
International Journal of Computer Vision, 321-331 (1988) 
o 1987 KIuwer Academic Publishers, Boston, Manufactured in The Netherlands 

Snakes: Active Contour Models 

MICHAEL KASS, ANDREW WITKIN, and DEMETRI TERZOPOULOS 
Schlumberger Palo Alto Research, 3340 Hillview Ave., Palo Alto, CA 94304 

Abstract 

A snake is an energy-minimizing spline guided by external constraint forces and influenced by image 
forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock 
onto nearby edges, localizing them accurately. Scale-space continuation can be used to enlarge the cap- 
ture region surrounding a feature. Snakes provide a unified account of a number of visual problems, in- 
cluding detection of edges, lines, and subjective contours; motion tracking; and stereo matching. We 
have used snakes successfully for interactive interpretation, in which user-imposed constraint forces 
guide the snake near features of interest. 

1 Introduction 

In recent computational vision research, low- 
level tasks such as edge or line detection, stereo 
matching, and motion tracking have been widely 
regarded as autonomous bottom-up processes. 
Marr and Nishihara [ 111, in a strong statement of 
this view, say that up to the 2.5D sketch, no 
“higher-level” information is yet brought to bear: 
the computations proceed by utilizing only what 
is available in the image itself. This rigidly se- 
quential approach propagates mistakes made at 
a low level without opportunity for correction. It 
therefore imposes stringent demands on the reli- 
ability of low-level mechanisms. As a weaker but 
more attainable goal for low-level processing, we 
argue that it ought to provide sets of alternative 
organizations among which higher-level pro- 
cesses may choose, rather than shackling them 
prematurely with a unique answer. 

In this paper we investigate the use of energy 
minimization as a framework within which to 
realize this goal. We seek to design energy func- 
tions whose local minima comprise the set of 
alternative solutions available to higher-level 
processes. The choice among these alternatives 
could require some type of search or high-level 
reasoning. In the absence of a well-developed 
high-level mechanism, however, we use an in- 
teractive approach to explore the alternative 

organizations. By adding suitable energy terms to 
the minimization, it is possible for a user to push 
the model out of a local minimum toward the 
desired solution. The result is an active model 
that falls into the desired solution when placed 
near it. 

Energy minimizing models have a rich history 
in vision going back at least to Sperling’s stereo 
model [16]. Such models have typically been 
regarded as autonomous, but we have developed 
interactive techniques for guiding them. Interact- 
ing with such models allows us to explore the en- 
ergy landscape very easily and develop effective 
energy functions that have few local minima and 
little dependence on starting points. We hope 
thereby to make the job of high-level interpreta- 
tion manageable yet not constrained un- 
necessarily by irreversible low-level decisions. 

The problem domain we address is that of 
finding salient image contours-edges, lines, and 
subjective contours-as well as tracking those 
contours during motion and matching them in 
stereopsis. Our variational approach to finding 
image contours differs from the traditional ap- 
proach of detecting edges and then linking them. 
In our model, issues such as the connectivity of 
the contours and the presence of corners affect 
the energy functional and hence the detailed 
structure of the locally optimal contour. These 
issues can, in principle, be resolved by very high- 
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Fig. 1. Lower-left: Original wood photograph from Brodatz. 
Others: Three different local minima for the active contour 
model. 

level computations. Perhaps more importantly, 
high-level mechanisms can interact with the con- 
tour model by pushing it toward an appropriate 
local minimum. Optimization and relaxation 
have been used previously in edge and line detec- 
tion, [3,5,13,24,25], but without the interactive 
guiding used here. 

In many image interpretation tasks, the correct 
interpretation of low-level events can require 
high-level knowledge. Consider, for example, the 
three perceptual organizations of two dark lines 
in figure 1. The three different organizations cor- 
respond to three different local minima in our 
line-contour model. It is important to notice that 
the shapes of the lines are materially different 
in the three examples, not just because of a dif- 
ferent linking of line segments. The segments 
themselves are changed by the perceptual 
organization. 

