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Abstract

A method to sort �Jonagold� apples based on the presence of defects was proposed. A multi-spectral vision system including four

wavelength bands in the visible/NIR range was developed. Multi-spectral images of sound and defective fruits were acquired tending

to cover the whole colour variability of this bicolour apple variety. Defects were grouped into four categories: slight defects, more

serious defects, defects leading to the rejection of the fruit and recent bruises. Stem-ends/calyxes were detected using a correlation

pattern matching algorithm. The efficiency of this method depended on the orientation of the stem-end/calyx according to the opti-

cal axis of the camera. Defect segmentation consisted in a pixel classification procedure based on the Bayes� theorem and non-para-

metric models of the sound and defective tissue. Fruit classification tests were performed in order to evaluate the efficiency of the

proposed method. No error was made on rejected fruits and high classification rates were reached for apples presenting serious

defects and recent bruises. Fruits with slight defects presented a more important misclassification rate but those errors fitted however

the quality tolerances of the European standard. Considering an actual ratio of sound fruits of 90%, less than 2% of defective fruits

were classified into the sound ones.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The marketing standard applying to apples in Europe

is laid down by the EC Commission Regulation No

1619/2001. This standard defines three quality classes

depending on the shape of the fruit, the colouring and

the presence of defects. In Belgium, �Jonagold� apples
represent a large part (>60%) of the whole apple produc-

tion. With regard to the presence of defects, the auto-
matic grading of �Jonagold� apples is still an arduous

task because of the high natural variability of the skin

colour of this bicolour apple variety.
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Leemans and Destain (2004) presented a hierarchical
method to grade �Jonagold� apples using standard 3-

CCD colour cameras. Colour images covering the whole

surface of the fruit were acquired. These images were

segmented on the basis of the Bayes� theorem. The prob-

ability distributions of the healthy tissue and the defects

were considered as non-Gaussian and modelled numer-

ically. The fruits were correctly graded with a rate of

73%. Errors came from a bad segmentation of the de-
fects or from a confusion with the calyx and stem-ends.

Defects badly segmented consisted essentially in russet

and recent bruises which presented a colour similar to

the healthy tissue (particularly it was difficult to distin-

guish russet in the transition area between the ground

colour and the blush).

3-CCD colour cameras are not fully adapted to the

defect detection of fruits since they are designed to
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reproduce the human vision. Several methods based on

more specific image acquisition methods are reported in

the literature. Wen and Tao (1999) developed a near-

infrared vision system for automating apple defect

inspection. It was made of a monochrome CCD camera

attached with a 700nm long-pass filter. The inspection
procedure consisted of a binary decision-tree-structured

rule base that contained four process steps: blob extrac-

tion, feature extraction, rule base construction and rec-

ognition. Stem-ends and calyxes were separated from

defects by means of the histogram density feature of

the blob. Classification tests were performed on 960

samples of �Red Delicious� apples. High recognition

rates for good and defective apples could be achieved
by setting proper parameters of the system. However,

russet defects had a low recognition rate because the

infrared vision system was not sensitive in the visible re-

gion. The tests also showed that light scars presented a

high error rate and that stem-end/calyx recognition

should be improved. In order to address the stem-end/

calyx recognition problem, Cheng, Tao, Chen, and

Luo (2003) proposed a near-infrared (NIR) and a mid-
infrared (MIR) dual-camera vision system. The NIR

and MIR cameras had, respectively, a sensitive spectrum

range from 700 to 750nm and from 7.5 to 13.5lm. The

NIR camera could identify both the stem-end/calyx por-

tion of the apple and the true defects, while MIR camera

could detect only the stem-ends and calyxes on refriger-

ated fruits. After initial pre-processing, NIR and MIR

images were separately segmented based on the grey
level similarity of the fruit pixels. The similarity was

evaluated with an Euclidean distance. In NIR images,

apple pixels were segmented into non-defective and

defective groups. In MIR images, pixels were segmented

into stem-ends/calyxes and other portions of the fruit.

