of the likelihoods
of being labeled
foreground/background using
all the energy terms (colour
histograms defining appearance
models, GMMs for individual
pixel intensities, and the
pose-specific shape prior (see
Sects. 2.2, 2.2 and 2.3))
Ψ3(xi = ‘fg’,�) − Ψ3(xi =
‘bg’,�). (g) The segmentation
result obtained from our
algorithm which is the MAP
solution of the energy Ψ3 of the
pose-specific CRF

3 Formulating the Pose Inference Problem

Since the segmentation of an object depends on its estimated
pose, we would like to make sure that our shape prior reflects
the actual pose of the object. This takes us to our original
problem of finding the pose of the human in an image. In or-
der to solve this, we start with an initial guess of the object
pose and optimize it to find the correct pose. When dealing
with videos, a good starting point for this process would be
the pose of the object in the previous frame. However, more
sophisticated methods could be used based on object detec-
tion (Stenger et al. 2003) at the expense of increasing the
computation time.

One of the key contributions of this paper is to show how
given an image of the object, the pose inference problem can
be formulated in terms of an optimization problem over the
CRF energy given in (9). Specifically, we solve the problem:

�opt = arg min
�,x

Ψ3(x,�). (12)

The minimization problem defined above contains both dis-
crete (x ∈ {0,1}n) and continuous (� ∈ RP ) valued vari-
ables and thus is a mixed integer programming problem.
The large number of variables involved in the energy func-
tion Ψ3(x,�) make it especially challenging to minimize.
To solve the minimization problem (12), we decompose it
as: �opt = arg min� F(�), where

F(�) = min
x

Ψ3(x,�). (13)

For any value of �, the function Ψ3(x,�) is submodular in
x and thus can be minimized in polynomial time by solving
a single st-mincut problem to give the value of F(�).

We will now explain how we minimize F(�) to get the
optimal value of the pose parameters. Figure 5 shows how
the function F(�) depends on parameters encoding the ro-
tation and translation of our stickman model in the x-axes. It
can be seen that the function surface is unimodal in a large
neighborhood of the optimal solution. Hence, given a good
initialization of the pose �, it can be reliably optimized us-
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Fig. 5 Inferring the optimal
pose. (a) The values of
min�x Ψ3(x,�) obtained by
varying the global translation
and rotation of the shape prior in
the x-axis. (b) Original image.
(c) The pose obtained
corresponding to the global
minimum of the energy

Fig. 6 Optimizing the pose
parameters. (a) The values of
min�x Ψ3(x,�) obtained by
varying the rotation and length
parameters of the neck. (b) The
image shows five runs of the
Powell minimization algorithm
which are started from different
initial solutions. The runs
converge on two solutions
which are very close and have
almost the same energy

ing any standard optimization algorithm like gradient de-
scent. In our experiments, we used the Powell minimization
(Press et al. 1988) algorithm for optimization.

Figure 6(a) shows how the function F(�) changes with
changes to the neck angle and length parameters of the up-
per body model shown in Fig. 3. As in the case of the 3D
stickman model the energy surface is well behaved near the
optimal pose parameters. Our experiments showed that the
Powell minimization algorithm is able to converge to almost
the same point for different initializations (see Fig. 6(b)).

Failure Modes It can be seen that the function F(�) is not
unimodal over the whole domain and contains local minima.
This multi-modality of F(�) can cause a gradient descent
algorithm to get trapped and converge to a local minimum.
In our experiments we observed that these spurious minima
lie quite far from the globally optimal solution. We also ob-
served that the pose of the human subject generally does not
change substantially from one frame to the next. This lead
us to use the pose estimate from the previous frame as an
initialization for the current frame. This good initialization
for the pose estimate made sure that spurious minima do not
effect our method.

The failure rate of our method can be further improved by
using object detection systems which provide a better initial-
ization of the pose of the object. Scenarios where the method
still converges to a local minima can be detected and dealt
with using the strategy discussed in Sect. 5 which was used
in our recent work on object detection and segmentation (Ri-
han et al. 2006).

Resolving Ambiguity Using Multiple Views The problem
of estimating the 3D pose of the human from monocular im-
ages suffers from ambiguity. This arises from the one-many
nature of the mapping that relates a human shape and the
corresponding 3D human pose. In other words, many pos-
sible 3D poses can explain the same human shape, and thus
will have the same energy. This multi-modality of the energy
function may result in our algorithm producing a wrong pose
estimate.