(4 

Without detailed knowledge about the object 
in view, it is difficult to justify a choice among the 
three interpretations. Knowing that wood is a 
layered structure, or perhaps inferring its layered 
structure from elsewhere in the picture could 
help to rule out interpretation (b). Beyond that, 
the ‘correct’ interpretation could be very task de- 
pendent. In many domains, such as analyzing 
seismic data, the choice of interpretation can de- 
pend on expert knowledge. Different seismic in- 
terpreters can derive significantly different per- 
ceptual organizations from the same seismic 
sections depending on their knowledge and 
training. Because a single ‘correct’ interpretation 
cannot always be defined, we suggest low-level 
mechanisms which seek appropriate local min- 
ima instead of searching for global minima. 

Unlike most other techniques for finding 
salient contours, our model is active. It is always 
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minimizing its energy functional and therefore 
exhibits dynamic behavior. Because of the way 
the contours slither while minimizing their en- 
ergy, we call them snakes. Changes in high-level 
interpretation can exert forces on a snake as it 
continues its minimization. Even in the absence 
of such forces, snakes exhibit hysteresis when ex- 
posed to moving stimuli. 

Snakes do not try to solve the entire problem of 
finding salient image contours. They rely on 
other mechanisms to place them somewhere 
near the desired contour. However, even in cases 
where no satisfactory automatic starting mech- 
anism exists, snakes can still be used for semi- 
automatic image interpretation. If an expert user 
pushes a snake close to an intended contour, its 
energy minimization will carry it the rest of the 
way. The minimization provides a ‘power assist’ 
for a person pointing to a contour feature. 

Snakes are an example of a more general tech- 
nique of matching a deformable model to an 
image by means of energy minimization. In spirit 
and motivation, this idea shares much with the 
rubber templates of Widrow [23]. From any start- 
ing point, the snake deforms itself into conform- 
ity with the nearest salient contour. We have ap- 
plied the same basic techniques to the problem of 
3D object reconstruction from silhouettes by 
using energy minimizing surfaces with preferred 
symmetries [ 171. We expect this general approach 
will find a wide range of applicability in vision. 

In section 2 we present a basic mathematical 
description of snakes along with their Euler 
equations. Then in section 3 we give details of the 
energy terms that can make a snake attracted to 
different types of important static, monocular 
features such as lines, edges, and subjective con- 
tours. Section 4 addresses the applicability of 
snake models to stereo correspondence and mo- 
tion tracking. Finally, section 5 discusses further 
refinements and directions of our current work. 

2 Basic Snake Behavior 

Our basic snake model is a controlled continuity 
[18] spline under the influence of image forces 
and external constraint forces. The internal 
spline forces serve to impose a piecewise smooth- 
ness constraint. The image forces push the snake 

toward salient image features like lines, edges, 
and subjective contours. The external constraint 
forces are responsible for putting the snake near 
the desired local minimum. These forces can, for 
example, come from a user interface, automatic 
attentional mechanisms, or high-level interpre- 
tations. 

Representing the position of a snake paramet- 
rically by v(s) = (x(s), y(s)), we can write its energy 
functional as 

= o1 Ei,t(v(s)) + Eim&V(S)) I 
+ Eccintv(s)) ds (1) 

where Eint represent the internal energy of the 
spline due to bending, Eimage gives rise to the 
image forces, and E,,, gives rise to the external 
constraint forces. In this section, we develop Eini 
and give examples of E,,, for interactive inter- 
pretation. Eimage is developed in section 3. 

2.1 Internal Energy 

The internal spline energy can be written 

Eint = (~(shts)12 + P(~>1W>12V2 (2) 

The spline energy is composed of a first-order 
term controlled by a(s) and a second-order term 
controlled by p(s). The first-order term makes the 
snake act like a membrane and the second-order 
term makes it act like a thin plate. Adjusting the 
weights a(s) and p(s) controls the relative impor- 
tance of the membrane and thin-plate terms. Set- 
ting p(s) to zero at a point allows the snake to 
become second-order discontinuous and develop 
a corner. The controlled continuity spline is a 
generalization of a Tikonov stabilizer [19] and 
can formally be regarded as regularizing [14,15] 
the problem. 