Then, segmented NIR and MIR images were compared

to remove stem-ends and calyxes from true defects. Rec-

ognition tests were performed on 155 refrigerated �Red
Delicious� apples. Recognition rates of about 94% for

stem-ends and 92% for calyxes were achieved. The cor-

rect classification rates of good and defective apples

were, respectively, 100% and 92%. Shahin, Tollner,

McClendon, and Arabnia (2002) used a line-scan

X-ray imaging device to detect bruises in �Red Delicious�
and �Golden Delicious� apples. New (24h) and old (1

month) bruises were analysed. A set of spatial and trans-
form features were tested. Classification tests were per-

formed and best results were obtained using an

artificial neural network and two kinds of features: spa-

tial edge features and discrete cosine transform coeffi-

cients. For old bruises, an accuracy of 90% and 93%

was achieved, respectively, for �Red Delicious� and

�Golden Delicious� apples. New bruises were not ade-

quately separated using this methodology (accuracy
was approximately 60% for both apple varieties). Li,

Wang, and Gu (2002) developed an automated apple
surface defect sorting system based on monochromatic

cameras equipped with interference bandpass filters cen-

tred at 840nm. Defects were segmented by sub-tracting

the original fruit image from a reference sound apple

image. Then stem-ends and calyxes were separated from

defects by using fractal features and artificial neural net-
work. The method was tested on forty samples of �Fuji�
apples. Defects and stem-ends/calyxes were visually well

segmented from the sound part of the fruit but no clas-

sification rates were provided. Regarding the stem-end/

calyx recognition, the accuracy of the neural network

classifier was over 93%. The authors did not precise if

this result was obtained during the training process or

in validation. Mehl, Chen, Kim, and Chan (2004) used
an hyper-spectral imaging system for selecting a reduced

number of wavelength to detect defects on the surface of

�Red Delicious�, �Golden Delicious�, �Gala� and �Fuji� ap-
ples. They worked on five sound and five defective fruits

of each cultivar. An asymmetric second difference meth-

od using a chlorophyll absorption wavelength at 685nm

and two wavelengths in the near-infrared band was

found to provide the best visual separation of defective
parts from the sound parts of the apples.

From these studies, it appears that apple defect detec-

tion, especially for bicolour varieties, is a difficult task

using standard image acquisition devices (colour or

NIR cameras). On the other hand, economical and prac-

tical considerations must be taken into account in the

development of automatic apple sorting machines.

Using MIR cameras or X-ray systems, which are expen-
sive devices, to address one particular problem such as

stem-ends/calyxes or bruises could prove not to be cost

effective. Hyper-spectral imaging systems provide a large

amount of data which is very time consuming to acquire

and to process. The aim of this research was thus to pro-

pose an image acquisition and processing method

enhancing the detection of a wide range of defects on ap-

ples and having the potential of being applied industri-
ally. �Jonagold� apple was studied because it is a

bicolour variety presenting a high variability in the skin

colour. Due to this variability, a lot of defects were

poorly contrasted and therefore difficult to detect.
2. Materials and methods

2.1. Image acquisition device

On the basis of the study carried out by Kleynen,

Leemans, and Destain (2003) about the selection of

band-pass filters for �Jonagold� apple sorting, a four

band multi-spectral image acquisition device was set

up (Fig. 1). It was made of a �MultiSpec Agro-

ImagerTM, (Optical Insights LCC, USA) including four
interference band-pass filters and coupled to a high

resolution (1280 · 1024 pixels) monochrome digital



Fig. 1. Lighting tunnel and multi-spectral image acquisition device.

Table 1

Geometrical differences between the 800nm sub-image and the other

spectral components

Sub-image (nm) Angle (�) Scale x (%) Scale y (%)

450 0.291 99.31 99.11

500 0.291 100 100

750 0 100 100

O. Kleynen et al. / Journal of Food Engineering 69 (2005) 41–49 43
camera (CV-M4CL, JAI sa, Denmark). The used filters

were centred at 450, 500, 750 and 800nm and had,

respectively, a bandwidth (FWHM) of 80, 40, 80 and

50nm (Melles Griot bv, The Netherlands). The �Multi-

Spec Agro-ImagerTM, is an optical device that projects

on a single array CCD sensor four images of the same
object corresponding to four different spectral bands

using four removable standard interference filters. It

was equipped with a �Cinegon 1.8/4.8� lens (Schneider

Optics Inc., USA). Images were acquired with a grey

level resolution of 8bits per pixel using a Camera Link

frame grabber (GRABLINKTM Value, Euresys sa,

Belgium). In order to provide sufficient light in each of

the four wavelength bands, a lighting tunnel including
two different light sources was designed. The selected

lighting sources consisted of two Philips �TL-D 18W/

18� fluorescent tubes emitting in the spectral band of

the blue colour and ten 30W incandescent spots emit-

ting in the visible and near-infrared spectra. They were

placed below the level of the fruit to avoid direct illumi-

nation leading to specular reflection. The inner surface

of the tunnel was painted in flat white to provide a uni-
form diffuse light. The optical resolution (ability to dis-