The ambiguity in 3D pose can be resolved by using mul-
tiple views of the object (‘human’). Our method has the
advantage that information from multiple views can be in-
tegrated very easily into a single optimization framework.
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Specifically, when dealing with multiple views, we solve the
problem:

�opt = arg min
�

( ∑

Views

min
x

(Ψ3(x,�))

)
. (14)

The framework is illustrated in Fig. 7. An alternative ap-
proach to deal with the pose ambiguity problem is to use
a dynamic model for the pose (Agarwal and Triggs 2006).
Such a model, given the correct pose in a particular image
frame, can produce a small set of plausible poses for the
subsequent image frame. However, this method is only ap-
plicable when we are dealing with videos.

Dynamic Energy Minimization Using Graph Cuts As ex-
plained earlier global minima of energies like the one de-
fined in (9) can be found by graph cuts (Kolmogorov and
Zabih 2002). The time taken for computing a graph cut for a
reasonably sized CRF is of the order of seconds. This would
make our optimization algorithm extremely slow since we
need to compute the global optimum of Ψ3(x,�) with re-
spect to x multiple number times for different values of �.

Fig. 7 Resolving ambiguity using multiple views. The figure shows
how information from different views of the human can be integrated
in a single energy function, which can be used to find the true pose of
the human subject

The graph cut computation can be made significantly faster
by using the dynamic graph cut algorithm proposed recently
in Kohli and Torr (2005). This algorithm works by using the
solution of the previous graph cut computation for solving
the new instance of the problem. We obtained a speed-up in
the range of 15–20 times by using the dynamic graph cut
algorithm.

4 Experiments

We now discuss the results obtained by our method. We pro-
vide the segmentation and pose estimation results individu-
ally.

4.1 Segmentation Results

As expected, the experimental results show that the seg-
mentation results improve considerably as we increase the
amount of information in our CRF framework. Figure 8
shows how integrating more information in the CRF im-
proves the segmentation results. Quantitative results for the
segmentation problem are shown in Table 1.

In order to demonstrate the performance of our method,
we compare our segmentation results with those obtained
using the method proposed in Stauffer and Grimson (1999).
It can be seen from the results in Fig. 10 that the segmen-
tations obtained using the method of Stauffer and Grimson
(1999) are not accurate: They contain “speckles” and often
segment the shadows of the feet as foreground. This is ex-
pected as they use only a pixelwise term to differentiate the
background from the foreground and do not incorporate any
spatial term which could offer a better “smoothing”. In con-
trast, POSECUT which uses a pairwise potential term (as any
standard graph cut approach) and a shape prior (which guar-
antees a human-like segmentation), is able to provide accu-
rate results.

Fig. 8 Results showing the
effect of incorporating a shape
prior on the segmentation
results. The first image is the
original image to be segmented.
The second, third and fourth
images shows the segmentation
results obtained using colour,
colour + smoothness prior and
colour + smoothness + shape
information respectively
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Table 1 Quantitative segmentation results. The table shows the effect
of adding more information in the Bayesian framework on the quanti-
tative segmentation accuracy. The accuracy was computed over all the

pixels in the image. The ground truth for the data used in this experi-
ment was generated by hand labeling the foreground and background
regions in the images

Information used Correct object pixels All correct pixels

Colour 45.73% 95.2%

Colour + GMM 82.48% 96.9%

Colour + GMM + Shape 97.43% 99.4%

Fig. 9 Segmentation results
using the 2D upper body model.
The first row shows some
frames from the video sequence.
The second row shows the
initial values of the pose
parameters of the model and the
resulting segmentations. The
last row shows the final pose
estimate and segmentation
obtained using our method

Our experiments on segmenting humans using the 2D
upper body model (Fig. 3) also produced good results. For
these experiments, video sequences from the Microsoft Re-
search bilayer video segmentation data-set (Kolmogorov et
al. 2005) were used. The results of our method are shown in
Fig. 9.

4.2 Segmentation and Pose Estimation

Figures 11 and 12 present the segmentations and the pose
estimates obtained using POSECUT. The first data set com-
prises of three views of human walking circularly. The time
needed for computation of the 3D pose estimate, on an In-
tel Pentium 2 GHz machine, when dealing with 644 × 484
images, is about 50 seconds per view.5 As shown in these
figures, the pose estimates match the original images ac-
curately. In Figs. 11 and 12, it should be noted that the
appearance models of the foreground and background are
quite similar: for instance, in Fig. 12, the clothes of the sub-
ject are black in colour and the floor in the background is
rather dark. The accuracy of the segmentation obtained in
such challenging conditions demonstrates the robustness of
POSECUT. An interesting fact to observe in Fig. 11 about
frame 95 is that the torso rotation of the stickman does not

5However, this could be speed up by computing the parameters of the
CRF in an FPGA (Field-programmable gate array).

exactly conform with the original pose of the object. How-
ever, the segmentation of these frames is still accurate.