Details of our minimization procedure are 
given in the appendix. The procedure is an O(n) 
iterative technique using sparse matrix methods. 
Each iteration effectively takes implicit Euler 
steps with respect to the internal energy and ex- 
plicit Euler steps with respect to the image and 
external constraint energy. The numeric con- 
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siderations are relatively important. In a fully ex- 
plicit Euler method, it takes 0(n2) iterations each 
of O(n) time for an impulse to travel down the 
length of a snake. The resulting snakes are flac- 
cid. In order to erect more rigid snakes, it is vital 
to use a more stable method that can accom- 
modate the large internal forces. Our semi- 
implicit method allows forces to travel the entire 
length of a snake in a single O(n) iteration. 

2.2 Snake Pit 

In order to experiment with different energy 
functions for low-level visual tasks, we have 
developed a user-interface for snakes on a Sym- 
bolic~ Lisp Machine. The interface allows a user 
to select starting points and exert forces on 
snakes interactively as they minimize their en- 
ergy. In addition to its value as a research tool, 
the user-interface has proven very useful for 
semiautomatic image interpretation. In order to 
specify a particular image feature, the user has 

only to push a snake near the feature. Once close 
enough, the energy minimization will pull the 
snake in the rest of the way. Accurate tracking of 
contour features can be specified in this way with 
little more effort than pointing. The snake energy 
minimization provides a 'power assist' for 
image interpretation. 

Our interface allows the user to connect a 
spring to any point on a snake. The other end of 
the spring can be anchored at a fixed position, 
connected to another point on a snake, or 
dragged around using the mouse. Creating a 
spring between x, and x, simply adds 
-k(x, - xJ2 to the external constraint energy 

- K O , .  

In addition to springs, the user interface pro- 
vides a I/? repulsion force controllable by the 
mouse. The l/r energy functional is clipped near 
r = 0 to prevent numerical instability, so the 
resulting potential is depicted by a volcano icon. 
The volcano is very useful for pushing a snake 
out of one local minimum and into another. 

Figure 2 shows the snake-pit interface being 

Fig. 2. The Snake Pit user-interface. Snakes are shown in black, springs and the volcano are in white. 



used. The two dark lines are different snakes 
which the user has connected with two springs 
shown in white. The other springs attach points 
on the snakes to fixed positions on the screen. In 
the upper right, the volcano can be seen bending 
a nearby snake. Each of the snakes has a sharp 
corner which has been specified by the user. 

3 Image Forces 

In order to make snakes useful for early vision we 
need energy functionals that attract them to 
salient features in images. In this section, we pre- 
sent three different energy functionals which at- 
tract a snake to lines, edges, and terminations, 
The total image energy can be expressed as 
a weighted combination of the three energy 
functionals 
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By adjusting the weights, a wide range of snake 
behavior can be created. 

3.1 Line Functional 

The simplest useful image functional is the 
image intensity itself. If we set 

Eline = 1(X, Y) (4) 

then depending on the sign Of Wline, the snake will 
be attracted either to light lines or dark lines. 
Subject to its other constraints, the snake will try 
to align itself with the lightest or darkest nearby 
contour. This energy functional was used with 
the snakes shown in figure 1. By pushing with the 

Fig. 3. Two edge snakes on a pear and potato. Upper-left: The 
user has pulled one of the snakes away from the edge of the 
pear. Others: After the user lets go, the snake snaps back to the 
edge of the pear. 
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volcano, a user can rapidly move a snake from 
one of these positions to another. The coarse con- 
trol necessary to do so suggests that symbolic at- 
tentional mechanisms might be able to guide a 
snake effectively. 

3.2 Edge Functional 

Finding edges in an image can also be done with 
a very simple energy functional. If we set Eedge = 
-]Vl(x,y)]‘, then the snake is attracted to con- 
tours with large image gradients. An example of 
the use of this functional is shown in figure 3. In 
the upper left, a user has placed two snakes on 
the edges of the pear and potato. He has then 
pulled part of the snake off the pear with a spring. 
The remaining pictures show what happens 
when he lets go. The snake snaps back rapidly to 
the boundary of the pear. 