tinguish object detail) of the acquired images was

evaluated by imaging frequency targets. The frequency

targets consisted of a succession of black lines spaced

from a distance equal to their width. Four line widths

were considered: 0.25, 0.50, 0.75 and 1.00mm. The res-

olution of the imaging system was then defined by the

smallest width under which black lines start blending to-
gether. Blending was estimated by computing the mag-

nitude of the Fourier transform coefficients of an

average image line profile measured perpendicularly to

the black line direction. An average image line profile

consisted of the mean values of 10 profiles. For a given

frequency target, the magnitude of the Fourier trans-

form coefficient corresponding to the frequency of the

black lines was a measurement of the contrast between
the light and dark lines expressed in terms of grey levels.

We considered that above a magnitude of 8 grey levels,

the contrast was sufficient. Measurements showed that
the minimum resolution was 0.75mm for the four spec-

tral bands. However, the contrast varied with the spec-

tral band. It was about 10, 55, 13 and 22 grey levels,

respectively, for the filter centred at 450, 500, 750 and

800nm.

2.2. Image calibration

One multi-spectral image acquired with the above de-

scribed system was therefore formed of four sub-images

corresponding each to one filter. Since the pixel�s coordi-
nates of the four sub-images did not match perfectly,

sub-image alignment was necessary before further image

analyses. To identify the centres of the four sub-images,
the pattern matching function (�EasyMatch�) of the

�EasyAccess� software (Euresys sa, Belgium) was used.

This function computes also the x/y scale factors and

the orientation angle existing between the pattern and

the identified objects. The used pattern was the sub-

image corresponding to the filter centred at 800nm.

Table 1 presents the geometrical differences between

the 800nm sub-image and the other spectral compo-
nents. Inverse geometrical transforms were then applied

on each sub-image.

Since vignetting was also observed on the multi-spec-

tral images (sub-image borders were darker than the

centre), a �flat field correction� was applied on each of

the sub-images. This process corrects uneven illumina-

tion over the field of the array CCD and the electronic

offset due to the inherent structure of the CCD (dark
current). Flat fielding required the acquisition of two

calibration images: a bias image (BI) and a flat field

image (FFI). BI was obtained by recording an image
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with the light source turned off. FFI was obtained by

imaging a uniform pattern with a colour representative

of the �Jonagold� apples in the specific lighting condi-

tions. This was done with a pattern having the following

L*a*b* colour: L* = 61, a* = �38 and b* = 43. Cor-

rected image (CI) was then defined according to the fol-
lowing equation:

CI ¼ ðRI� BIÞ �MFFI

FFI� BI

where RI is the raw uncorrected image and MFFI is the

average pixel value of FFI.

2.3. Apple image database

Two hundred and eighty multi-spectral images of

sound �Jonagold� apples were acquired tending to cover

the whole colour variability of this bicolour apple vari-

ety. On the other hand, 246 images of a wide range of

defects were taken. Those defects consisted of scald, hail

damage (with and without skin perforation), limb rubs,

russets, scar tissue, frost damage, rot, visible flesh dam-

age and recent bruises (between 1h and 2h old). Bruises
were made by dropping the fruit from a 30cm height

onto a steel plate mounted on a 12kg mass. Defects were

grouped into four categories according to their severity

and size: slight defects (e.g. small russet), more serious

defects (e.g. scar tissue), defects leading to the rejection

of the fruit (e.g. rot) and recent bruises. In order to eval-

uate the influence of stem-ends and calyxes on the defect

detection, 292 images of stem-ends and calyxes were re-
corded with various orientations according to the opti-
Fig. 2. Example of a multi-spectral image of a
cal axis of the camera. Fig. 2 presents an example of

multi-spectral image. It can be noticed that the 500nm

spectral band (corresponding to the green visible spec-

trum) offered the best contrast between the blush (low

grey levels) and the ground colour (high grey levels)

while the 750 and 800nm bands were not sensitive to
the natural colour variations of the fruit and offered a

good contrast between the defect and the sound tissue.

