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Abstract

This paper presents a method based on quadratic discriminant analysis to select the best filters for detecting a wide

range of defects in ‘Jonagold’ apple fruit using a multi-spectral vision system. Reflectance spectra of damaged and

sound tissue were recorded using a visible/NIR spectrometer. Analysed defects consisted of scald, hail damage (with

and without skin perforation), limb rubs, russets, scab tissue, frost damage, rot, visible flesh damage and recent bruises.

Camera filter effects were approximated by summing the reflectances of all the wavelengths within the filter bandwidth.

Combinations of three and four filters were tested and evaluated for discriminating damaged tissues from healthy ones.

If a three-filter combination appeared sufficient to detect most of the damaged tissue, a four-filter combination should

be considered for the complete sorting automation of this bicolour apple variety. A fourth filter was necessary to

quantify the ratio between the blush and ground colours. Regarding recent bruise defects which represented the major

difficulty, an image segmentation algorithm based on local contrast variations can enhance their detection.

# 2003 Elsevier B.V. All rights reserved.
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1. Introduction

‘Jonagold’ apples and mutants represent more

than 60% of the whole apple production in

Belgium. The marketing standard applying to

apples in Europe is laid down by the EC commis-

sion regulation No. 1619/2001 (Anonymous,

2001), and defines three quality classes depending

on the shape of the fruit, the colouring and the

presence of defects.

Automated sorting machines based on vision

systems are currently available to perform sorting

operations on apples according to shape and

colouring criteria. Automatic defect detection is

still a difficult task with ‘Jonagold’ apples because

of the high natural variability in the skin colour of

this bicolour apple variety. Leemans et al. (1999)

showed that russet detection on ‘Jonagold’ apples

using a standard 3-CCD colour camera is a very

complex task because this defect colour is very

close to the fruit colour in the transition areas

between blush and ground colours. Developing a
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near-infrared machine vision system for defect
inspection on apple sorting lines, Wen and Tao

(1999) also met difficulties in detecting russet and

scar tissues on ‘Delicious’ apples which are,

however, fruit with uniform skin colour.

In another domain, Chao et al. (2001) investi-

gated a novel multi-spectral imaging system to

differentiate different kinds of chicken heart dis-

eases. This system, which has the potential to be
used in real time, utilises four interference band-

pass filters (selected by the user) to provide four

spectrally discrete images on a single CCD focal

plane. Within the scope of sorting ‘Jonagold’

apples with vision system-based machines, it

appeared interesting to make use of such a device

with four bandpass filters dedicated to defect

detection, and this was our objective.
Considering selection of optimal wavelength

bands, two main methods for distinguishing sound

apples from damaged ones are reported in the

literature: a spectrophotometric method and a

camera/filter one. Using a spectrophotometric

method, Geoola et al. (1994) analysed the reflec-

tance spectra from 400 to 840 nm of ‘Golden

Delicious’ apples to detect bruises. Tested classifi-
cation criteria were presented by Upchurch et al.

(1988) for bruise detection on ‘Delicious’ apples.

Since they observed that reflection data were

reasonably independent of wavelength in the range

of 720 to 840 nm, they decided to use the average

reflectance from 750 to 800 nm as a parameter to

distinguish bruised apples from unbruised ones.

Good classification rates were obtained with this
parameter. Nevertheless, the authors concluded

that the best parameter suggested by Upchurch et

al. (1988) for bruise detection on ‘Delicious’ apples

did not provide consistent results for ‘Golden

Delicious’ apples. This last observation suggested

that the method was sensitive to fruit colour and

would be not applicable to a bicolour variety and

for more than one kind of defect. Using a camera/
filter method, Wen and Tao (1998) proposed a

method to select the filters of a dual wavelength

vision system developed for on-line sorting of

apples. The method was tested on 48 sound and

96 defective apples of the ‘Delicious’ variety. With

four longpass filters with cut-on wavelength points

spaced every 50 nm from 650 to 800 nm, 12 dual

filter combinations were tested and compared.
Three sorting models based on the sizes of the