3.3 Scale Space 

In figure 3, the snake was attracted to the pear 
boundary from a fairly large distance away be- 
cause of the spline energy term. This type of con- 
vergence is rather common for snakes. If part of a 
snake finds a low-energy image feature, the 
spline term will pull neighboring parts of the 
snake toward a possible continuation of the fea- 
ture. This effectively places a large energy well 
around a good local minimum. A similar effect 
can be achieved by spatially smoothing the edge- 
or line-energy functional. One can allow the 
snake to come to equilibrium on a very blurry en- 
ergy functional and then slowly reduce the blur- 
ring. The result is minimization by scale-con- 
tinuation [20,21]. 

In order to show the relationship of scale-space 
continuation to the Marr-Hildreth theory of 
edge-detection [lo], we have experimented with a 
slightly different edge functional. The edge- 
energy functional is 

Eline = -(Go * V21)* (5) 

where G, is a Gaussian of standard deviation o. 
Minima of this functional lie on zero-crossings 
of G, * V21 which define edges in the Marr- 

Hildreth theory. Adding this energy term to a 
snake means that the snake is attracted to zero- 
crossings, but still constrained by its own 
smoothness. Figure 4 shows scale-space con- 
tinuation applied to this energy functional. The 
upper left shows the snake in equilibrium at a 
very coarse scale. Since the edge-energy function 
is very blurred, the snake does a poor job of 
localizing the edge, but is attracted to this local 
minimum from very far away. Slowly reducing 
the blurring leads the snake to the position 
shown in the upper right and finally to the posi- 
tion shown in the lower left For reference, the 
zero-crossings of G, * V*I corresponding to the 
energy function of the snake in the lower left are 
shown superimposed on the same snake in the 
lower right. Note that the snake jumps from one 
piece of a zero-crossing contour to another. At 
this scale, the shapes of the zero-crossings are 
dominated by the small-scale texture rather than 
the region boundary, but the snake nevertheless 
is able to use the zero-crossings for localization 
because of its smoothness constraint. 

3.4 Termination Functional 

In order to find terminations of line segments 
and corners, we use the curvature of level lines in 

Fig. 4. Upper-left: Edge snake in equilibrium at coarse scale. 
Upper-right: Snake in equilibrium at intermediate scale. 
Lower-left: Final snake equilibrium after scale-space con- 
tinuation. Lower-right: Zero-crossings overlayed on final 
snake position. 



a slightly smoothed image. Let C(x, JJ) = G,(x, JJ) * 
1(x, y) be a slightly smoothed version of the 
image. Let 8 = tan-’ (C,/CJ be the gradient angle 
and let n = (cos 8, sin 0) and n, = (-sin 8, cos 0) 
be unit vectors along and perpendicular to the 
gradient direction. Then the curvature of the level 
contours in C(x, y) can be written 

= d2Cldn: 
dC/dn 

= c,,c~ - 2cxycxcy + c& 
(C,’ + cy (8) 

By combining Eedge and Etem, we can create a 
snake that is attracted to edges or terminations. 
Figure 5 shows an example of such a snake ex- 
posed to a standard subjective contour illusion 
[7]. The shape of the snake contour between the 
edges and lines in the illusion is entirely deter- 
mined by the spline smoothness term. The varia- 
tional problem solved by the snake is very closely 
related to a variational formulation proposed by 
Brady et al. [2] for the interpolation of subjective 
contours. Ullman’s [22] proposal of interpolating 
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using piecewise circular arcs would probably 
also produce a very similar interpolation. An ap- 
pealing aspect of the snake model is that the 
same snake that finds subjective contours can 
very effectively find more traditional edges in 
natural imagery. It may, moreover, provide some 
insight into why the ability to see subjective con- 
tours is important. 