According to the observation of Lammertyn, Peirs, De

Baerdemaeker, and Nicolai (2000), the light penetration

depth was the highest in these two spectral bands. They

were therefore well suited to detect internal tissue dam-

age like hail damage, bruises, etc. The 450nm spectral

band brought more significant information to identify
slight surface defects like russet.
2.4. Stem-end and calyx recognition

Since stem-ends and calyxes appear as defects when

processing the images, they must be recognised prior

to any further data analysis. The recognition was based

on a similarity template matching algorithm provided
with the �Intel Integrated Performance Primitives 3.0�
library (Intel Corporation, USA) and implemented in

C++. Given a source image and a stem-end/calyx tem-

plate image, the algorithm returned a resulting image

where the pixel value characterise the similarity between

each point of the source image and the stem-end/calyx

template. The similarity at location (x,y) in the source

image was estimated with the correlation coefficient
and was calculated as following:
hail damage (in the centre of the view).
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rðx; yÞ ¼
Ph�1

y0¼0

Pw�1
x0¼0 ðT ðx0; y0Þ � T Þ � ðIðxþ x0; y þ y0Þ � Iðx; yÞÞ

� �
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Pw�1
x0¼0

Ph�1
y0¼0ðIðxþ x0; y þ y 0Þ � Iðx; yÞÞ2

q

where r(x,y) is the value of the correlation coefficient at

location (x,y) in the source image; I is the source image;

T is the template image with the dimensions h · w pixels;
T is the average of the pixel values in the template and

Iðx; yÞ is the average value of the pixel values in the cur-

rent window (h · w) of the source image.

The correlation coefficient is a parameter varying be-

tween 0 when there is no relation between the template

and the source image and 1 when both match perfectly.

The resulting correlation image was then thresholded at

a level of 0.80. If no object was detected in the thresh-
olded image, the current view of the apple did not pre-

sent any stem-end or calyx. Otherwise, the gravity

centre of the detected object indicated the centre of the

template.

Since this method could only be applied on single

channel images, it was chosen to work with the 800nm

spectral band. Indeed, that wavelength band was not

influenced by natural variations of the skin colour and
offered the best contrast between the stem-ends/calyxes

and the rest of the fruit. The template used was an aver-

age image of 5 stem-ends and 5 calyxes. Fig. 3 presents,

as an example, the result of the correlation template

matching method for the detection of a calyx.
2.5. Fruit segmentation into sound and defective tissue

Each pixel of the fruit was classified into the �sound�
or �defect� class according to the values of its spectral

components. On the basis of the Bayes� theorem

(Leemans, Magein, & Destain, 1999), the probability

of a given pixel to belong to the sound class was deter-

mined by the following equation:

P ðsound=xÞ ¼ P ðx=soundÞ � P ðsoundÞ
P ðxÞ

with

P ðxÞ ¼ P ðsoundÞ � P ðx=soundÞ þ PðdefectÞ � Pðx=defectÞ
Fig. 3. Example of the correlation template matchin
where x is the vector of the spectral components;

P(sound/x) is the a posteriori probability for a pixel

characterised by the x vector to belong to the sound

class; P(x/sound) is the probability for a pixel belonging

to the sound class to be characterised by the x vector;

P(sound) is the a priori probability to observe a pixel
belonging to the sound class; P(x) is the probability to

observe a pixel characterised by the x vector when all

classes are blended; P(defect) is the a priori probability

to observe a pixel belonging to the defect class and

P(x/defect) is the probability for a pixel belonging to

the defect class to be characterised by the x vector.

A given pixel was therefore allocated to the sound

class if the P(sound/x) probability was greater than
0.5, otherwise it was allocated to the defect class.

Since only two classes were taken into account,

P(sound/x) = 1 � P(defect/x). In order to prevent an

over- or under-segmentation of the defect, it was as-

sumed that the a priori probability to observe a pixel

belonging to the sound class was equal to the a priori

probability to observe a pixel belonging to the defect

class. Therefore:

PðsoundÞ ¼ P ðdefectÞ ¼ 0:5

PðxÞ ¼ 0:5 � P ðx=soundÞ þ 0:5 � P ðx=defectÞ

Pðsound=xÞ ¼ P ðx=soundÞ
P ðx=soundÞ þ P ðx=defectÞ

The computation of the P(sound/x) probability required

at last to estimate two parameters P(x/sound) and

P(x/defect). These two parameters were estimated with
the relative frequency distributions of the spectral com-

ponents of the sound and defective tissue which tend to

the corresponding probability distribution when the

sample size grows.

The frequency distribution of the sound tissue was

established on the basis of an automatic selection of pix-

els belonging to sound fruits. This was done by first sep-

arating the fruit from the background by simply
thresholding the sub-image corresponding to 800nm

spectral band. A morphological erosion filter was then

applied to remove the pixels belonging to the borders

of the fruit which appeared darker due to the spherical
g method applied for the detection of a calyx.