defect blobs extracted from images were also

evaluated. The method revealed that the best

solution was obtained with the 800 and 700 nm

filter combination. This method however pre-

sented limitations when considering a wider wave-

length range due to the number of filter

combinations that had to be tested. The result
also depended on the image sorting model. Using

two monochrome cameras and two electronic

tunable filters to span the visible and near-infrared

spectra, Miller et al. (1998) captured 58 filtered

images (from 460 to 1130 nm) of various defective

and sound areas of eight apple varieties with

relatively uniform skin colour. For each area, a

normalised reflectance curve was extracted from
the 58 filtered images. These reflectance values

were then utilised as input for various recognition

models. The multi-layer back propagation

(MLBP) neural net model provided the highest

correct classification rates. Using the contribution

weights associated with the input values of the

MLBP neural net, they found that the most

significant wavelengths were in the 690�/750 nm
range and 530 nm. Since a spectrometer provides

direct reflectance values, using two cameras and

two electronic filters appeared a relatively complex

and costly method for finally computing reflec-

tance curves. More recently, Mehl et al. (2002)

used a monochrome camera and a hyperspectral

imaging spectrograph to select three bandpass

filters for detection of apple defects. The reflec-
tance spectra of normal and damaged surfaces

were computed from the hyperspectral images.

The image defect segmentation was not explained.

For each defect category, principal component

analysis was performed on the reflectance spectra.

By observing the weight distribution of the princi-

pal components providing the best visual contrast

between sound tissue and each defective tissue
category, the three wavelength bands that showed

the best potential of discriminating all defects were

chosen. As with the method used by Miller et al.

(1998), it would be easier to use a spectrometer to

obtain reflectance spectra directly than using a

complex experimental device. On the other hand,

choosing three filters by separate visual observa-
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tions was not a good method to determine the best
combination of three filters. Indeed, two highly

correlated bands may not be individually effective

for discrimination while their combination is well

suited.

All these studies found significant wavelength

bands above 700 nm, which suggested that it was

important to scan beyond the visible spectrum.

Since a CCD technology-based spectrometer was
affordable, we chose, like Geoola et al. (1994) did,

to work with a visible/near-infrared spectrometer.

This apparatus also provided direct reflectance

values without the need for using image analysis-

dependent techniques.

Most of the quoted methods were only applied

to apple varieties with relatively uniform skin

colours. This paper focuses on defect detection
on ‘Jonagold’ apples which are bicolour fruit. The

main objective of the study was thus to find an

objective and robust method for selecting four

wavelength bands that could enhance the defect

detection in this apple cultivar. A more extensive

study on bruise defects was carried out to deter-

mine the change with time of the damaged surface

reflectance after bruise creation.

2. Materials and methods

2.1. Materials

Reflectance spectra were acquired with an AVS-

SD2000 spectrometer (Avantes, Inc.). This spec-

trometer included two CCD detectors coupled
with two different diffraction gratings (600 lines/

mm) which had respectively a sensitivity range of

350�/850 and 650�/1200 nm. Each detector was

made of 2048 (211) elements. A reflection fibre

optic probe (FCR-8UV/IR200-2-45-ME, Avantes,

Inc.) consisting of eight fibres (200 mm diameter)

was used to carry the light emitted by a tungsten

halogen source (HL-2000, Avantes, Inc.) to the
sample (six fibres) and the light reflected by the

sample to the two detectors of the spectrometer

(one fibre by detector). The probe head was

designed to analyse the sample under 458. This

angle was necessary to avoid direct reflection from

the light source. The probe was directly applied to

the sample surface during measurement. From the
design of the fibre optic probe head and the

numerical aperture of the read fibre (0.22), the

area of the analysed sample was about 1.4 mm2. A

100-mm entrance slit was used in order to obtain a

spectral resolution of 5 nm (in combination with

the gratings) while keeping sufficient light for the

detectors. The analog signal from the spectrometer

was stored in a computer via an ADC-1000-ISA
A/D converter board with a 12-bit resolution

(Avantes, Inc.). The storage and data treatment

were implemented using a Windows Microsoft

Excel interface DLL-Package (OOIWinIP,

Avantes, Inc.).