A further unusual aspect of the snake model 
that bears on the psychophysics of subjective 
contours is hystheresis. Since snakes are constan- 
tly minimizing their energy, they can exhibit hys- 
teresis when shown moving stimuli. Figure 6 
shows a snake tracking a moving subjective con- 
tour. As the horizontal line segment on the right 
moves over, the snake bends more and more 
until the internal spline forces overpower the 
image forces. Then the snake falls off the line and 
reverts to a smoother shape. Bringing the line 
segment close enough to the snake makes the 
snake reattach. While it is difficult to show the 
hysteresis in a still picture, the reader can easily 
verify the corresponding hysteresis in human vi- 
sion by recreating the moving stimulus, This type 
of hysteresis is uncharacteristic of purely bottom- 
up processes and global optimizations. 

Fig. 5. Right: Standard subjective contour illusion. Left: 
Edge/termination snake in equilibrium on the subjective 
contour. 
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Fig. 6. Above left: Dynamic subjective contour illusion. Se- 
quence is left to right, top to bottom. Above Right: Snake at- 
tracted to edges and terminations. As the moving horizontal 

line slides to the right, the snake bends until it falls off the 
line. Bringing the line close enough makes the snake reattach. 

4 Stereo and Motion 

4.1 Stereo 

Snakes can also be applied to the problem of 
stereo matching. In stereo, if two contours corre- 
spond, then the disparity should vary slowly 
along the contour unless the contour rapidly 
recedes in depth. Psychophysical evidence [4] of 
a disparity gradient limit in human stereopsis in- 
dicates that the human visual system at least to 
some degree assumes that disparities do not 
change too rapidly with space. This constraint 
can be expressed in an additional energy func- 
tional for a stereo snake: 

E stereo = (ad - v3a2 (9) 

where v$) and @(,s) are left and right snake 
contours. 

Since the disparity smoothness constraint is 
applied along contours, it shares a strong simi- 
larity with Hildreth’s [8] smoothness constraint 
for computing optic flow. This constraint means 
that during the process of localizing a contour in 
one eye, information about the corresponding 
contour in the other eye is used. In stereo snakes, 
the stereo match actually affects the detection 
and localization of the features on which the 
match is based. This differs importantly, for ex- 
ample, from the Marr-Poggio stereo theory [12] 
in which the basic stereo matching primitive 
zero-crossings always remain unchanged by the 
matching process. 

Figure 7 shows an example of a 3D surface 
reconstructed from disparities measured along a 
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Fig. 7. Bottom: Stereogram of a bent piece of paper. Below: 
Surface reconstruction from the outline of the paper matched 
using stereo snakes. The surface model is rendered from a 
very different viewpoint than the original to emphasize that it 
is a full 3D model, rather than a 2SD model. 

single stereo snake on the outline of a piece of 
paper. The surface is rendered from a very dif- 
ferent viewpoint than the original to emphasize 
that a 3D model of the piece of paper has been 
computed rather than merely a 2.5D model. 

4.2 Motion 

Once a snake finds a salient visual feature, it 
‘locks on.’ If the feature then begins to move 
slowly, the snake will simply track the same local 
minimum. Movement that is too rapid can cause 
a snake to flip into a different local minimum, 
but for ordinary speeds and video-rate sampling, 
snakes do a good job of tracking motion. Figure 8 
shows eight selected frames out of a two-second 
video sequence. Edge-attracted snakes were in- 
itialized by hand on the speaker’s lips in the first 
frame. After that, the snakes tracked the lip 
movements automatically. 

The motion tracking was done in this case 
without any interframe constraints. Introducing 
such constraints will doubtless make the tracking 

Fig. 8. Selected frames from a 2-second video sequence show- 
ing snakes used for motion tracking. After being initialized to 

the speaker’s lips in the first frame, the snakes automatically 
track the lip movements with high accuracy. 
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more robust. A simple way to do so is to give the 
snake mass. Then the snake will predict its next 
position based on its previous velocity. 

5 Conclusion 

Snakes have proven useful for interactive speciti- 
cation of image contours. We have begun to use 
them as a basis for interactively matching 3D 
models to images. As we develop better energy 
functionals the ‘power assist’ of snakes becomes 
increasingly effective. Scale-space continuation 
can greatly enlarge the capture region around 
features of interest. 

The snake model provides a unified treatment 
to a collection of visual problems that have been 
treated differently in the past. Edges, lines, and 
subjective contours can all be found by essen- 
tially the same mechanisms. Tracking these fea- 
tures through motion and matching them in 
stereo is easily handled in the same framework. 