5 Discussion

Localizing the object in the image and inferring its pose is
a computationally expensive task. Once a rough estimate of
the object pose is obtained, the segmentation can be com-
puted extremely efficiently using graph cuts (Bray et al.
2006). In our work on real time face detection and segmen-
tation (Rihan et al. 2006), we showed how an off the shelf
face-detector such as the one described in Viola and Jones
(2004) can be coupled with a CRF to get accurate segmen-
tation and improved face detection results in real time.

The object (face) localization estimate (obtained from
any generic face detector) was incorporated in a discrimi-
native CRF framework to obtain robust and accurate face
segmentation results as shown in Fig. 13. The energy E(x∗)
of any segmentation solution x∗ is the negative log of the
probability, and can be viewed as a measure of how uncer-
tain that solution is. The higher the energy of a segmenta-
tion, the lower the probability that it is a good segmentation.
Intuitively, if the face detection is correct, the resulting seg-
mentation obtained from our method should have high prob-
ability and hence have low energy compared to that of false
detections. This characteristic of the energy of the segmen-
tation solution can be used to prune out false face detections
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Fig. 10 Segmentation results
obtained by Stauffer and
Grimson (1999) and POSECUT

Fig. 11 Segmentation (middle)
and pose estimation (bottom)
results from POSECUT
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Fig. 12 Segmentation (middle
row) and pose estimation
(bottom row) results obtained by
POSECUT. Observe that
although the foreground and
background appearances are
similar, our algorithm is able to
obtain good segmentations

Fig. 13 Real Time Face Segmentation using a face detections. The
first image on the first row shows the original image. The second image
shows the face detection results. The image on the second row shows

the segmentation obtained by using shape priors generated using the
detection and localization results

thus improving the face detection accuracy. The procedure
is illustrated in Fig. 14. A similar strategy was recently used
in Ramanan (2007).

6 Conclusions and Future Work

The paper sets out a novel method for performing simultane-
ous segmentation and 3D pose estimation (POSECUT). The
problem is formulated in a Bayesian framework which has
the ability to utilize all information available (prior as well
as observed data) to obtain good results. We showed how
a rough pose-specific shape prior could be used to improve
segmentation results significantly. We also gave a new for-
mulation of the pose inference problem as an energy min-
imization problem and showed how it could be efficiently
solved using dynamic graph cuts. The experiments demon-
strate that our method is able to obtain excellent segmenta-
tion and pose estimation results. This method was recently

also used for the problem of reconstructing objects from
multiple views (Sun et al. 2006).

Searching over Pose Manifolds It is well known that the
set of all human poses constitutes a low-dimensional man-
ifold in the complete pose space (Ek et al. 2007; Urtasun
et al. 2005; Sidenbladh et al. 2000a, 2000b). Most work in
exploiting this fact for human pose inference has been lim-
ited to finding linear manifolds in pose spaces. The last few
years have seen the emergence of non-linear dimensionality
reduction techniques for solving the pose inference problem
(Sminchisescu and Jepson 2004). Recently, Urtasun et al.
(2005) showed how Scaled Gaussian Process Latent Vari-
able Models (SGPLVM) can be used to learn prior models
of human pose for 3D people tracking. They showed im-
pressive pose inference results using monocular data. Opti-
mizing over a parametrization of this low dimensional space
instead of the 26D pose vector would intuitively improve
both the accuracy and computation efficiency of our algo-
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Fig. 14 The figure shows an image from the INRIA pedestrian data
set. After running our algorithm, we obtain four face segmenta-
tions, one of which (the one bounded by a black square) is a false
detection. The energy-per-pixel values obtained for the true detec-

tions were 74, 82 and 83 while that for the false detection was 87.
As you can see the energy of false detection is significantly higher
than that of the true detections, and can be used to detect and re-
move it

rithm. Thus the use of dimensionality reduction algorithms
is an important area to be investigated. The directions for fu-
ture work also include using an appearance model per limb,
which being more discriminative could help provide more
accurate segmentations and pose estimates.
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