A set of 165 ‘Jonagold’ apples coming from two

different Belgian wholesalers was used for this

study. 151 natural surface defects were encoun-
tered on 135 apples of this set: 16 scald, 10 limb

rub, 22 hail damage without skin perforation, 21

hail damage with skin perforation, 23 rot, 22 frost

damage and 37 russet (including several scab tissue

defects). Ten sound apples were cut twice to

generate 20 visible flesh damages with different

oxidation times (this kind of damage could occur

during fruit handling). The rest of the set consisted
of 20 sound apples on which two bruises were

created: one on the red (blush) side and the other

on the green (ground colour) side.

To make bruises in a reproducible way, an

experimental device was designed. The principle

was to let the fruit drop from a 30 cm height onto a

steel plate mounted on a 12 kg mass. The fruit was

held by a suction cup and instantly released by
stopping airflow using an electrovalve.

2.2. Methods

2.2.1. Experimental protocol

For bruises, the reflectance spectrum of the

bruised area before and 1, 5, 10, 20, 30, 60 and

120 min after the bruise creation was recorded.

The time intervals were determined in accordance
with the speed of chemical reactions, which gen-

erally follows logarithmic law. The 120-min limit

was laid down by the observations of Ingle and

Hyde (1968) who noticed that 50�/70% of the

browning discoloration was reached 2 h after the

impact. For each bruised area, four measurement
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points were recorded per time interval, each
measurement point being the average of three

repetitions. In all, 3840 reflectance spectra were

recorded for the 40 bruises.

For the other defects, the number of recorded

measurement points depended on the size and the

occurrence of the defect. Sound tissue points were

taken on the sound part of the defective apples,

tending to cover the colour variability of the whole
set. Each measurement point was the average of

three repetitions. Table 1 presents the number of

spectra which were acquired for each class of

defect and sound tissues.

2.2.2. Data pre-processing

Reflectance spectra of sound and damaged

tissues were normalised by comparison with a

white Ertalon† reference, taking into account the

dark current of the CCD detectors which were

thermally sensitive. Normalised reflectance values

(Rnorm) were then defined using the following

expression:

Rnorm�
�

Rraw � D

W � D

�
�100 (1)

where Rraw is the recorded raw reflectance value,

D the dark reflectance recorded by turning off the

lighting source and W the reflectance of the white

reference.
While the spectrometer was designed to provide

data in the wavelength range from 350 to 1200 nm,

only data between 400 and 1080 nm were taken

into account for the analyses. Outside this range,
signal-to-noise ratios were too low, probably due

to attenuation of the CCD detector response in

these wavelength bands. In the overlap region of

the two detectors (650�/850 nm), the average value

of the two signals was used. Furthermore, since the

physical resolution (slit and grating) of the spec-

trometer was limited to 5 nm, using all the 2048

points supplied by each detector was not relevant.
In order to reduce the amount of data to treat,

spectra were resampled to 232 points using a

moving average centred on nine points.

2.2.3. Individual wavelength analysis

To evaluate the potential of each wavelength for

discriminating defects from sound tissues, the

Snedecor F -ratio of the between-group mean
square to the residual (within-group) mean square

was computed. The between-group mean square is

a measurement of the deviations between the

means of the different classes and the general

mean. The residual mean square is a measurement

of the deviations existing inside the groups be-

tween the observed values and the mean of the

corresponding group. Higher F-ratios indicate
that deviations between the groups are significant.

Aneshanley et al. (1997) cited by Miller et al.