Snakes, perhaps, embody Mar-r’s notion of 
‘least commitment’ [9] more than his bottom-up 
2.5D sketch. The snake provides a number of 
widely separated local minima to further levels of 
processing. Instead of committing irrevocably to 
a single interpretation, snakes can change their 
interpretation based on additional evidence from 
higher levels of processing. They can, for exam- 
ple, adjust monocular edge-finding based on 
binocular matches. 

We believe that the ability to have all levels of 
visual processing influence the lowest-level vi- 
sual interpretations will turn out to be very im- 
portant. Local energy-minimizing systems like 
snakes offer an attractive method for doing this. 
The energy minimization leaves a much simpler 
problem for higher level processing. 
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Appendix: Numerical Methods 

Let E,, = Eimage + E,,,. When a(s) = ~1, and p(s) = 
l3 are constants, minimizing the energy func- 
tional of equation (1) gives rise to the following 
two independent Euler equations: 

dE ext 
ass + Px,,,, + __ - ax 

- 0 

UYSS + PYSSSS + ___ - aE 0 ext _ 

ay 

(10) 

(11) 

When a(s) and /3(s) are not constant, it is sim- 
pler to go directly to a discrete formulation of the 
energy functional in equation (2). Then we can 
write 

Es*nake = $I Edi) + %X0 (12) 

Approximating the derivatives with finite dif- 
ferences and converting to vector notation with vi 
= (xi, yj) = (x(ih), y(ih)), we expand E&i) 

Ei,t(i) = UilVi - Vi-112/2h2 

+ pilvi-l - 2vi + v;+,(2/2h4 (13) 

where we define v(0) = v(n). Let fX(i) = aEexJdxi 
andfy(i) = aE,,@yj where the derivatives are ap- 
proximated by a finite difference if they cannot 
be computed analytically. Now the correspond- 
ing Euler equations are 

ai(vi - vi-l> - ai+l(v;+l - vi) 

+ pj-,[Vj-2 - 2Vj-l + Vj] 

- 2pj[Vj-l - 2V; + Vi+,] 

+ Pi+l[vi - 2vi+l + vi+21 

+ urwfYG)) = 0 (14) 

The above Euler equations can be written in ma- 
trix form as 

Ax + fX(x, y) = 0 (15) 

AY + f&x, Y> = 0 (16) 

where A is a pentadiagonal banded matrix. 
To solve equations (15) and (16), we set the 

right-hand sides of the equations equal to the 
product of a step size and the negative time 
derivatives of the left-hand sides. Taking into ac- 
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count derivatives of the external forces we use re- 
quires changing A at each iteration, so we achieve 
faster iteration by simply assuming that f, and f, 
are constant during a time step. This yields an ex- 
plicit Euler method with respect to the external 
forces. The internal forces, however, are com- 
pletely specified by the banded matrix, so we can 
evaluate the time derivative at time t rather than 
time t - 1 and therefore arrive at an implicit 
Euler step for the internal forces. The resulting 
equations are 

Ax, + fx(xz-1, y,-d = -r(xt - x,-J (17) 

AY, + f&1, Y,-I) = -Y(Y, - Y,-I> 

where y is a step size. At equilibrium, the time 
derivative vanishes and we end up with a solu- 
tion of equations (15) and (16). 

Equations (17) and (1X) can be solved by ma- 
trix inversion: 

x, = (A + YU-‘(L, - f&-,,yt-J) (19) 

Y< = (A + YI)-‘(Y,-, - fyCu~,-1)) (20) 

The matrix A + yI is a pentadiagonal banded 
matrix, so its inverse can be calculated by LU 
decompositions in O(n) time [6,1]. Hence equa- 
tions (19) and (20) provide a rapid solution to 
equations (15) and (16). The method is implicit 
with respect to the internal forces, so it can solve 
very rigid snakes with large step sizes. If the exter- 
nal forces become large, however, the explicit 
Euler steps of the external forces will require 
much smaller step sizes. 
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