46 O. Kleynen et al. / Journal of Food Engineering 69 (2005) 41–49
shape of the apples. The pixels of the eroded image of

the fruit were then used to compute the frequency distri-

bution. With regard to the frequency distribution of the

defects, a manual selection of defective tissue pixels was

needed.

Since each of the four spectral components was coded
on 8bits (256 grey levels), the calculation of the 4 dimen-

sion frequency distributions needed at least a memory

storage of 16 gigabytes (2564 combinations · 4 memory

bytes for each combination). Consequently, due to tech-

nical limitations, only distributions of three spectral

components were computed (these ones requiring only

65Mb of memory storage). Since Kleynen et al. (2003)

showed that the 500nm spectral component did not give
Fig. 4. Projections of the frequency distributions of the sound and defective t

to the filters centred at 450/750nm and 750/800nm.
any significant information for the discrimination of the

defects and sound tissue (it was only interesting to quan-

tify the ratio between the blush and ground colour), this

component was not taken into account for the computa-

tion of the frequency distributions.

Fig. 4 presents the projections of the frequency distri-
butions of the sound and defective tissue onto the planes

defined by the 450/750nm and 750/800nm spectral com-

ponents. It can be noticed that the distribution of the

sound tissue obeyed a Gaussian multi-variate model

which presented a high variability in the blue visible

spectrum (spectral component of 450nm) due to the nat-

ural variations in the skin colour. The 750 and 800nm

spectral components were clearly less influenced by
issue onto the planes defined by the spectral components corresponding
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those natural variations. In these two last wavelength

bands, most of the defect�s pixels were generally darker

than the sound tissue�s pixels. In all wavelength bands,

defect�s pixels covered a wide range of intensities. More-

over, the distribution of the defects could not be approx-

imated by a given model which demonstrated the
interest to use the relative frequency distributions in-

stead of parametric models. On the other hand, even if

the 750 and 800nm spectral components were highly

correlated, both were necessary to discriminate some de-

fects with a colour very close to the sound tissue (see

part 3).

Based on the two 3D frequency distributions of the

sound and defective tissue, the P(sound/x) probabilities
were computed once �off-line� and written in a look-up

table. The �on-line� segmentation consisted finally in

comparison of the value of the look-up table corre-

sponding to the 450, 750 and 800nm spectral compo-

nents to the value of 0.5.

2.6. Fruit classification

In order to estimate the precision of the defect detec-

tion, classification tests of fruits into the �sound� or

�defective� class were performed. Once the fruit was seg-

mented into sound and defective tissue, the following

discriminant features were computed on both tissue

classes: the mean, the median and the standard devia-

tion values of the 450, 750 and 800nm spectral compo-

nents. Those spectral features plus the ratio of tissue
segmented as defective were then introduced in a linear

discriminant analysis procedure. Correct classification

rates of sound and defective apples were finally esti-

mated by cross-validation.
Fig. 5. Examples of errors made with the correlation pattern matching met

(2) Defects confused with the stem-ends/calyxes.
3. Results and discussion

The correlation pattern matching method allowed to

recognise 91% of the stem-ends and 92% of the calyxes.

As shown in Fig. 5 line 1, stem-ends and calyxes not rec-

ognised presented a bad orientation according to the
optical axis of the camera. This kind of error could

therefore be solved by taking multiple views of the fruit

and registering them geometrically as presented by Lee-

mans and Destain (2004). With regard to defects, 17%

were identified as stem-end/calyx. They were generally

very dark with a circular shape and leading in most of

the cases to the rejection of the fruit (Fig. 5 line 2). If

multiple views of the fruit were acquired, more than
two stem-ends/calyxes should be detected on apples with

such defects. Since sound apples presents only one stem-

end and one calyx, the detection of more than two stem-

ends/calyxes on a fruit should lead to the rejection of

this one.

The results of the cross-validation of the fruit classi-

fication into sound and defective classes showed that

94.3% and 84.6% of the sound and defective apples
were, respectively, well classified. Fig. 6 shows examples

of defective fruits (russet and recent bruise) correctly

classified thanks to the dedicated multi-spectral vision

system. Indeed, those defects were particularly difficult

to detect with conventional imaging system. Further

analyses of the classification errors revealed that most

of the misclassified sound fruits were confused with

fruits having slight defects. A small part was classified
among the fruits with recent bruises. With regard to

the defective fruits, Table 2 presents the correct classifi-

cation rates according to the four defect categories.