(1998) used a similar approach to discriminate

sound tissue from damaged. In their case, the

distance between the means of the groups was

evaluated with the Mahalanobis distance. F -ratio

is the Mahalanobis distance multiplied by a

constant proportional to the number of groups
and to the sample size (Dagnelie, 1986). F -ratio

gives supplementary information about the sig-

nification level of the observed difference. Data

treatment was carried out with Microsoft Excel 97

Visual Basic (Microsoft Corp.).

2.2.4. Selection of the most interesting wavelength

bands

The main purpose of the study was to select the
four most suitable wavelength bands for discrimi-

nating defects from sound tissue within the scope

of using a multi-spectral imaging system. Since

multivariate analysis is not the same as considering

a set of independent univariate analyses, like the

F -ratio method, a method relating to dependent

Table 1

Number of recorded spectra per class tissue

Class Number of spectra

Green healthy tissue 1284

Red healthy tissue 1467

Scald 231

Hail damage 114

Hail damage with perforation 78

Limb rub 87

Russet�/scab tissue 516

Frost damage 207

Rots 465

Visible flesh damage 507

Total 4956
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variates was used. Instead of computing combina-
tions of individual wavelengths for the whole

spectra (i.e. by means of neural networks or

principal component analysis like that of Miller

et al. (1998) and Mehl et al. (2002)) and then

selecting the four filters that fit best the weight

distributions, all the combinations of four com-

mercially available filters were directly tested.

Filters with bandwidths (full-width half maxi-
mum) of 50 and 100 nm centred every 50 nm

from 450 to 1050 nm were considered. Bandwidths

narrower than 50 nm were not considered to have

sufficient light for further acquisition of short

exposure time images. The filter effect on a camera

was approximated by summing the reflectances of

all the wavelengths within the filter bandwidth.

The shape of the spectral response of the different
filters had little influence on the results due to the

fact that wavelengths were highly correlated within

the considered bandwidths. Since there were

14,950 possible combinations of four filters

(26C4), an automated method was set up to

evaluate the performance of each combination

for discriminating damaged tissues from sound

ones. This method classified data as either sound
or damaged tissues for each combination by means

of a quadratic discriminant analysis. Discriminant

analysis was preferred to neural network methods

because, on the one hand, the classification rules

are not dependent on a determined training

(neural network results are very sensitive to the

number of hidden nodes or neural net architec-

ture) and, on the other hand, this statistical
method is better at extrapolation than neural

networks (Michie, 1994). In discriminant analysis,

the distance between each object to classify and the

centre of each class is computed. The computed

distance is the generalised Mahalanobis distance

which takes into account attribute variances and

the correlation existing between them. Quadratic

discriminant analysis was chosen instead of the
linear form because the latter supposes that the

populations corresponding to the different classes

have the same variance and covariance matrix. A

variance equality test showed that, for certain

wavelengths, some defect variances were not equal

to the healthy one. Therefore, for each filter

combination and for each measurement point,

two Mahalanobis distances were computed ac-
cording to the sound and damaged tissue classes.

The measurement point was then classified into

the nearest class. For each combination, the total

correct classification rate was calculated. The best

combination was thus the one with the highest

correct classification rate. Since the aim of this

study was to find the best combination of filters

and not to establish a determined discriminant
model, no validation on unknown samples was

performed. Therefore, it must be noted that

classification rates presented in Section 3 were

only given to compare the different results with

each other. They cannot be considered as reliable

validation results. However, since the number of

considered variables were limited to four and

taking into account the number of measurement
points (Table 1), the given classification results

may be considered as well representative of the

efficiency of the group separation. The method

was implemented with Matlab version 6.1 (The

MathWorks, Inc.).

3. Results and discussion

3.1. Recent bruises

Fig. 1 presents the change in time of the

signification level of the difference observed be-

tween the reflectances measured before and after

the bruise creation for the wavelengths from 400 to

1080 nm. Since the sample sizes of the reflectances

measured before and after the bruise creation were
the same for each time interval, a theoretical value

of the F -ratio was defined: it corresponded to a

significance level of 0.1% (Fthr) above which the

observed difference was considered as very highly

significant.

All the differences corresponding to the wave-

lengths above 600 nm (red visible range) were

highly significant already 1 min after the bruise
creation. An attenuation of the signification level

was observed at around 670�/680 nm correspond-

ing to the chlorophyll absorption peak. The most

significant wavelengths were observed in the near-

infrared range from 700 to 920 nm. For this range,

the average reflectance difference was 6% after 1
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min and 15% after 2 h. Since bruises are internal
tissue damage, these observations correspond with

those of Lammertyn et al. (2000) who, studying

the light penetration properties of NIR radiation

in fruit, observed that the light penetration depth

in ‘Jonagold’ apple tissue was the highest in the

700�/900 nm range. It can also be noticed that the

less significant wavelengths from 500 to 600 nm

(green visible range) corresponded to the range
where the difference between the ground and blush

colours was the highest.

3.2. Other defects

The average reflectance spectra of the defects

and sound tissue are presented in Fig. 2 (a 1-h old

bruise spectrum was also presented for comparison

with other defects). On the basis of these spectra,
four large defect categories could be identified:

defects which were darker than sound tissue for

the whole wavelength range such as rots and recent

bruises, defects which were lighter also for the

whole range such as scalds and russets, defects

which were darker or very similar in the visible

range (400�/780 nm) and lighter in the NIR range

(�/780 nm) such as hail and frost damage, and

finally damage where the flesh was visible which

were lighter in the blue (400�/500 nm) and green

(500�/600 nm) visible ranges and darker in the

NIR range.

For each of these defect categories, the F -ratios

between the average defect and sound tissue

spectra were computed. The results are presented

in Fig. 3. Some defect categories were well

contrasted with the sound tissue in certain wave-

length ranges such as visible flesh damage in the

blue visible range, limb rubs and rot in the red

visible range with an attenuation at around 670�/

680 nm due to the chlorophyll absorption peak,

and scalds, russets and scab tissues in the near-

infrared range. Other defects had less contrast for

the whole range and therefore were the most

difficult defects to detect. This was the case for

recent bruises and also for hail and frost damage.

Since there was a lot of information to take into

account simultaneously, it was not possible to

determine visually, in an objective way, the

specifications (centre and bandwidth) of the best

Fig. 1. F -ratio versus wavelength according to the time delay after the bruise creation (Fthr�/theoretical F -ratio).
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Fig. 2. Average reflectance spectra of the different defect categories and sound tissue.

Fig. 3. F -ratio between sound and damaged tissues versus wavelength.
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filter combination that are able to enhance the
detection of all defect categories.

3.3. Filters selection

14,950 combinations of four filters with band-

widths of 50 and 100 nm centred every 50 nm from

450 to 1050 nm were tested by means of quadratic

discriminant analysis. Table 2 presents the classi-

fication test results of the best combination formed
by the four filters centred at 450, 500, 750 and 800

nm and having respectively a bandwidth of 100,

50, 100 and 50 nm. Most of the correct classifica-

tion rates were very satisfactory except for the 1-h

old bruises (results for 2-h old bruises were not

significantly better; correct classification rate�/

11.9%). The errors committed on rot and frost

damage had relatively low consequences. They
belonged to defects for which other measurement

points were correctly classified. These defects were

therefore partially detected. Moreover, well-suited

image analysis algorithms should reduce apple

misclassification. In the same way, the misclassifi-

cation of some healthy tissue points should also be

compensated by image analysis algorithms. It was

difficult to segment recent bruises in one step,
considering all the other defects. A classification

test performed only between sound and bruised

tissues showed that 73% of the sound tissue and

83% of the bruised tissue were correctly classified.