No rejected fruit and only 2% of the recent bruises were
hod (800nm spectral band). (1) Stem-ends or calyxes not recognised.



Fig. 6. Examples of defective fruits correctly classified into the defective class. (1) Russet. (2) Recent bruise. (a) Original image corresponding to the

500nm spectral band and offering the best visual contrast (defects are surrounded in white). (b) Image of the P(sound/x) probabilities (grey level

refers to the probability value, black = 0, white = 1). (c) Result of the segmentation process (threshold value = 0.5, white = sound tissue,

grey = defect).

Table 2

Correct classification rates of the defect categories

Defect class Correct %

Rejected 100

Recent bruises 98.2

Serious 94.5

Slight 55

Global rate 84.6

Fig. 7. Examples of defective fruits misclassified into the sound class. (1) Sma

image corresponding to the 500nm spectral band and offering the best visual

probabilities (grey level refers to the probability value, black = 0, white

white = sound tissue, grey = defect).
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misclassified into the sound class. About 6% of the seri-

ous defects were classified into the sound fruits. It must

be noticed that this kind of defects does not lead to the

rejection of the fruit but relegates it to a lower quality
category. The impact of those errors was therefore rela-

tively less serious than classifying a rotten or flesh dam-

aged apple into the sound fruits. Regarding slight

defects, 45% of the defective apples were still confused
ll scald correctly segmented. (2) Russet poorly segmented. (a) Original

contrast (defects are surrounded in white). (b) Image of the P(sound/x)

= 1). (c) Result of the segmentation process (threshold value = 0.5,



O. Kleynen et al. / Journal of Food Engineering 69 (2005) 41–49 49
with the sound fruits. As presented in Fig. 7, the errors

consisted mainly of defects well segmented but with a

small area (line 1) or of defects having a colour similar

to the sound tissue and therefore poorly segmented (line

2). Nevertheless, those defects were minor and accepta-

ble according to the quality tolerances defined by the
European standard. Considering that a raw batch of

apples contains actually about 90% of sound fruits, the

ratio of defective fruits misclassified into the sound class

dropped to 1.9% which fits the 5% quality tolerance of

the �extra� class.
The complete computing time including the stem-end/

calyx recognition, the defect segmentation and the fruit

classification implemented in a C++ program was about
30 ms with a �Pentium III 866MHz� processor and using

the �Intel Integrated Performance Primitives 3.0� library.
Considering multiple views per fruit and with up to date

processors, this computing time is totally compatible

with the industrial sorting speeds.

Since it was observed (Fig. 4) that the 750 and 850nm

spectral components were highly correlated, the interest

to use them simultaneously was evaluated by making a
fruit classification test taking into account only the spec-

tral discriminant attributes related to the 450 and

750nm spectral components. It was then observed that

the correct classification rate of the defective fruits

dropped from 84.6% to 80.1%. This diminution came

from an increase in the errors made on the slight defects

like russet and hail damage.

Finally, to confirm that the 500nm spectral compo-
nent was not significant for discriminating sound apples

from defective ones, a classification test taking into ac-

count the information provided by the 4 spectral compo-

nents was performed. In that case, the misclassification

rate of the defective apples increased slightly due to a loss

of significant information introduced by the 500nm spec-

tral component which was highly correlated to the natu-

ral variations of the skin colour. The 450, 750 and 800nm
spectral components were therefore sufficient and well

suited to sort �Jonagold� apples.
4. Conclusion

The global methodology consisting in selecting a re-

duced number of spectral bands and implementing the
corresponding filters in a multi-spectral image acquisi-

tion device was found appropriate for defect detection

on apples. The most efficient wavelength bands were

centred at 450, 750 and 800nm. The 450nm spectral

band brought significant information to identify slight

surface defects like russet while the 750 and 800nm

bands offered a good contrast between the defect and
the sound tissue and were well suited to detect internal

tissue damage like hail damage, bruises, etc. A Bayesian

classification procedure was successfully used to seg-

ment these defects.

The proposed methodology has the potential for

being used in apple sorting machines. Indeed, the selec-
tion of the most efficient wavelength bands can be done

once �off-line� and consequently, the �on-line� process

consisting in image acquisition and analyses may occur

at acceptable speeds. The efficiency of the method was

demonstrated on a bicolour apple variety presenting a

high colour variability. The procedure has therefore

the potential for being extended to other varieties.
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