On the other hand, since it was observed that there

was already a very highly significant difference

before and after the bruise creation after 1 min in

the 700�/920 nm range, it should also be possible

to enhance bruise detection with the two filters

centred at 750 and 800 nm by means of an image

segmentation method based on local contrast

variations rather than using a predefined thresh-

old. Thus, the sorting of fruit could be conducted

using a hierarchical segmentation method. This

would consist first in segmenting all the defects

(without considering the recent bruises) with the

selected filters and then identifying bruised tissues

within the healthy tissue by means of dedicated

image analysis algorithms.

In order to know if it was imperative to use four

filters for detecting defects on ‘Jonagold’ apples,

the best combination of three filters was also

computed and evaluated. The results showed that

this combination included three filters of the best

combination of four filters. Those were the filters

centred at 450, 750 and 800 nm. Table 3 shows that

there was no significant difference between results

of the best combination of three and of four filters.

It was thus possible to detect the defects using only

three filters. However, within the scope of per-

forming the complete automation of ‘Jonagold’

apple sorting, the best combination of four filters

was more suited to quantify the ratio between the

Table 2

Correct classification rates for the best combination of four

computed filters: 450/100, 500/50, 750/100 and 800/50 (x /y : x�/

centre in nm and y�/FWHM in nm)

Class %Correct

Green healthy tissue 98.8

Red healthy tissue 99.4

Scald 100

Hail damage 100

Hail damage with perforation 100

Limb rub 100

Russet�/scab tissue 100

Frost damage 98.6

Rots 92.9

Visible flesh damage 100

Recent bruises (1 h) 11.3

Average rate 91

Table 3

Correct classification rates for the best combination of three

computed filters: 450/100, 750/100 and 800/50 (x /y : x�/centre

in nm and y�/FWHM in nm)

Class %Correct

Green healthy tissue 97.4

Red healthy tissue 99

Scald 100

Hail damage 100

Hail damage with perforation 100

Limb rub 100

Russet�/scab tissue 100

Frost damage 98.6

Rots 91

Visible flesh damage 100

Recent bruises (1 h) 9.4

Average rate 90.5
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Fig. 4. Scatter diagram of the filters centred at (a) 500 and 800 nm, and (b) 750 and 800 nm.
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blush and ground colour which was not evident

without the use of the filter centred at 500 nm.

In order to analyse the contributions of the

different filters for separating defects from sound

tissue, Figs. 4a and b present respectively the

scatter diagram of the filters centred at 500 and

800 nm, and 750 and 800 nm. It can be noted in

Fig. 4a that defects which were the best separated

from the sound tissue, such as visible flesh

damage, rot, limb rub, scald and russet, were

those that had the highest absolute signification

levels in Fig. 3. Recent bruises, frost damage and

hail damage, that presented the lowest absolute

signification levels, were merged with the sound

tissue. Fig. 4a also shows the contribution of the

filter centred at 500 nm for discriminating blush

and ground colours. Indeed, green and red tissue

points were relatively well separated according to

this axis. With regards to Fig. 4b, the information

provided by the two filters centred in the NIR

range did not seem useful due to their high

correlation. However, to better understand their

contribution in discriminating defects from sound

tissue, the first and second canonical variates were

computed in order to represent the information

provided by these two filters in an uncorrelated

space that had the largest separation between

groups. Fig. 5 presents the scatter diagram of

these two canonical variates. It appeared thus that

the two filters were well suited to separate frost

and hail damage from the healthy tissue which was
clearly more difficult with the other filter combi-

nations.

3.4. Validation of the method with real interference

filters

For further image acquisition, four interference

filters with the computed specifications were

acquired. Since it was not possible to obtain filters
with those exact specifications, the purchased

interference filters were centred at 450, 500, 750

and 800 nm with respectively a bandwidth of 80,

40, 80 and 50 nm. To validate the method to find

the best combination of four filters, the spectral

transmission curves of the selected filters (Fig. 6)

Fig. 5. Scatter diagram of the first and second canonical variates of the filters centred at 750 and 800 nm.
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were digitised by placing the filter between the

light source output and the entrance of the

illumination fibre optic. Recording the spectral

data of the white reference illuminated with (Rraw)

and without (W ) the filter and using Eq. (1), the

transmission curve of the filter was computed. The

effect of applying a filter on a camera was achieved

by computing the sum of the products of the

spectral reflectance of the measurement point and

the transmission curve of the filter. Results of the

classification test with the data filtered with the

real transmission curve of the chosen filters are

presented in Table 4. These results were not

significantly different from those obtained with

the theoretical method (Table 2). It could be thus

Fig. 6. Spectral transmission curves of the four real interference filters.

Table 4

Correct classification rates for the combination of the four real

interference filters: 450/80, 500/40, 750/80 and 800/50 (x /y : x�/

centre in nm and y�/FWHM in nm)

Class %Correct

Green healthy tissue 97.7

Red healthy tissue 98.6

Scald 100

Hail damage 100

Hail damage with perforation 100

Limb rub 100

Russet�/scab tissue 100

Frost damage 98.6

Rots 92.3

Visible flesh damage 100

Recent bruises (1 h) 11.3

Average rate 90.8

Table 5

Correct classification rates for the modelled filters of a standard

3-CCD RGB camera

Class %Correct

Green healthy tissue 92.8

Red healthy tissue 95

Scald 37.7

Hail damage 42.1

Hail damage with perforation 92.3

Limb rub 100

Russet�/scab tissue 43.6

Frost damage 33.3

Rots 88.4

Visible flesh damage 100

Recent bruises (1 h) 26.9

Average rate 68.4
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assumed that the proposed method was suffi-
ciently robust to choose real interference filters

for multi-spectral vision system.

3.5. Comparison with a standard colour camera

Finally to confirm the relevance of using a

dedicated imaging system for detecting defects on

‘Jonagold’ apples, a classification test was per-
formed on the data set using the filter models of a

standard 3-CCD RGB camera (Sony XC003P)

which was used in a previous study (Leemans et

al., 1999). Table 5 presents the results of this test.

Like the observations of Leemans et al. (1999),

discrimination of russets and scab tissue was not

efficient with this standard colour camera. More-

over, defects which had visually less contrast with
the sound tissue, like scald, and hail and frost

damage, were also poorly discriminated. The

dedicated solution was thus relevant.

4. Conclusion

An objective method was set up to select the
most suited wavelength bands to sort ‘Jonagold’

apples. Detection of most of the ‘Jonagold’ apple

defects can be enhanced using three specific

wavelength bands. However, a fourth filter is

necessary for the complete sorting automation to

quantify the ratio between blush and ground

colour. With regard to recent bruises, it appeared

that the reflectance difference before and after the
bruise creation was already very highly significant

within a minute of impact. Nevertheless, image

segmentation algorithms based on local contrast

variations should be considered when attempting

to detect them on the whole apple. Further

research will involve image acquisition with the

selected filters and image processing in order to

validate the suggested image segmentation meth-
ods.

Acknowledgements

This research is funded by the General Direction

of Technology, Research and Energy of the

Walloon Region (Belgium). Convention No.

9813783.

References

Aneshanley, D.J., Throop, J.A., Upchurch, B.L., 1997. Reflec-

tance spectra of surface defects for apples. In: Salius, M.

(Ed.), Sensors for Nondestructive Testing, Measuring the

Quality of Fresh Fruits and Vegetables, NRAES-97.

NRAES, Ithaca, NY, pp. 143�/160.

Anonymous, 2001. Commission Regulation (EC) No. 1619/

2001 of 6 August 2001 laying down the marketing standard

for apples and pears. Official Journal L 215, 09/08/2001,

0003-0016.

Chao, K., Chen, Y.R., Hruschka, W.R., Park, B., 2001.

Chicken heart disease characterization by multi-spectral

imaging. Appl. Eng. Agric. 17, 99�/106.

Dagnelie, P., 1986. Analyse Statistique à Plusieurs Variables.
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